
for n=2, 3, . . . and 0-_d-_(n-1)!-1 . Then there exist signs
n=1,2, . . ., such that

(1 .2)

		

E(k)ak = Sn,j
k=1

k= j (modn!)

for n=1, 2, . . . and O~j-n!-1 .

When sn , j =0 for all n and j, (1 .1) follows automatically. Since every arith-
metic progression with modulus m is a disjoint union of (m - 1)! arithmetic pro-
gressions with modulus m!, Theorem 1 follows from Theorem 2. Also, by using
this argument and (1 .2), we see that in Theorem 2 each series

	

Z

	

E (n) an is,
n=b(mod m)

in fact, prescribed for all b and m, 0 -_b-_m-1 . It is clear that conditions (1 .1)
on {sn, j } are necessary .
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1. Introduction and results

The main purpose of this paper is to prove the following results .

Theorem 1 . Let {an } be a sequence of positive real numbers monotonically
decreasing to zero such that Z a n=- . Then there exist signs E(n)=±1, n = 1, 2, . . .,
such that for every integer m--1 and every integer b with O--b-m-1

2' E(n)a n = 0 .
n=b (mod m)

The above theorem will be a trivial consequence of the following result which
is the main theorem in this paper .

Theorem 2. Let {an } be a sequence as in Theorem 1 and let sn , j , n=1, 2, . . .
and j=0, . . .,n!- 1 be real numbers satisfying the conditions

n!-1
(1 .1)

j=0
j=d(mod (n-1)!)

Analysis Mathematica, 4 (1978), 3-12

c(n)=±1,
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This work was motivated by the following known result.

Theorem A. Let Z la,,I<- such that
n=1

for all m=1, 2, . . . . Then a1 =a2 = . . .=0 .

This result appears as a problem in [4, p . 23] and a proof is given by KÁTAI

[3] . We now give a very simple proof . Let p l , p2 , . . . be the sequence of all primes
in increasing order and let Pk-p1 . . .pk . Then for every k

is that

A,,, _ f a,=0
n a 0 (mod m)

0 = Z µ(d)Ad = Z p(d) 2 aal = Z (

	

µ(d»a,, = a,+ Y a n,
diPk

	

dIPk

	

l=1

	

n=1 dl(n,Pk )

	

n=2
(n, Pk)=1

Here and throughout M (n) denotes, as usual, the M6bius function .

Since (n, Pk)=1, n>1, implies n>pk , we can therefore conclude that a1 =0
by taking k- - . By using a standard change of index (cf. [2]) we have

a1=a2= . . .=0 .
The sequence an =,u(n)ln satisfies A. =0 for all m=1, 2, . . . (cf. [1]) and

this shows that the condition Z lan d < - cannot be omitted in Theorem A. Our
attempt to prove that Theorem A is sharp lead us to formulate Theorem 1, which

shows that Theorem A is sharp when {1aJ) is monotone. We remark, however,

that the monotoncity condition in Theorem 1 can be weakened . In fact, we have

the following result.

Theorem 3 . Let Zan be a divergent series of nonnegative real numbers with
an -0. A necessary and sufficient condition for the existence of signs 8(n)=±l,
n=1, 2, . . ., such that for all m--l and all b, 0sb-m-1, we have

5' E(n)a,, = 0,
n-b (mod m)

an = 0 or -
n-b (mod m)

for all m ;-l-,- l and all b with O-bum-1 .
That the condition (1 .3) is necessary follows by applying Theorem A to the

sequence an=anm+b . The proof of the other direction is along the line of the proof
in Section 2. However, with the lack of monotoncity the argument is much more

involved and will not be presented here.
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2 . Proof of the main theorem

In this section we will prove Theorem 2 . Throughout this section we always
assume that {a .} is a sequence satisfying the hypothesis of Theorem 1, namely
a,, yO and Za,,=- .

The following lemma is well-known .

Lemma 2.1 . For every real number t, there exist signs E(n)=±1, n=1, 2,
such that Z s (n) a,, = t .

We now state and prove our main lemma .

Lemma 2.2 . Let 0<62<E1--8 and m an integer not smaller than 2 be given,
and so , - . s._1 be real numbers with

Then there exists an

(14)

(15)

and

S

	

SO+ +S,n-l-

N, and signs - (n) = 1, n 1, . . . , N,, are chosen

aN~ -_ e/2m 3 and

N,
E (n) a,, - s

N, ::- N, and signs E (n), n = N, + 1,

	

N,,

aN2

	

E2,

e(n)a,-s,1 - e,

1

N2
1
n=I

in=b (mod m)

- E .

for 0~ b ~m-l, and
N

(16)

	

1e(n)an - Sl -- M8n - l
for all N, Nj ~~N~ N, .

Proof of Lemma 2 .2. Let
k

Sb (k)

	

'Z

	

E (n) a,, - sb
n=1

n-b (mod m)

in-1

	

k
S(k)

	

Z Sb (k)

	

Z E(n)a,, --s .
b=O

	

n=l

It should be noted that in the above definitions the signs s(n) have to be specified .
From (2 .3) we get

(23)

	

ISMI

	

Z Sb(NI)
b=O

~ E .

satisfying

such that
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However, it is possible that I Sb (N,) l is large for some values of b . We will define
the signs E(n) in two steps . First we will find N* and signs c (n) for n=N,+1, . . . , N*
such that

(2 .8)

	

IS,(N*)l < E and IS(N)l < mE

for 0:b-m-1 and N,-N-N*. In the second step, we define N, and signs
e (n) for n = N * + 1, . . . , N, so that (2.4), (2 .5), and (2.6) hold .

Step 1 . If ISb (N,)I<E for b=0, . . ., m-1, we choose N*=N, and (2 .8)
holds. Assume therefore that Sb (N,) j ~--s for some values of b ; say, we have u
values of b with Sb(N,)--E and v values of b with Sb(N,)--E . As can be seen
from the following description of the process, we can further assume, without loss
of generality, that u --5v . Note that a+v-m . It is sufficient to show that we can
find N, ::-N,, and signs e(n), n=N,+1, . . ., N,, such that if u, and v, are defined
in an analogous way to u and v when Sb (N,) is replaced by Sb (N, ), then

(2.9)

	

u, + v, < u + v
and
(2.10)

	

JS(N) I < 2E for all N, N, -_ N -_ Nl .

We define the signs in blocks of 2vm terms, written for simplicity of the presenta-
tion in 2v rows of m terms in each row. We also assume, without loss of generality,
that

The sign pattern is illustrated in the following diagram ;

v+u

v-u

v

	

m- (Li - ;- v)

When we pass one such block, the change in each S6 ( •) is equal to the sum of the
terms corresponding to column b of the diagram . After such a block, S b ( • ) decreases
for 0-b-u-I and increases for u-b-u+v-1 . For a+v-b-m-l, Sb ( •)

is alternating . We note that in each block there are vm positive signs and vm negative
signs .

Sb(N,)>E for b=0,, . .,u-1 ;

S,(N,)<-E for b=u, . . .,u+v-l ;

ISb (N,)j ` E for 0 = u+v, . . ., m .
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Since 2:a,, and {an } is monotone, it is clear that

	

Z an=-. There-
n-b (mod m)

fore, after a number of blocks, we eventually get a change of sign for some b* with
0-b*emu+v-1 . Let Nl be the first index for which the change of sign occurs .
We have aNi < aNl< s/2m3< E, and I Sb*(N, )1 < aNi < a vl< s which gives u1 + v 1<

< u+ v . It remains to show that S(N)1-::2e for Nl fN: N,* . To prove this,
we set N=N1 +2vmq+r where 0--r<2vna and q;0. Then

q-1 2am
S(N) = S(N,)+,Z Z e(N1+2ivm+J)aN,+2ivm+j+

i=o j=1

q-1
Write also E 1

	

Ti where Ti is the sum of all terms in the ith block. Let A i be
i=1

the sum of all terms with positive signs and B i the negative of the sum of all
terms with negative signs in the ith block . Then Ti=A i-Bi . Since there are vm
positive and vm negative terms in each block and the sequence {a n } is monotone
decreasing, we clearly obtain Ai>Bi+1 and B i>A i+1 for each i . Hence

r
+ Ze(N,+2vmq+k)aN,+2rn,q+k = S(Nl)+-Ya + -y2-

k =1

which, combined with (2.8), gives (2 .6) .

q-1
1,=

	

(Ai-Bi)

IS(N)I -- IS(NI)I+1-Y11+1 5~'21 < E+2 Yi1
< 2£ .

Step 2. We apply the standard technique used in the proof of Lemma 1 to

each of the divergent series

	

Z an , b =0, . , . , m -1 . We can therefore pick
n=N*+1

n - b (mod m)
N2 ~:-N* and signs e(n), n=N*+i, . . ., N2 , such that (2 .4) and (2.5) hold. For
any N such that N * N~ N2 , we have

m-1

	

m-1

IS(N)1

	

ISb(N)1

	

1Sb(N*)1 = mc
b=o

	

b=o

i=1
and

so that
-BO :-1 -Ao ,

1E1 < vm
2m3

< 2m .
Also,

1~21 <
2vm

	

c '2m3 m
This gives
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This completes the proof of Lemma 2 .2 .

Lemma 2.3 . Under the hypotheses of Theorem 2, there exist a sequence
N,< N2< . . . and signs s(n)= ± 1, n=1, 2, . . ., such that for each j=1, 2,

N

	

2
(2.11)

	

Z,

	

s(n)a„-s; ,, 1 , G
n=1

	

!!
[[n-1(mod (j-1)!)

for all I and N with 0-1-(j-1)!-1 andN;-,-N-N;

Proof o f Lemma 2 .3 . The proof will be by induction . By Lemma 1 with
t=s,,,, we can find N, and signs s(n), n=1, . . .,N,, such that

Suppose that N,-<: . . . < Nk_, and signs s (n) _ ± 1, n =1, . . ., Nk-,, have been
determined such that for j=1, . . . , k-1,

(2.12)

	

aN;
< 2(j+1)4(j+1)! ,

(2.13)

	

s(n)an -sj, b l <
( i+

1

	

0 - b - j!-1,
n=1

	

' I

	

1)(j+1) I

(2.14)

(2.15)

(2.16)

1

	

!
Na

aN a <
2 .2 42	 ! and

~ Z
s (n) a n - s,,,,

n=1

1n ==-b(modA

G
1

2 .2!

and (2.11) hold. We will now determine Nk>Nk_, and signs s(n), n=Nk-,+
+1, . . ., Nk , such that (2.12), (2 .13) and (2.11) hold for j=k. Fix an l, 0 :1:
-(k-1)!-1, and apply Lemma 2 .2 to the subsequence {an }, n-1 (mod (k-1)!),
with m=k, N, replaced by N, _,, sb replaced by sk,b for b of the form b-l+v(k-1)!,
v=0, . . ., k-1, and

1

	

1

	

1
s_ k •k !'

s,

	

2(k+1)(k+l)!' s2

	

2(k+1)4(k+1)!"

By the induction hypotheses (2 .12) and (2 .13), we see that the conditions (2 .2) and
(2.3) in Lemma 2.2 hold. Hence there exists an Nk, i >Nk-, such that

1
aNk

.1 c 2(k+ 1)4(k+ 1)!'

'vk, 1

	

1

nZ

	

s(n)a,,-Sk,b

	

2(k+1)(k+1)!
n-b (mod k!)

for b=l+v(k-1)!, v=0, . . ., k-1, and

N

	

1
Z

	

s(n)a„--sk-1,l G
k!

, Nk -,
-- N Nk,1 .n=1

n-l(mod (k-1)!)
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Let Nk =max {Nk,l :l=0, . . ., (k-1)!-1}-Nk,l* . The signs s(n)=±1, Nk-1 c
~=n~-Nk and n-l*(mod(k-1)!), are already defined. For n-l(mod(k-1)!)
with l zX l*, we define s (n) _ ± 1, Nk, I + 1--n,Nk , as follows : Blocks of k positive
signs alternate with blocks of k negative signs in each of the subsequences .

From (2.14) we have (2 .12) with j=k. To prove (2.13) with j=k, let b,
0-b-k!-1, be fixed and set b-l (mod (k-1)!), O-l-(k-1)!-1 . Write

(2.17)

Nk

	

Ark
E(v)an-Sk,b -

	

~1 e(n)a,,-Sk,b +

	

E(n)a,, = ~1+ Z2
n=1

	

n=1

	

n_=Nk~ t+1
n-b (mod k!)

	

n=-b(mod k!)

	

nb(mod k!)

By (2.15), 1/2(k+1)(k+1)! . From the construction the terms in 1 2 are
alternating in signs . Therefore, 1E 2 1 -2aNk t < 1/(k+1)4(k+1)! from (2.14) .
Hence 1271 1+127 2 1 < 1/(k +1) (k+1)! which gives (2.13) with j=k . To prove
(2.11), and hence completing the induction proof, fix N, Nk _,-N-Nk , and l,
0--1--(k-1)!-1 . Because of (2.16) we may assume that N>Nk,l . Writing

N

	

Nk, t
Z

	

e(n)a,-Sk-hl =

	

Z

	

E(n)an - Sk-1,l +
n=1

	

n=1
n 1(mod(k-1)!)

	

n-l(mod (k-1)!)

we have ~E3~< 1/k! by (2.16) and
4k

	

1
4kaNk, 2(k+1)4 (k+ 1)! ` T!'

since Y4 consists of blocks of k positive terms alternating with blocks of k negative
terms, with possible exception at the two ends . This gives (2.11) for j=k, completin ;
the proof of Lemma 2.3 .

The following lemma can easily be verified by induction .

Lemma 2.4. Let the s, ,j 's satisfy the hypotheses of Theorem 2 .2. Then for t--iv,
0--b--w!-1, and w=1, 2, . . .,

N

+

	

e(n)an = -Ys+14'n=Nk, t+1
n=1(mod (k-1)!)

(t!/w~!)+-1
!~

	

St,b+vw! = Sw,b •
v=0

We can now complete our proof of Theorem 2 . Let N,-<N,<... and signs
E(n) = f 1, n =1, 2, . . ., be determined as in Lemma 2.3 . Fix w and b with 0 -b
mow!-1, and let N::-N, Let taw satisfy Nt<N:N,+1 • Then by (2.17), we have

N

	

Wlw!)-1

	

N
IN =

	

Z

	

E(n)an-Sw,b =

	

',

	

E(n)an - S1,b+vw!
n=1

	

v=0

	

n=1
n-b(mod w!)

	

n-b+vw! (mod t p
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By (2.11) we obtain

As N-- - we have
theorem .

Q!/w!)-1	 2 _ 2to _ 2
I'NI c

	

0 (t+1)I

	

WI(t+l)1

	

Wl(t+1)

t---, so that EN --0 . This completes the proof of the

3. Related problems

Theorem A is equivalent to the following theorem for analytic functions
(cf. [2, 3]) .

Theorem B. Let f (z)=

	

an z" With E Ia.I-

	

Then if
n=0

1 m

sm (f) _ - .2:f
( e i2rzk/m)

M k=1
= 0

for m=1, 2, . . ., f is identically zero .

In [1] it is shown that the function f (z)=
	 (n) z" is continuous on lz l 1

"=1 n
and satisfies sm(f)=0 for all m=1, 2, . . . . This leads to the following problem .

Problem 1. Does there exist a function f (z)= Z a nz", continuous on IzI --1,
n=1

with sm (f)=0 for m=1, 2, . . . and such that E la,,I=- and nan --0?

A more difficult question is the following .

Problem 2. Let a„--0 and E an=- . Under what conditions on the se-

quence {an } do there exist signs r (n) _ ± 1, az=1, 2, . . ., such that f (z) _ 5,7 a (n) an z
n=1

is continuous on jzj --!~1 and satisfies sm (f)=0 for all m=1,2, . . .?

The following theorem shows that the sign construction in Theorem 2 cannot
be adapted to solve the above problem .

Theorem 4. Let f (z)= 7 an z" be such that

	

Z a„=0 for all b and
n=1

	

n_b(modm)

m., 0--b<m, m=1,2, . . . . Then either f_0 or f is not continuous on jzj-1

This theorem is an immediate consequence of the following result .

Theorem 5 . Let f(z)=

	

anz" converge for all z=e L2 n t , t rational. Suppose
n=1

that

	

an converges for all b and m, 0 :b--m-1, an = 1, 2, . . . . Then
n=b (mod m)



f(e")=0 for all rational t if and only if Z, an=0 for all b and m, 0-_bs
n-b (mod m)

~m-1, m=1, 2, . . . .

Proof of Theorem 5 . Let t=c/m, 0-c-m-1, (c, m)=1 . Then f(e ; '

a e i2nc ;m
n

n=1
m-1

(3.1)

	

f (ei21rt) _

	

ei2rzab/m

	

Z naJ
b=0

	

n-b(modm)

Therefore, if

	

an =0 for all b and m, 0-b-m-1, m=1, 2, . . ., f (e ,2a r)=0
n =_ b(mod in)

for all rational numbers t . On the other hand, if f (e"')=0 for t=0, 1/m, . . .,
(m-1)lm, then (3.1) gives a system of m linear homogeneous equations for sb =

Hence we have
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an , b=0 > . .> m-1 > with coefficient matrix (ei2n`bim)Osc,bsm-1 which
n-b (mod m)

is clearly non-singular . Hence, s,

	

=S.-1=0.

P r o b 1 e m 3 . Let there be given R o infinite sets of integers {A n }, n =1, 2, . . . .
Assume :
(3 .2)

	

Z a.1= -, n=1,2, . . ., and a,-O.
mEA„

1s it true that we can find signs s(m)=± 1 s o that
e(m)an , = 0 n = 1, 2, . . .

mEA„

Clearly, some conditions for the A n 's are needed. For example, the A n's are
closed with respect to Boolean operations .

Problem 4. Let a>1, 0-_/3«. Assume that for every x and {3

., am+p] = 0 .
n=0

Does it follow that an =0, n=1, 2, . . .? Or more generally . Let {AJ l :a<o)1
be a family of ,, infinite sequences of integers . Find non-trivial conditions so
that if {an } satisfies

Zan =0, 1-_a<o),
nEA~

then an =0, n=1, 2, . . . .

Problem 5. Our main theorem gives that there is a non-trivial power series
If an z n which is zero for every z=e"", 0 rational . In fact, if (3 .2) holds for arith-

metic progressions, there exist s (m) _ ± 1 so that

	

a (m) am zm =0 at these po-

ints. Does this remain true if the rational multiples of n are replaced by any
countable set on ~zj --1 ?



12

	

I. Borosh, C. K. Chui, and P . Erdős : Changes of signs in infinite series

References

[11 G . R. BLAKLEY, 1 . BORosH, and C. K . CHuI, A two-dimensional mean problem, J. Approximation
Theory (to appear) .

[2] C . H. CITING and C. K . CHUI, Uniqueness theorems determined by function values at the roots
of unity, J. Approximation Theory, 9 (1973), 267-271 .

[3] I . KÁTAI, On a transformation of power series, Analysis Math ., 2 (1976), 3-10 .
[4] G . PÓLYA and G. SzEG6, Aafgaben and Lehrsátze aus der Analysis, Springer (Berlin, 1964) .

® paccaanonwax sxaKos B raecKoHegHbiX pnA~ax
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