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ON DIFFERENCE SETS OF SEQUENCES OF
INTEGERS. III

By
A. SARKOZY (Budapest)

1. Let # be a set of positive integers b;<=b,=.... A set of positive integers
y=uy=... will be called an =/-set relative to Z if its difference set does not con-
tain an element of #; in other words, if

(1) u,—u,=b,

is not solvable in positive integers x, y, z.

L. Lovasz conjectured that if w;=u,=... is an o/-set relative to the set of
the squares of the positive integers (i.e. u,—u, = z? is not solvable in positive
integers x, y, z) then

2 2 L=o0(x)

u=x

must hold. In Part I of this series (see [10]), I proved this conjecture in the following
sharper form: if u;<uw,<... is an o/-set relative to the set of the squares then

(loglog x)m]

(3) Z 1 :O[x (log x)'®

I proved this theorem by adapting that version of the Hardy—Littlewood method
which has been elaborated by K. F. RotH in [4] and [5], in order to prove that if a
set of positive integers u;<u,< ... does not contain an arithmetic progression of
three terms, then (2) must hold, more exactly,

X
4 L= [——~——]
@) ,.gx loglog x
(In Part II of this series, I gave a lower estimate for
max > 1

where the maximum is taken for those sets u; <u,<... which form an </-set relative
to the set 1%22 ..., n% ...; see [11].)

In the case of the arithmetic progressions of three terms, we may use the follow-
ing simple fact:

(i) Aseta+qu,,a+qu,, ..., a+aqu (where ais an integer and ¢, q, uy, Uy, ..., U;
are positive integers) does not contain an arithmetic progression of three terms if
and only if also the set u,, u,, ..., %, has this property.
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356 A. SARKOZY

This fact plays a role of basic importance in the proof of (4). In the proof of
(3), 1 could replace this assertion by the following one:

(i) A set a+q’u,, a+4q°u,, ...,a+q*u, (where q is an integer and ¢, g, u;,
Uy, ..., 4, are positive integers) is an /-set relative to the set of the squares if and
only if also the set u,, u,, ..., u, has this property.

(Note that here we have g2 in place of g.)

Starting out from (3), one might like to show that (2) must hold also for sequ-

ences w;=uy,=... which form an .&/-set relative to certain other fixed set
by<by<..., e.g. relative to
(5) b, =i*

(where k=3 is a fixed integer and i=1,2,..)),

(6) b; =1(i)
(wher f(x) is a fixed polynomial with integral coefficients and i=1,2,...) and
(7 by =p;

(where p; denotes the /" prime number and i=1,2,...), respectively.

The case (5) can be treated in the same way as the special case k=2; namely,
the analogue of (ii} holds also in the general case A=2 with ¢* in place of ¢* Thus
it can be shown by the method used in {10] that if the set #;<=w,<... forms an
s/ -set relative to the set (5) (also in case k=3) then (2) must hold.

On the other hand, in cases (6) and (7), simple counter examples can be given.
Namely, let f(x)=x2+1 and u,=6, u,=12, ..., 4;=61, .... Then (2) does not hold,
however, 3 |u,—u, and 6|u,—wu, thus w,—u,#b,=224+1 and wu,—u,=b,=p,
(for 1=y=ux, z—I,ﬁ,...)

P. Erdés raised the conjecture that if

(8) b, = i2—1
(i.e. f(x)=x—1 in (6)) respectively

® by=pi—1

(for i=1,2,...), and u;<u,=... forms an «/-set relative to the set b, <b,<...,
then (2) must hold.

In both cases the difficulty is that an analogue of (i) or (ii) does not exist: thus
we have to modify Roth’s method. We shall be able to avoid this difficulty by using
estimates for exponential sums of the form

(10) 2 e(b0)

where g is small in terms of x. (Throughout this paper, we use the notation e —
= e(a) where « is real.)
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ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS. III 357

Since the cases (8) and (9) can be investigated analogously, we are going to
discuss only the case (9). The remaining part of this paper will be devoted to the
discussion of this case, i.e. the solvability of the equation

(11) uy~u,=p,—1.

Consequently, we shall write briefly “.7-set” instead of “.«/-set relative to the set

pl_]! Pz_"l,...,pi_’l,...”. .
For x=1,2,..., let A(x) denote the greatest number of integers that can

be selected from 1,2, ..., x to form an =/-set and let us write

a(x)= A(:) i

We shall prove the following

THEOREM.

(12) a(x)zO[

(logloglog x)*(log log log log x) ]
(loglog x)* '
Throughout this paper, we use the following notations:

We denote the distance of the real number x from the nearest integer by | x|,
ie. |x|=min {x—[x],[x]+1—x}. If @, b are real numbers and b=0 then we

define the symbol min qa, by

0.
(13 min{a E} =aq
) L] 0 T e
C, e, €.y My, My, ... will denote (positive) absolute constants. We shall

use also Vinogradov's notation: if f and g are two functions such that g=0 and
there exists an absolute constant C satisfying | f|=Cg then we write f<g.

2. In this section, we estimate exponential sums of the form

S(@) = Sy(@) = 3 (logp)e((p—1)a)

P=N
and
—1
(14) P) =Py, = = (logp)e[” a].
EEM’ q
;p—l

(Here and in what follows, we shall leave the indices if this cannot cause confusion.)

LeEMMA 1. Let u be an arbitfrary positive real number, M a positive integer for which
M- +co, and b, g, m integers satisfving

(15) 1 = b < (log M)
and
(16) l = g < (log M)
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Then there exists an absolute constant c¢,=0 such that

Mq - l’ong
a7 S logp=1{olbg) Al ek
21_y O(Me—aVieeM)  for (mg+1,b)>1

glp—1
-1
fq—Em(rnod b)

(where ¢, and the implicite constant in the error term may depend on u but not on
b, g, m).
S -1 ; .
Proor. The conditions g|p—1 and p_q_ =m (mod b) can be rewritten in the
equivalent form

(18) p=mg+1 (modbg).

Thus for (mg+1, bg)=1, ie. (mg+1,b)=1, we have to show that

_ Mq —c;l’lugM .
piMZq“ logp S0 +0(Me—aliogM),
p=mg-+1{mod bg)

but this is a consequence of the prime number theorem of the arithmetic prog-
ressions of small (< (log M)") modulus (see e.g. [3], pp. 136 and 144).

For (mg+1, bg)=1, ie. (mg+1, b)>1, (18) implies that (mg+ 1, b)|p. Hence,
(mg+1, b) is a prime number and p=(mg+1, b). Thus in this case, the left hand
side of (17) consists of the single term

logp = log (mq+1,b) =logh < log(log M) = uloglog M = o( Me—c1VioeM)

which completes the proof of Lemma 1.

LeMMA 2. Let u be an arbitrary positive real number, M a positive integer for
which M— + e, and a, b, g integers satisfying (15), (16) and (a, B)=1. Let us
define the integer my , for (b, g)=1 by

(19) myg+1=0 (modb) and 0=my =b—1.
Then there exists an absolute constant c¢,=0 such that
a a
@ (5)=redl5) -
Mg

por )u(b)e[mwb]+O(Me—f=V'°W) for (b,g)=1
O(Me—c¥1o2M)  for (b, g) > 1

(where ¢, and the implicite constant in the error term may depend on u but not on
a, b, ).
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Proor. By (15) and Lemma 1,

a a p—1 a
—| = Sl ¥ B | =
2 ?(5) = Pus () =, Goere(-5)
dp—1

—IE.’M
q

glp—1
pq;lamimodb)

b—1 a
= Zelng) = reer=
"

b—-1 i
= 5 e[m f—] Mq +O[ ‘Z Me'ﬁwoSM'] —

s
I=m=b—-1

m=0
(mg+1,b)=1
Mgq [ a] e
= e|lm=|+0((log M) Me—<:Vioehr) =
¢(bq) {05»1%)—1 b ((og M) )
mg+1.5)=1

Mo 5 e(m2)+o(Me-emem).

- p(bq) o=m=b-1 b
(mg+1,b)=1
Here
a 83 a
(22) 2% e[m—] = % e(m-—] > uld)=
0=m=b-1 b m=40 b di{mg+1,b)
(mg+1,b)=1

=>ud 3 e[mi].
dlb O=m=b-1 b

dimg+1
Let m, denote the least non-negative integer m for which d|mg+1 holds. Then
(23) myg+1=0 (modd),

and d|mg+1 holds if and only if

(24) (mg+1)—(meg+1)=(m—mg)g=0 (modd).
By (23),
(25) (d,g)=1.
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(24) and (25) imply that d|mg+1 holids if and only if m—m,=0 (mod d). Thus
with respect to (a, #)=1, the inner sum in (22) is

d—

= 5 e(onring) -

I

=
i
i
0
~
—
3
o=
e ——
&

b a . .
B—e[mo}]—] for blda ie. bld

=0 for b{d.

e
=@

Hence, the inner sum in (22) is different from 0 only if 4|d; but by d|b, this implies
that b=d, and by (25), also (b, g)=1 must hold. Thus we obtain from (22) that

0=m=b—1 b
(mg+1,b)=1

_ u(b) oémé;_le(m—g—] = p(b)-%e(mO%] = ptb)e[mo-g-] for (b,q)=1,
bima+1

0 for (b, q)=1

where m, satisfies (23), i.e. myq+1=0 (mod b); hence, my,=m, ,. Putting this
into (21), we obtain (20) and the proof of Lemma 2 is complete.

LemMA 3. Let u be an arbitrary positive real number, M a positive integer for
which M—+<=, a, b, q integers satisfying (15), (16) and (a, b)=1, finally, B any
real number. Then

P(ge8) - ruclior) -

o HBe[m, ) 2 2e(nﬁ}Lo((Mlerl)Mefcﬁ?w) for (b, q) =1
O((M B+ 1) Me—<VosM)  for (b, g) > 1

where my, , is defined ( for (b, 9)=1) by (19).
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Proor. Applying Lemma 2, we obtain by partial summation that

(27 Py q [% % B] Z (log pe { [% = d ﬁ]] =

- 2 fimne( )25 -

gp—1

8|2 )

q
glp—1
= Dlog(gn+1) =nlog(gn+1) = Y Mlog((log M)*YM+1) = O(y M log M)
k=1

and

@ bq) (b)e[mb a b]; =ng < VM (log M)*

(with respect to (16)).
For YM<n=M, (16) implies that

1 = g < (log M)* < (log n?)* = 2%(log n)* < (log n)‘*f‘

(if M is sufficiently large depending on u) thus Lemma 2 can be applied with 2u
and » in place of u and M, respectively.
Summarizing, we obtain from (27) (using Lemma 2) that for (b, g)=1

Pua(§+8) = | Z S u0)e g ) (o —e(n+ D) +
+ L u)e [ ) e+ DB+
.3 (5 ()~ onls e (s )| com—e(r+ 0B+

+[pM_q[§] q}gq) (b)e[m,,_qb]]e((M+l)ﬁ)}

12 Acta Mathematica Academiae Sclentiarum Hungaricae 31, 1978



362 A. SARKOZY

Ty M
QJ(b );‘(b)e[mbd?%] ,,g;e(”ﬁ)—l_

[y 3]
+ =21 O(VMlog M+VM(log M) e(nf)— e((n+ 1)) +

+ 12” 0 (ne=ct¥ioem ) e(nf)— e((n+1) )] + O(MeciVioe™) =
a=ly3-1

(ﬂ(bg) rz(b)f(mb q b] Ze(nﬁ)+"=| O(Me_fs] o x“ﬁ)

+ 3 O(Meom ) 40 (Me-eiV ) =
n=[¥M] -1
(p(b ) (b)e[m,,g b] Ze("ﬁ)TO((M]ﬁ' 1) Me—c¥loeM

while for (b, g)=>1,
[y34] .
PM.Q[%'F 5] = wgl' oy [%] (emP)—e((n+1)B))+

+ > P ”[%)(e(nﬁ) e((u+1)ﬁ))+1°,,,[ ] (M+1)p)=

w=[}’M +1

—

Y]
0 (VM log M)e(np)—e((n+1)B)|+

=1

E

* f O (ne~<s/%87) [e(n) — e((n + 1) B)| + O (Me~<sVToeM) =
nm[m-]d-l

]
= iO(Me'_CgVIO_-W|ﬁ|)+ g O(Me‘fnm jﬁ|)+

n=[yM]+1

+O(Me—c¥ioe M) = O (M |B|+1) Me—c:Toe ™)

since
le(p)—e((n+1) )| = [1~e(B)| = le(—p/2)~e(B/2)| = 2 [sin zp| = 2x|B|
and the proof of Lemma 3 is complete.

LemMA 4. If a, b are integers such that a=b, and B is an arbitrary real number
then

Zb' e(kp)| = min{b—a+1

k=a

A}
»2081)°
(For ||Bl=0, the right hand side is defined by (13).)

This lemma is identical to Lemma 1 in [10],
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LeMMA 5. Let u be an arbitrary positive real number. There exist constants M,
¢;=>=0 (which may depend on u) such that if M>=M,, furthermovre, a,b, q are in-
tegers satisfying (15), (16) and (a, b)=1, finally, B is a real number satisfying

3 Viog Mt
@3) Bl = ——=—,
then
Mq
v i : 2——— for Bl=—
oo i b ol(g) M
o b)) -{
sOe@B 7" 37 =

Proor. We are going to apply Lemma 3.
For (b, g)=1, the main term in (26) in Lemma 3 can be estimated in the follow-
ing way, by using Lemma 4 (and with respect to (28)):

u(b)e{ my,, b] Ze(nﬁ)|

go(bq)
= . 1 _— 9 i L
=o0p ™ {M’ 2afﬁn} = oBe@ ™" {M ' 2.1,64} =
Mgq 1
. o
oGe@ ©F P=35
I S 1
Seme@p o =P
Thus Lemma 3 yields that
Mg 1
| ——— for |f|=—
| | R b M
gPM,q[%w]g < O((M|B|+1) Me—clos™) 4 a )‘P(;) i
1 T - | PR f ] 1
2w®o@ A > =P

To obtain (29) from this inequality, it suffices to show that here the first term on
the right (the O(...) term) is less than the second term. The first term is the greatest
and the second is the least if [ is the possibly greatest, i.e. |f|=es/0eM/M. Then
the first term is

(30) O((ecsV08M - 1) Me—c:V08M) = O (Meles—c¥losH)
while the second term is (with respect to (16) and for large M)
M - = > Me—2:/o83,

20(b)p(g)esV°sM  2pessl10eM 2 (log M)HecsTos M
For c¢;=cy/4 and M=M,(u), the latter is greater than (30) and Lemma 5 is proved.
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364 A. SARKOGZY

LeMMA 6. If X, Y are real numbers, a, b integers and « a real number such that
Y=b=X)Y, 1=SY=X", (a,b)=1 and

i
B

"

3

a
a——b-l
then

1Sx (@)} = Ipé; (log p)e((p—1)e)! = LPEZ;(logp)E(pat)l < XY~ 3(log X)V".

This is essentially a consequence of Theorems 1 and 3 of VINOGRADOV in [12],
Chapter 1X; see also MONTGOMERY [1], Chapter 16, and MONTGOMERY—VAUGHAN
[2], Lemma 3.1.

LEmMMA 7. If M (=0), q, a, b are integers and o is a real number satisfying

(31 l=g=logM
and
(32) (a,b) =1,
Jurthermore, writing
(33) Q= M(log M) *,
also
(34) 2log M) =b=Q
and
!r al 1
hold then for large M,
- M
(36) [P()] = [Py, q(0)| < Tog My
PROOF. :
37) Pu.o@=| 3 dogpe(p—1) —]‘ =
{p=1_,, q
dlp-1

=! > toepe(e-nZ){E Eefe-ni)f -

g—1

> = aosp)e[(p—l) “;”]I -

=0 p=gM+

e
g

a+j)
SqM-I'l[ qJ]l'

112 (rx+3] 1 921
= — = —
qlg il I )
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Let us write }-=&—;1. By Dirichlet’s theorem, there exist integers 4, B such
that
(38) (4, B) =1,
(39) 1= B=20
and
4] I
g AT
5 " "B| T 2B40
by (39) and (40}, also .
Al 1
holds.
We are going to show that these conditions imply that
42) B> 2b.
Let us assume indirectly that
3) B=1b.
By (35), y can be written in the form
a 91 .
44) i a+j F+E+J __a+bj i 6,
q q bg  bgQ
where [0,/<1. Let us define the integer U and the positive integer V by
atbj U
(46) . v)=1.
By (32), (a+bj, b)=1, thus
(47) (a+bj, bg) = q.
(45), (46) and (47) imply that
(48) b=V =bg.
By (40), y can be written in the form
_ A4 6
@ "= B 2Bq

where [6,|<1.
(44) and (49) yield that

"=V bq0 T BT 2BqQ’
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hence, with respect to (34) and (48),

U_Al_ 16 | 16 I I

50 — I= = + =
(50) vV " B|= 590 T3Bg0 ~ 540 ' 2840

1 111
=740 "2Bqb - bqQ 2BV

On the other hand, we obtain from (38), (43), (46) and (48) that

=2
Bs

<<

thus

(31)
(50) and (51) yield that

U _A|_|juB—va _ 1

| v Bl VB T VE
A 1 L1 1 1
VB~ g0 2BV’ 2VB _ bq0'
hence, with respect to (34), (43) and (48),

VB 1 B 1.1 _ b
bgQ q0 b

Thus the indirect assumption (43) leads to a contradiction, which proves (42).
Let us write X=gM-+1, Y=(log M)**. Then for large M,

1<2

52 1=Y=(log M)* < (M+ 1)/ = X4,

furthermore, by (34) and (42),
1

(53) B> 3 b=(log M) =Y,
finally, by (33) and (39),
(54) B =290 =2qM(log M) " = 2(gM+ 1)(log M)~ % <

= (gM+1)(log M)~*° = X|Y.

In view of (38), (41), (52), (53) and (54), Lemma 6 can be applied with gM +1,
(log M)*%, A, B and y in place of X, Y, a, b and 0. With respect to (31), we obtain
that

o+
q

= ((log M)M+1)(log M)~2{log ((log M) M +1)}" <

[Susa )] = )| < @+ 1)(00g py) 2108 g+ D =

Sq_H+ 1 [

< (log M)M{(log M)~ 2(log M)" = M(log M)~2.
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Putting this into (37), we obtain that

M

=
| e gt
[Py, g ()] < - Jé’u M (log M) (log M)?
which completes the proof of Lemma 7.

LEMMA 8. There exists an absolute constant ¢,(>=0) such that for n=3,

() e e
¥ *nloglogn’

This lemma is well-known; see e.g. [3], p. 24.

LEMMA 9. Let q, M be positive integers, R a real number such that

(55) g=logM
and
(56) 3=R=logM.

Let Sy u denote the set of those real numbers o for which 0=a=1 holds and there
do not exist integers a, b such that

(57) (a,b) =1,
(58) 1=b<R
and
a 1 R

0% Y M loglogR®
Then for o€ Sy, and large M,

gM loglog R
60 P ke S b bl

Proor. Let us define Q by (33). By Dirichlet’s theorem, for all a€ Sy ), there
exist integers A4, B such that

(61) (4,B) =1,
(62) 1=B=0Q
and |

A 1

If 2(log M)*® = B, then Lemma 7 can be applied, with 4 and B in place of a
and b, respectively. We obtain that

M
(64) [Py, o ()] < Tog M)
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By (56), the right hand side of (60) can be estimated in the following way:

q loglogR _ . loglogR - logloglog M M
6 S ™M~ r MTgr EMTT.Mm T ozl
for sufficiently large M. (64) and (65) yield (60).
If
(66) B < 2(log M)®

and M is large then we may apply Lemma 5 with a=4, =8, = a—% and

u=41. Namely, for large M, (15) and (16) hold by (55) and (66). Furthermore, by
(63),
A 1 1 (loga)t

81 = ;a <pgSg=

which implies (28) for sufficiently large M. Thus, in fact, all the assumptions in
Lemma 5 hold. Applying Lemma 5, we obtain that for large M,

Mg 1
1M oo 1p=—
B)op(q) M
(®) Pl < 00 ;
o " =P

: L5 ; 1 ;
The right hand side is maximal for |ﬁ|§F. Thus for R=B, we obtain by apply-
ing Lemma & that

[Py, q(0)) <

2Mgq 5 loglogB. Mg <<1oglogR_ qM
o(B)o(q) B olq) R o(q)

(with respect to R=3).
Finally, if B<R then x<Sg , implies that

‘ A] 1 R
(68) !ﬁl—\-x B =M "Toglog R

which yields also |f| :-% since it can be shown easily that

R
. S |
loglog R

for R=3. Thus we obtain from (67) and (68) that

q qg 1 q loglog R
@@ —o@ B=0o@ M Rr

which completes the proof of Lemma 9.

[P, o(@)] <
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3. For arbitrary positive integers M, g, let

(69) Ui g, Uag, ..., Urq

be a maximal «/-set selected from g, 2g, ..., Mg, and let
£

(70) Flo) = Fy, () = k;:: e(u; ).

In this section, we estimate this function Fj ().
For an integer » and positive integers m, x, let A, .)(x) denoie the greatest
number of integers that can be selected from b+m, b+2m, ..., b+xm to form an

s-set (so that A, )(x)=A(x)).
Lemma 10, For any integers b, d and positive integers m, x, we have

A(‘b. m) (x) = A(d. m) (x)

Proor. This follows trivially from the fact that the numbers b+u;m, b+uym,
.y b+um form an /-set if and only if also the numbers d+u,m, d+u,m, ...,

d+u,m do.
By Lemma 10, we may simplify the notation A, ,)(x) in the following way:
let us write A,(x) instead of A, .)(x), i.e. et

A, (x) = Ap,my(x) (for b=0,+1,12,...).
Furthermore, let

(%) = A—“'x(x),

so that A(x)=4;(x) and a,(x)=a(x); moreover, T=A,(M) in (69) and (70),
thus

) F) = Fy @)= 5 e(a).

k=1

Lemmas 11 and 12 follow trivially from the definitions of the functions A,,(x)
and a,(x), respectively.

LemMa 11. If m, x and y are positive integers such that x=y then A, (x)=A, ().
LemMmA 12. For arbitrary positive integers m and x, we have a,(x)=1.

Lemma 13. For arbitrary positive integers m, x and y, we have

@) AnG4) = An(D+ 4,0,
& 4n3) = X4,0)

& an () = 2,0,

9 1) = 1+2) 4,0
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Proor. By Lemma 10, the greatest number of integers that can be selected
from m, 2m, ..., xm and (x+ L)m, (x +2)m, ..., (x +y)m to form an 2/-set, is 4,,(x)
and A,,(y), respectively; thus the greatest number of integers that can be selected
from m, 2m, ..., xm, (x+1)m, (x +2)m, ..., (x +y)m to form an o/-set, is =4,.(x)+
+A,(y) which proves (72).

(73) is a consequence of (72).

Dividing (73) by xy, we obtain (74).

Finally, by Lemma 11 and (73),

A, () = A, [[Ei] + l]y] = ([ﬂ + l]A,“(y) =

= [§+1]Am(y) ety 2= ’"‘”

Dividing by x, we obtain (75).

LemMa 14. Let g, b, t, M be positive integers, a an integer, o, f§ real numbers
such that

(76) a——=f.
Let

F*(a) = Ffi ,(a) = abq(t} Lzb'l e[ J] [Jé’je(ﬁj )]j
so that if (a,b)y=1 then
a,(t) Jé,':e(ﬂj) for b=1
0 for b>1 (where (a, b)=1).
Then there exists an absolute constant ¢y such that
(78)  [Fu,o(@)— Fip,o(@)| = (a5, (1) — ag(M) M) +c5(|B|May, () + ag (1)) 2b.
Proor. We are going to show at first that

a7 F3.,(®) =

1 b M

(79) Fy,q(0) = 5 > 2 2 e(au)+0(a,t)th).

x=l Jj=1jsmu, <j+ith
. =s(mod b)

Let us investigate the cosfficient of e(ox) on the right hand side. )
If th=u,=M then we account e(au,) exactly b times, namely for the following

values of j:
jzlik‘-tb+l,uk—tb+2,...,u‘k

Thus the coefficient of e (o) is

1
Ib*}-f;-—l

in this case (and its coefficient is the same on the left hand side).
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If
(80) 1=u < 1b
then we account e(«x,) on the right of (79) for j=1, 2, ..., u,, thus its coefficient is
i i
[Oé) :}I}'E - Ib'g =]

on the right and 1 on the left of (79). For the numbers u, satisfying (80), the numbers
u,q form an &/-set selected from g, 2¢, ..., tbg thus in view of (73) in Lemma 13,
their number is

= A,(th) = A,(1)b = a,(t)tb.

These facts yield that, in fact, the error term in (79) is O(ag (1)1b).
The term (o) in the inner sum in (79) can be rewritten in the following way:

efauy) = ¢ [[ +B] uk] =e [ ]e(ﬁuk) =
= (&) et e(B—i) = ¢ (%) e(Bir1+00BGA-10) =

= ¢ (2] ety + 0B = (%) s+ 0CBIeb)

since |u,—j|<tb in the inner sum, and
le(M—1| = |e(¥/2}—e(=7/2)| = 2sinzy| = 2|ny| = 2ny|

for any real number ;.
Thus the inner sum in (79) can be estimated in the following way:

) S =3 [e(S)ewroasimn) -
sty =j+1b J= = j=1b
iy = 5 (mod b) i =5({mod b)
- [e(&)eromm| 3 1
JEuy < j+1b

B u =s(modb)
Let us define the integer v by

v=j=v+b, v=5s (modb).

Then for the numbers i, satisfying j=u;<j+1b and w,=s(mod b), the numbers
u,q form an o/-set selected from vg -+ bq, vg+2bg,, ..., vg+1thg. Thus by Lemma 10,
l = A(I:q.bq}(t) = Abq(‘) == abq(t)f.

J=u ~<j+rb
u=s(mod b)

Hence, defining D( 4, 1, b, 5) by
2 1 = abq(r)t_p(js Is bs 5)9

J=u<j+tb
U =s(mod b)
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we have D(j, 1, q,5)=0. Putting this into (81):

S e = [e (%) e + 081 B) @)~ D 1, b,5) =

J=u,<=j+tb
uy, = s{mod h)

= (%) e (i) (@)~ D 1. b, 9)+ O(Blasy )125).
Thus (79) yields that

6 Fuy) = 3 3 e[ e(Bidan (-G, 1. .9)+ 0(Blar 0} 4

s—f.; 1

-!—O(aq(t)rb) ab"( ) [Vzl'e[ ;]) [ Ze(ﬁ;)]

| b M
—1 3 S e(%) e 1.5, 5+

s=1 j=1

+o(- tM-lﬁlam(t)rab]+0(aq(s)rb]=

= iy 3 3 e(2)e(8)D(, 1,6, 5)+ O Mary () +a,()15).

s=1 j=1

Putting here a=f=a=0, we obtain that

1 2 M .
a,(M)M = A,(M) = a,,,q(t)M—-E Zl ‘Z:D(_}, t, b, s)+0(aq(t)tb),
s=1 j=
hence

b M
é J,=Z: D(j. 1. b, s) < (ap(t)—a,(M)) M +cqea,(t)ib.
Thus (82) vields that
| Fag, o () — Fpp, (@) <

1;;- PZI JZ;_)(,r,r b, 5)+c; (18| May, (1) +a,(t))th <

< ((ang()—a (M) M +cga, (1) th) +c7(|B| May, (1) +a,(1)) th <
< (ap (1) —a (M) M+ cs (Bl Ma,, (1) +a,(t))th
which proves Lemma 14.
4, (12) will be deduced from a lower estimate for
a*(t) = 1;11&:{}‘-{ Gy, (2)

in terms of a,(M) where t=o0(M) and R-+-<, however,  is relatively large,
R is small in terms of M.
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LemMA 15. Let t, M, q be positive integers, R a real number such that

(83) t|M,

(84) g =logM,

(85) 3=R=logM.

Then there exist absolute constants ¢y, ¢, such that for sufficiently large M,
(86) (a,(M))* = cg{(a™(1)—a,(M))*Rlog R+

% * \ P - 42 R
+a (l)(ﬂ‘ (r)-—aq(M))+(a (f))*[ﬁlogR+mW]+

+a*(1) [e—cmflos_.'-f + b_g%ﬁ]} .

Proor. We are going to use a modification of that version of the Hardy—
Littlewood method which has been elaborated by K. F. RoTH in [4] and [5].

P(x), F(x) and F*(x) will denote the functions defined by (14), (71) and (77).
(Werecall thatu,, u,, ..., 4y ) in(71) denote integers such that u,q, tygq, ..., Ug, 0 9
form a maximal o/-set selected from g, 2g, ..., Mgq.) Then

1
(87) [ F@ F(-2)P(@) dx =
i}

Ay (M) A (M) [ Sy

1
= f e(u,x) e(—u,2) > (logp)e
0 y=1 x=1 -fii.“

. cx] do =
q
glp—1

& logp =0,
ETREY

-1
u,—ux+—pq—= 0

I

namely,
-1
u,—u,+ £ 2o
) ) q
or in equivalent form,
ug—u,q =p—1

is not solvable, since the numbers u,g, 1,4, ..., 44, ap¢ form an o/-set.

Let us write
1 R
@) g= M loglog R’
then by (85),
1 _ log M [ i]
®9) M ¢ Mlogloglog M =3
for large M.
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By (87), . o
[ [F@)2P@de=— [ |F(@)?P(x)dx,

hence, B B
2P(a) dary,

i wd 1-8
(90) M |F(o) 2P (x) dof| = 4‘ |F(2)[* |P(a)] dor.

We are going to give a lower estimate for the left hand side and an upper es-
timate for the right hand side.
In order to estimate P(o) for |x[=4, we apply Lemma 3 with u=1, a=0,
b=1 ((16) holds by (84)). Then m, ,=0 in Lemma 3, thus we obtain with respect
to (89) that there exists an absolute constant ¢,y such that for large M and [2|=/,

= O((MJ+1) Me—eVios ™) —

—
P(x) o n;; e(no)

= MlogM  _  viee — Meo-cyoliogM
- 0[log10glogMe it EM] Me e
Thus we obtain applying Parseval’s formula that
+8
(91) f \F)2P(x) da| =
-3
. q M ) +5: § _
olq) [El e(”ﬁ)}da+ __!‘ !F(a)|3[P(a)——)~ g ] =
il M +d | A
= g i B g _
= |(p(q) f |[F(a)? [ngie(m)] da|— ,;;f |F(2)[2 iP(o:) e ";l'e(na) da
30 +a
# g |F(G¢)|2[ e(mcj] do| — J |F(O€)|2 Me“mW do =
+é - ;
= W [F(a)|? (,é e(mc)]da —Me—f:o?|08MJ|p(a)|2da -
+4d M .
= 9| [ IF@R( 3 ) da| - a,(40) Mre-e e =
( -4 n=1
33 M
= _?" f |F(0t)12[ Ze(na)] da|—a* (¢) M2e—crol 108 M
(@) =
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since

(92) a,(M) = a,(r) =a*(r)

by (74), (83) and the definition of the function a*(r).
For any complex numbers u, v, we have

|lu[2—[v]?| = |uii —eb] = [(u—v)ia+v(@—0)} =
= Ju—vlli|+ |o| @ -0 = |u—v[(jul+ o) =
= ju—v|([(u—v)+v/+v]) = [u—v|(ju—o|+2lt)) =

= lu—vPP+2u—v|p|

Thus
93) [ F@p- 1 @) S et o] =
gi f || F(a)]?— | F~ (a)42| e(na) dx =
-3
+8
f (|F()— F*(2)|2+ 2| F(a)— F"‘(m)||F“(a)j) e(mc) do.
-5

For a=0, =1, Lemma 14 yields with respect to (92) that
|F(@)— F*(@)| = (ag(1)— a,(M))M +c5(|z| Ma, (1) +a, ()t =
= (a* (1) —a,(M))M+cy(lx| M+ 1)a*(t)t =

(@*()—a (M) M+cyna* (1)t for |o| =1/M
= {(a*(r)—aq(M])M—I-c,, lala*()eM for 1/M = |a| = 4.

Thus using also Lemma 4, we obtain from (93) (with respect to (88), (89), (92) and
the inequality

(94) (A+B)® = 242 +2B°
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where A, B are arbitrary real numbers) that

<=

95 Jf(lF(oc)P !F*(a);z)[ e(mc)] da

< [ {@*©) —a, (M) M+a*(t)r)+

lal=1M

+((@a"(r)—a (M) M+a~(t)t)a™ () M } Mdx +
+ [ Al@ () —a, (M) M+ |ala* (1) 1M+

1M=a|=6

+((a* () —a (M)M+ [aéa*(r)rM)a*(’)?.lq}T:Ta =

< (a*()—a (M) M2+(a* ()12 +a”(t)(a* (1) —a, (M) M* +(a* (1)) tM +
+{(a"(1)—a (M)PM?+(a™ (1))t M } f ]—l-,—dcx+

yrm=ia=s 1%
+@ @Oy [ laldxra*(t)(a* () —a, (M) M f E:—]ada«
1M=zl=6 1M=|zi=é
< (a™ () —a,(M)P M2 +(a* @) tM +a*(t)(a"(t)—a,(M)) M2+
+{(a™(t) —a,(M))* M2+(a* (1))t M Y log M+
+(@a (OPeEM2E+a*(t)(a* () —a (M) M <
< (a*(t)—a (M) M2+ (a" (1) tM+a*(1)(a" (1) —a,(M)) M+

2

| . R
+H{(a* () —a,(MPME+(a" (1)) 1M }Hlog R+(a" ()1 oiopy <

. R?
= (ﬂ*(!) -‘aq(M))EMz log R+((Ix[!))2 [.'M log R—l—tzml +

+a*(1)(a* (1) —a,(M)) M=

By Lemma 4 and Parseval’s formula, we have

faiF*(-z)]" [ ge(mc)) do =
iy | n=1

|F (a)'g( 2 e(na))dx ;f

&

.1f IF*(fx)!ﬁ[fe(m)] dy =
—d n=1
1/2 1

g(aq(t))zlﬂx 21 {3 f(aq(:)--zj—-h 3.

x—y+z=0
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Here for large M,

1=x,y, =M
x—y+z=0

M . -
since léxél%], 1§z§[—2~] and y=x+z satisfy the conditions 1=x, y, z=M,

x—y+z=0. Thus with respect to (85) and (92),
+3

(96) J1F @ ( 3 o)) da >
—§ n=1
M: 1 P71 M2 1
e (“q(f))z‘[ i f ‘*d“] = (a, (1)) [T_W] =
loglog R
(aq(x))wz[ [ﬂ]] %(aq(r))zMﬂg%(aq(M))zMa.
(91), (95) and (96) yield that
+é
() [ IF@P (@) do| =
—3
+é M
G * —coflog M —
F o _!lF(a)P[Ze(m)]da —a* (1) M2e=culloeM =
o q) _! |F*(u)|2[ e(nct)]doc
| rwr- 1 o) ( 5 eom) aa| -
gk T L 3. A4
a* () M?e g (q)( a,(M))- M*—
q * 2 2 * 2 2 R2
_clsm{(a (1)—a,(M))*M?log R+(a* (1)) [tMlogR+r —{loglogR)2]+

+a*(1)(a* (1) —a, (M) M>+a* (1) M?e~cwllogM},
Now we are going to give an upper estimate for the right hand side of (90).
If a, b are integers such that 0=a=b—1, 1=b=R and (a b)=1 then let
us denote the interval

[a 5 a_!_‘s] a 1 R a+] R
b b b MloglogR’ b ' MloglogR

by I, (so that [, ;=[—J +3]) and define the set Sg, 5 in the same way as in Lemma
9. Then obviously,

Bo1=s1c{ U (U Ls}USkn

2=b=R 1=a=h
(a2, b)=1
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thus
1—4
(98) [ IF@)? P da =
+5
]
=2 3 fIF(a)2 P(o)l dz+ [ |F@)P|P@) da =
=2l=asbd—
(a.by= Taw R M
(&)
= Z EaJ:"'ES
b=21=a=b-1
(a.b)=1

For u¢l, ,. we use Lemma 14 to estimate |F(x)!, while [P(x)| can be estimated
by applying Lemma 5 with u=2, a=%+,8, since (15) and (16) hold by (84), (85)

and b=R, and also (28) holds for large M by |f|=4J and (89). Applying these
lemmas, we obtain with respect to (92) that if w€ 1, , (where 1<b4=R) then

[F(@)| = (apy (1) —a (M) M +c;(1B] May,(t) +a,(t))th =
=(a* () —a,(M)M+c;(|B| M +1)a*(t)th =
1

(" () ~a, (M) M +2c;a*()ib for |B] ===

liA

(a”(t)—a,(M))M +2c5|p| Ma*(t)tb for B} = ;7
and (29) hold. Thus in view of (85), (88), (89) and (94),

ﬂb—f| _'_ﬁ[i +ﬁ]dﬁ+
18 I_M
1 |rGea) ()=
TS BI=2
< [ A@©-a,GOpM+(a" ()63 — 52 (b)w(q) e

e

+ [ (@O —a, (M) M2+ B M2(a* (1)) b}md’“‘

1
=|fl=d

ﬂE{{ *(t‘}—(l‘q(M})Eﬂf)-i-(a (f} t2h? }W

— 2 fa* () - 2 M2 ] Wi 'i
+ oot @ O —aM)pM ls{m Iaﬂrfi+ M2(a (1)) 12 b l<|{|'sa Bl dB} <
M ITaldss

= 6?&7;?5@{(ﬂ‘(fJ—aq(M))‘3W+(a*(r ))*£2b°+
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+(a*(t)—a,(M)): M*log M+ M2(a*(1))? 12525} <
_ R ]3}
ZAf2 * 243 h2
qp{bw( ){(a (t)—a,(M))EM?log R+(a" (£))*1*b [loglogR :

R] [R] q

0 2 2 E,<

b=21=a=b—1 b=21‘§aé'b—l o(b)olg)
(a,b)=1

(a,b)=1
+arm)ye [log log R] }
{(a'*(r) —a,(M))*M?*Rlog R+(a*(t))*1*

hence

{(a‘(l‘)—aq(M])iM@ log R+

. £
@(q) (loglog R)2)”

Finally, to estimate Eg, we use Lemma 9 and Parseval’s formula:
(100) = f [F@PIP@] dx = = _1P@)| [ IF@2da<
SR M sﬂ M
qM loglogR
<«
o9 R
_ gM loglog R
oqg) R

(with respect to (92)).
(90), (97), (98), (99) and (100) yield that

1
10 49(9)

fIF( ) dx =

9
@)

log log R

a,(M)M = R

a*(t)yM?

(a,(M))PM>—cyy

‘(;q) {(a* (1) —a (M) M*log R+

+(a*(n)? [erog R+1? +a (a" (1) —a (M) M+

Talog )
(loglog R)*
—!—a*(r)M?e“w"’m} <«

q * s a WL = LY Rﬁ }
<« o {(a (t)—a,(M)2M?Rlog R+(a"(1)) fz———-ﬂog log AP +

loglog R

1"1
——a* () M* R

( )
or in equivalent form,
(a,(M)p < (a”(1)—a,(M))*Rlog R+

+a*(t)(a*(t)—a, (M) +(a* (1)) [ log R+M Toglog B) liﬂg R)e]

+a’ (1) [e—cmi’@ 4 ]ogl%}?]

(wilh respect to (92)) which completes the proof of Lemma 15.
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5. In this section, we will complete the proof of our theorem by showing that
Lemma 15 implies (12).
C will denote a large enough (but fixed) constant and x will be an arbitrary
integer which is sufficiently large in terms of C.
Let us write
P [1 log log x ]
~ L6 logloglog x

and define the positive integer N by

(101) [(log log x)*)| N

and

(102) N = x = N+[(loglog x)*12,
so that

X
N= IW] [(log ]Dg x)E]Z'
FQT X— + ER

1 Joglogx
(63) 6 logloglog x’
hence

log [(log log x)°]? = Z log [(log log x)°] ~

1 loglogx
~5Z1 et JULAORT, - _
5Zlogloglogx ~ 5 6 ]oglog]ogxlogloglogx
= %Iog]ogx
thus for large x,
(164) [(loglog x)*)% < eleglotx — Jog x.

(102) and (104) imply that for large x,
(105) x=N=>x—logx.

Let us define the positive integers fg, f;, ..., Iz_1, #; in the following way:
for k=0,1, ..., Z, let
e N
* 7 [doglog )=+’

so that 7;=N. (In fact, these numbers are positive integers by (101).) Furthermore,
(104) and (105) imply that for large x,

N
(106) XEN=t > o> > 0> = i Tog P
x—logx  x —
logx ~ logx LG
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For u=3, let us define the function f(u) by

_ loguloglogu
T

fw)
and for k=0,1,...,Z2—1, let

R, = (f(O)*(f(k+C))'loglog(f(k+C))~

Finally, we define the positive integers ¢, ¢y, ..., §z_1, gz by the following
backward recursion:

Let g,=1. If ¢;,9z_41, ..., s+, have been defined (where 0=k=Z-1)
then let g, denote a positive integer for which

(107) Tr+119x
and
gy
(108) 1= =R,
Gr+1

hold and a,, (#;) is maximal; i.e. using the notations of Lemma 15 (with #, g;.,
and R, in place of ¢, g and R, respectively), let us define ¢, by (107), (108) and

(109) a, (p) =a*(1) = oA Bpgy 1, (1)-

We are going to show by straight induction that if C is large enough and x
is sufficiently large in terms of C then for £=0,1, ..., Z,

fk+O)
) -

For k=0, (110) can be written in the form g, (%)=1 but this holds trivially
by Lemma 12 (independently of C).

Now let us suppose that (110) holds for some positive integer k, satisfying
0=k=Z-1. We have to show that this implies that also

(110) a, () =

_Jk+14+0C)
(i) = T
holds.
Let us assume indirectly that
k+1+C
(111) G (ean) = ﬂTC))

We are going to deduce a contradiction from this indirect assumption by using
Lemma 15. For this purpose, we need some estimates for the function f(x) and
the parameters Z and R;.

Obviously, for large u, the function f(u) is decreasing and

(112) lim_f(u)=0.
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Furthermore, if u— + = and 11;41 then

(113) ) ~f( [for U~ + ==, %—-1].
For wu—= ==,

(114) log(f(u))'l ~logu? =2logu (for u —+ =)
and

(115) loglog (f(u))~! ~ loglogu (for u —+=).

By Lagrange’s mean value thecrem, for u=3, there exists a real number v such
that
f@)—fu+1)=—f"(v) and u=v=u+l.

Thus for u— +-=c, we obtain with respect to (113} that

—loglogv—142(logv) (loglogv)
UE

(116)  f~flut+1) =—-f"(t) =

H — 4 ).

Lplognloglogy) _,f0) @)
v v u
(103) implies that
(117) logZ ~ logloglog x
and
loglog Z ~ loglogloglog x
(for x— ++==). Thus with respect to (103) and (113), we have

logZloglogZ
zz

(log log log x)*(log log log log x)
~ 36 ’
(loglog x)*
Finally, if C is large enough and k=0, 1, ..., Z—1 then with respect to (113),
(119) R = (fO)2(f (k+C))*loglog (f (k+C))~* =
(k+C)?
log(k+C)loglog(k+C)

(k+C)?
log(k+C)

(118) HZ+C)~f(2) =

=(f(o)* -2loglog(k+C) =

=2 (I{C))”E

and

(120) B (f(C))”i(f(k+C))—1-%log log(k+C) =

(k+Cy

1 2
=V o
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Furthermore, by (112) and since f (u) is decreasing for large u, we have also
R, < (f(k+C))'loglog(f(k+C))~!
R, = (fk+ O 2(f(k+C)) tloglog (f(k+C)) =
= (f(k+C))"2loglog (f(k+C))!

for large enough C. Hence, in view of (112), (114) and (115), we obtain for large
Cand k=0,1, ..., Z—1 that

and

(121) 3 log (k+C) < log R, = 3log (k+C)
and
(122) %loglog(k+C) <loglog R, < 2log log(k+C).

We are ready to show that if C is large enough and x is sufficiently large (in
terms of C) then Lemma 15 can be applied with ¢, ¢, ., ¢.,, and R, in place of
t,M,q and R. In fact, (83) holds obviously by the definition of the numbers
tgs b1y ..oy tz. Also, R=3 holds trivially for large C by (121). Furthermore,

Z—1 qj Z—1 qj Z-1
Ger1 = 4z H_—: H EHR‘.'
i=k+1 941 j=k+1 941 j=0

thus to prove that both (84) and (85) hold, it suffices to show that

Z—1
II R;=logt (= log M)

or in equivalent form, =
(123) El log R; = loglogt,,,.
By (106), "
(124) loglog #, ., > loglog Vx = %log log x

for large x. On the other hand, by (103), (117) and (121), we have

Z—1 Z—1
(125) > logR, <3 3 log(j+C) < 3Zlog(Z+C) <
j=0

j=0

1 loglogx
=4ZlogZ =5 6 logloglog x

for large C and x. (124) and (125) yield (123). Thus in fact, Lemma 15 can be applied;
we obtain that (86) holds. To deduce a contradiction from (86), we have to estimate
a,(M) and a*(t)—a,(M).

logloglogx = —Z—log log x
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Using the notations of Lemma 15, (110) and (111) can be rewritten in the form

sy < L+ O)
(126) a*(r) = [i(®)
and
flk+1+C)
(127) a,(M) = Wf(C) .

By (74) in Lemma 13, r=1,/t,,,=M implies that
(128) 0=a,.  (t)—a,, (i) = a,()—a,(M) = a*(1)—a,(M).

With respect to (113), (126), (127) and (128) imply for large C that
(129) a*(t) = a,(M) > %a"‘(t).

Furthermore, (126) and (127) yield with respect to (113), (116) and (129) that for
large C,
J+C) fk+14C) _ 3 f(k+C)

FA(®) 7€) f(C) k+C

(130)  a*()—a,(M) <

4 fk+1+C) 4 _
<% C JO  “kycsM=13E

a’(s).

By (118), (127) and (129), we have

Jk+14+C) _ f(Z+C)

(131) a*(ty = a, (M) > 70 =50
_ 35 (logloglog x)® (loglogloglog x)
1) (loglog x)*
for large x, while in view of (106),
(132) e—cwloeM — o—ciliogn s = g—cwollosty —

P e R e [ (log loglog x)® (log log log log x) ]

(log log x)?
for x— +e. (131) and (132) yield that for fixed C and large x,

(133) e—alioeM < £(C)a*(1).
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Finally, by (113), (120), (122), (127) and (129), we have

loglog R { 2loglog (k+C)

(134) _
R 1 ye (k+C)P
= -1/2 ps 1/2 fk+C)
@) f(k+C) = 4O
< sy LEED < s(scppsa,an = s(rO a0
for large C.

With respect to (119), (121), (122), (128), (129), (130), (133) and (134), (86)
yields that

Loy I | (k+C)?
[-fﬂ' (f)] == Cs{ k-f—Ca (t)] 'Z(f(c))‘ﬂw'}’[og(k"—C)‘l‘

+a*(t)- el “()+(a" (1)) [m-3log(R+C}+
1 | ve (k+CPE Y 1
2

+a* () (f(C)a* (1) +5(f(C)2a*(1))}.

Dividing by (a“’(t))2 and with respect to (103), (112) and (117), we obtain that if
C is large enough and x is sufficiently large depending on C then

4e, 2
_'_. co 1/2
96¢, (f(C))V2+ s C ® {loglog x)°
2

e (log log x)°

3log(Z+C)+
2(f(C)PHZ+C)+¢y f(C)+5cy(f(C))2 <

16 5}’2
L, A Teq 7.1 25l f(C)) -

1
<3030 T Hogtogny “2% " Toglogx)™® 30730

8¢, 21°c,,(f(C'))5"2[1 loglog x ]“‘
+(loglogx)"’ (ogloglog )+ (loglog x)** \5 logloglogx =

2 1 | 28 (f(C))P" 1 2 1 1 1
~i5tpt 510 "{logloglog x)™® 53T 35"

Thus in fact, the indirect assumption (111) leads to a contradiction which proves
that (110) holds for k=0,1, ..., Z.
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Applying (110) with k=Z, we obtain with respect to (118) that

c
(135) a,,(t7) = &(N) = a(N) = ’J}Z%)—l <
P 37 (logloglog x)* (logloglog log x)

f(O) {log log x)* ’

provided that x is sufficiently large.
Finally, (135) yields by (75) in Lemma 13 and (105) that

74 (logloglog x)® (log log loglog x)
f(0) (log log x)?
which completes the proof of our theorem.

6. In [6]—[9]), K. F. RoTH generalized the method developed in [4] and [5],
in order to investigate the solvability of systems of equations of the form

¥

a(x) = [i +§)G(N) = 2a(N) <

o

i=

wty, =0 (i=1,2,...,p)
1

where the numbers o;; are integers satisfying 3 ;;=0, and w;<u,<... is an
i=1

arbitrary “‘dense’ set of positive integers.

By using that extension of Roth’s method which has been elaborated in this
paper, one may investigate also the solvability of systems of equations of the more
general form

'Zlmfjux_,:k.z-'lﬁe‘kb;ﬁl (i= 1325‘--5,”“)
j= =

v
where the numbers w;; and f,, are integers (again, > zjj=0], Wy=<My;=<... IS an
=1

arbitrary “‘dense’ set of positive integers and the sets bf¥ =bh{¥ < ... (where k=
=1, ...,%) are fixed sets of pesitive integers.
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