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If X is a topological space with density d(X)=2, then ef (d{(X" ) V= clA, where (X ), 18
the A-box product of & copies of X, We use this observation to get lower bounds for the function
Blw, A =d([D(2Y Yy where D(2) is the diserete space [0, 1], It turns out that S(x, A ) is usually
(if not always) equal to the well-known upper bound (log « ™", We also answer a question of
Comiort and Negrepontis about necessary and sufficient conditions for §(x 7, 4 )= =
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1. Intreduction

We use the letters «, x. A for cardinals, and the letter £ for ordinals. For cardinals
k and A, we write

cf k' =min {a & is the sum of & cardinals < «};

log k =min{a ;2" =x};

K =minfa o >x};

k"t =suple”ia<Al
W write 25 =84, 2psi= 2", and

o= T Dp=Ro+ 24270400
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If A and B are sets, then *B is the set of all functions from A into B, |A| is the
cardinality of A,
PAY={X:Xc A}, [A]'={X<cA:|X|=a}
and
[A ={Xc A:[X]<AlL

A set Fc™B is A-dense if, for every X €[A]™ and every function ¢: X -» B,
there is an fe F such that f(x)=¢(x) for all xe X. A sequence (he:&<«) of
functions hee "B is A-independent (of A-large oscillation in the terminology of
Comfort and Negrepontis [2, 3]) if, for every X € [«]™ and every function ¢:X -
B, there 15 an e € £ such that

heley=¢(¢) forall felX

Let & and & be cardinals, A =« ", We define 8(x, A) as the minimum cardinality
of a A-dense set F="{0, 1}. It is easy to see that §{x, A) is also the minimum
cardinality of a set E such that there is a A-independent sequence {hy: &= «} of
functions in E{u. 1}. For A =«, we define d(x, A)=48(x, A"). There is no loss of
generality in considering the function d(k, A ) instead of &(x, A ), since

S, A)=supldix, a)ia <Al

Let Xi(iel) be topological spaces, and let w=A<|I|", The A-box product
([1:c X Jay has basic ppen sets of the form [],c;L where L[ is an open set in X| and
{iel: U #X}|<A; this is the usual Tychonoff product when A =@, and the box
product when A =|I|*. If X;= X forall i € I, we write (X" )., instead of ([Ti< /X)),
The density of a topological space X, denoted by d(X), is the minimum cardinality
of a dense subset of X We denote by (2} the space {0, 1} with the discrete
topology. Clearly,

8(k, A)=d((D(2)* )y forw=A=x".

We now list some well-known properties of the function d{x, A).
i1, Lemma. [fx'=x and A'=A, then dx', A V= Ak, A ).
1.2. Lemma. 2" =4(i, A)=2"
1.3. Lemma. Alx, 2)=log .
1.4. Lemma. [f k = w, then A(k, A)=(log k).
1.5 Theorem. If x =w and A =2, then 2" log x = Alx, A )= (log x )",
1.6. Corollary. Ifx =w and A # 1, then Ak, A)" = (log k ".

Lemmas 1.1 and 1.2 are trivial. For Lemma 1.3, consider any 3-dense family
F=*{00, 1}. Then £—={feF: f(£)=0} is a one-to-one mapping of « into P(F);
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hence x =27 ie., |F|=log &, (We could prove in a similar way that Ad(x, A)=
log x* whenever k =w and A = 2; but this seems pointless, since log & * =2* - log x.)
Lemma 1.4 follows from a result of Engelking and Karlowicz [6, Remark 3, p. 279],
which generalizes earlier results of Fichtenholz and Kantorovitch [7], Hausdorf
[8], and Tarski [11]. We indicate a proof here for the convenience of the reader, Put
a = log &, For A= o and B = {0, 1}, define f45:"10, 1} {0, 1} s0 that

far(x)=1 ifxtAeB,
and let
F={fas:]A|=A and |B|=2},
Then F is a A "-dense subset of ™2; hence
Alic, AY=A(2% A)=|F| =a" = (log x)".

Now considér a fixed infinite cardinal x. By Theorem 1.5, we have d{wx. A)=log x
for 2= A < w, while 4 (k. log k)= 2""*, Le., if we put

Ag=min{A : Ak, A)=log «},

then w=Aqs=logx. In Section2 we show that in Fact Ay=cf log k. Moreover,
assuming the so-called singular cardinals hypothesis, we show that A{k, A)=
(log x)* whenever ¥ =w and A =2, In Section 3 we give two examples which
answer a question of Comfort and Negrepontis, Our results were announced in [1].

2. A generalization of Konig's cofinality theorem

2.1. Theorem. Let k and A be infinite cardinals, A =« ", and let X be a topological
space with d(X)=2. Then cf{d({X" )} ))=cf A

Proof. Note that & = d{((X" ).} is an infinite cardinal, so it makes sense to talk
about its cofinality. Suppose that of @ <ef A. Choose a dense set §< (X" ), with
|§]=a: then we can write § =|_J;;S. where |[|=<¢f A and |S)|<« for i L Since
[fl=efA=A=k", we can write x =|_J;.; K, where the K,'s are pairwise disjoint
sets of cardinality w. Since (Xx' Jisy is homeomorphic to (X™)uy we have
d((X*)uy)=a. Let 7,:X"=X" be the projection mapping. Since |7 (5] <a.
7:18;] is not dense in (X *),,,. Hence, for each i = I, we can choose nonempty open
sets Ly X (£ K;) so that

HeeKi: Ug XY <A and ([l.x U)nwm[Si]=0.

But then |{ex: L # X} <A since |/| <cf A. Thus []...L% is a nonempty open set
in (X ) and ([ lec. U ) § =0, This contradicts the fact that § is dense in (X" )y

2.2 Corollary, If w=A=x", then cf 8(x, A)=clA,



i F.5. Catereval. / On the density of A-bax products
Proof. Let X = D(2)in Theorem 2.1,
2.3. Corollary. [f w=A =, then of d(x, A)=A.

Since Ak, x)=2", Corollary 2.3 generalizes the theorem of J, Kdonig that
cf 2" =n,

2.4, Corollary. If x =w, then A(x, cf log &) =log k.

Proof. A(k.cflogx)=logx by Theorem 1.5, and of Ak, cf logx)=cflogx by
Corollary 2.3,

The singular cardinals hypothesis, abbreviated SCH, is the assertion that k" =
2% -k for all infinite cardinals « and A. (The SCH is equivalent to the assertion that
k™ =k for every singular cardinal « such that 2" < x; see Sections 6 and § of
[9].) Clearly, the SCH follows from the generalized continuum hypothesis, but is
much weaker. In fact, models of set theory vielating the 3CH are not easy 1o come
by: Prikry and Silver (see [9, Section 37]) and Magidor [10] have constructed such
models assuming the consistency of very large (e.g., supercompact) cardinals, and
Jensen has shown that some large cardinal assumption is necessary [4]. The follow-
ing theorem shows that the SCH settles all questions about the function d{x, A ).

2.5, Theorem. Assume the singular cardinals hypothesis. If k =w and A =2, then
Alx, A )= (log & ).

Proof. By Corollary 1.6, it will suffice to show that A{k, A)* =A(k. A1), Let &=
Alk, A). We may assume that A =e, By Corollary 2.3 we have cf & > A; hence
"o =|_Jj=o £ and

a'= ¥ |f'= ¥ 2| sa
Em Eepr

2.6 Corollary. Assume the singular cardinals hypothesis. For every infinite cardinal
K, we have

1 ifa=0;
2 ifa=1,
2" log x ifZ=A<cf logx;

Alx, A)=
[2’ (logx)" ifcflogr=A=u«.

2.7. Corollary, Assume the singular cardinals hypothesis. If k =w and A =3, then
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8(x, A)=(log k)™ *. Hence for every infinite cardinal x, we have

j.h. ifA=2;

S, A)=+2""-logx ifi=A=cflogk;

[2“"“ (logx) ifcflogr<A=wk’.

Problem. Is the SCH needed in Theorem 2.57 l.e., it is consistent with ZFC that
Ak, A)=(log x ¥ for some infinite cardinals x and A7 For example, it is consistent
with ZFC that 2%~ <¥®, for all m <w, 8- =W, 7, and AR, Ho)=8.+17 How
does the function A(x, A ) behave in Magidor's models [10]?

3. Two examples

The Sousiin numtber of a topological space X, denoted by S{X), is the least
cardinal A such that no collection of pairwise disjoint nonempty open subsets of X
has A elements. Comfort and Negrepontis [3, Section 3, p. 79] consider the
following conditions where w =& =«

(f'y 8(2° k)=w;

(g) e’ k)=wo;

() SUPEY))=a forall sets [;

(a) 2" =a.
They remark that (f')=> (g == (¢') & (a'), but it is apparently left opén whether the
first two implications can be reversed. (The implication {a") = (¢') is attributed to §.
Shelah). In an earlier paper by the same authors [2, p. 284], it is stated as an open
problem whether ({'), (g'), and (c") are equivalent. The examples given below show
that the conditions are not equivalent.

First we give a counterexample to (8")=> (g'). Put a =2, and x =¥;. Note that
log & = a and cf log o = Ny; hence

Sla, )= Ag, Wy)=Aa, cfloga)=loga=a

by Corollary 2.4. Thus we have 8(a ", k)= 8, k)>a while 27" =2 <q,

OF course, we can only give a consistent counterexample to (g')=» (f"), since (f')
and (g') are the same condition if 2" =a ', Let us assume, then, that Maw, <2™
and 2%m < 2%+t for all m < w; this assumption is consistent with ZFC (in fact, with
ZFC +SCH) by Easton’s theorem [5]. Put @ =X, and x =¥,. Note that loga™ =N,
and log 27 =N, Now

dla’, ki=Ala”, No)=2M<a
by Theorem 1.5, while

8(2% x)=4(2% No)=4(2% cflog2")>log 2" = a
by Corollary 2.4. L.e.,

Ao’ k)<a<8(2" ).
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