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On chagnes of signs in infinite series

. BOROSH, C, K. CHUL, and P. ERDOS

1. Introduction and results

The main purpose of this paper is to prove the following results,

Theorem 1. Let {a} be a sequence of positive real numbers monotonically
decreasing to zero such that 3 a,=-==. Then there exist signs s(m)=%1,n=1,2, ...,
such that for every integer m=1 and every integer b with 0=b=m—1

2 ema,=0.

=i {mod mi)

The above theorem will be a trivial consequence of the following result which
is the main theorem in this paper.

Theorem 2. Let {a,} be a sequence as in Theorem | and let 5, ;, n=1,2, ...
and j=0, ... nl—1 be real numbers satisfying the conditions

nl=1

(1.1) = Sa,f = Sp=1.4

BT ]

=d {mod{n—1)!}

for n=2,3,.. and 0=d=(m—1)!—=1. Then there exist sisns s(m)==x1,
n=1,2,..., such that

=

(1.2) 1‘_2; e(kjay = 5,,;
t&j{;udn!}

for n=1,2,... and O=j=n'—1I.

When g, ;=0 for all n and j, (1.1) follows automatically. Since every arith-
metic progression with modulus m is a disjoint union of (m—1)! arithmetic pro-
gressions with modulus m!, Theorem 1 follows from Theorem 2. Also, by using
this argument and (1.2), we see that in Theorem 2 each series 2 elma, i,

H=p(mod m)
in fact, prescribed for all & and m, O0=b=m—1. It is clear that conditions (1.1)

on {r, ;) are necessary.
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This work was motivated by the following known result,

Theorem A. Let i!uﬂ-:m such that
]

AmE 2 a,,—_-ﬂ

n=0{mod m)
for all m=1,2, .... Then ay=a;=...=0.

This result appears as a problem in [4. p. 23] and a proof is given by KATar
[3]. We now give a very simple proof. Let p,, ps, ... be the sequence of all primes
in increasing order and let P,=p,...p;. Then for every k

0= Zu@a= 3 ud) Sea= 3 ( 3 pd)a,=at+ 3 q
iF dlP i=1 =1 diin, Py} M=l

(i B=1
Here and throughout u(r} denotes, as usual, the Mobius function.

Since {n, P)=1, n=1, implies n=p,, we can therefore conclude that a,=0
by taking k-=oo. By using a standard change of index (cf. [2]) we have
gr=a;=...=f

The sequence a,=p(n)/n satisfies A4,=0 for all m=1,2, ... (cf. [1]) and
this shows that the condition 2 |a,|== cannot be omitted in Theorr:m A, Our
attempt to prove that Theorem A is sharp lead us to formulate Theorem 1, which
shows that Theorem A is sharp when {la,|} is monotone. We remark, however,
that the monotonicity condition in Theorem 1 can be weakened. In fact, we have
the following result.

Theorem 3. Let Fa, be a divergent series of nonnegative real numbers with
a,~0. A pecessary and sufficient condition for the existence of signs e{m)==xl,
w=1,2, ..., such that for all m=1 and all b, 0sb=m—1, we have

2 #lnja, =10,

n=f {mod m}

iz that
(1.3) > dy=0 ‘or =

sk (mod m)

for all m=1 and all b with 0=b=m-1.

That the condition (1.3} is necessary follows by applying Theorem A to the
Sequence ah=d,,+,. The proof of the other direction is along the line of the proof
in Section 2. However, with the lack of monotonicity the argument is much more
involved and will not be presented here.
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Changes of signs in infinite series -]
2. Proof of the main theorem

In this section we will prove Theorem 2. Throughont this section we always
assume that {a,} is a sequence satisfying the hypothesis of Theorem 1, namely
aul and X a,==.

The following lemma is well-known.

Lemma 2.1. For every real number t, there exist signs e(n)=+1, n=1, 2, ...,
such that 2 slnya,=t.

We now state and prove our main lemma.

Lemma 2.2, Let O=gy=g;=c and m an integer not smaller than 2 be given,
and 84, ..., 8-y be real mmnbers with

(2.1} E="8y+... + 81

Suppose that N, ond signs e(n)==x1, n=1,..., N,, are chosen satisfying

(2.2) ay, = &/2m® and
N

(2.3) js{n}a,—s =&
N=1

Then there exists an Ny=N, and signs 2(n), n=N,+1, ..., Ny, such that

{2.4) Ay, = 83,
.

(2.5) ‘ 2’ e(n)a, — s,

n=1
= b {mod m)

=

Jor 0=b=m—1, and
(2.6) ZN' c(n}a,—si = me
Jor all N, Ny=N=N,. =
Proof of Lemma 2.2, Let
SM= 3 amas,

T8 |
i r=h{mod m}
and

m—1 k
S{ky = agu S5ily= F e(n)a,—s.

=1

It should be noted that in the above definitions the signs £(n) have to be specified.
From (2.3) we get

@7 SOV = Lg' S:.[Nﬂ‘ =S
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However, it is possible that |S,(N,)| is large for some values of b, We will define
the signs &(n) in two steps. First we will find N * and signs ¢(n) for n=N,+1, ... N*
such that

(2.8) |S;(N®)| =& and |S(N) <= me

for 0=b=m—1 and N,=N=N7* 1In the second step, we define N, and signs
efn) for n=N*+1,..., Ny so that (2.4), (2.5), and (2.6) hold.

Step 1. If |S,(N)|=e for b=0,...,m—1, we choose N*=N, and (2.8)
holds. Assume therefore that |S,(Ny)|=¢ for some values of b; say, we have o
values of b with S,(N,)=¢ and v values of b with 8§,(N,)=—e. As can be seen
from the following description of the process, we can further assume, without loss
of generality, that w=uv. Note that u+v=m. It is sufficient to show that we can
find Ny=N, and signs s(n), n=N;+1, ..., N), such that if u, and v, are defined
in an analogous way to u and v when §,(N,) is replaced by S,(A, ), then

(2.9) Uyt < utw
and
(2.10) IS(N)| =2¢ for all N, N,= N =N}

We define the signs in blocks of 2ven terms, written for simplicity of the presenta-
tion in 2¢ rows of m terms in each row, We also assume, without loss of generality,

that
S(M)=¢ for b=0,. . ;u—1;

SiiN)=—8 for b=t uti—1;
|SulND =& for F=u+n,..,m,

The sign pattern is illustrated in the following diagram:

e:-ru{i e :
— ey s IS

u i m—{u-+u)
When we pass one such block, the change in each 5,(-) is equal to the sum of the
terms corresponding to column b of the diagram. After such a block, §,(+) decreases
for 0=b=w—1 and increases for w=b=u+v—1. For utwe=b=m-—1, 5(-)
is alternating. We note that in each block there are vm positive signs and vm negative
signs.
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Since Ya,=- and {a,} is monotone, it is clear that 2 a,===. There-
m=f {mod m)
fore, after a number of blocks, we eventually get a change of sign for some 5" with

O0=b*=utv—1. Let N7 be the first index for which the change of sign occurs.
We have ay;=ay =¢2m'=e, and |8y (N)| =aw =@y, =& which gives w+o,<
<u+p. It remains to show that |S(N)|=2s for Ny=N=N;. To prove this;
we set N=N,+2vmg+r where 0=r=2pm and g=0. Then

g—1 Zem
S{N} e S{hrl}-i_r_zl; J._ZI] H{Nl-i-ZEWH f'j:'ai'\r;|.+3h.'m+j+
+u'z; E(N +20mg+ Ky, s ppmert = SIN) + I+ 5.

=1
Write also E,E'E‘ T; where T; is the sum of all terms in the ith block. Let 4; be
=1

the sum of all terms with positive signs and B; the negative of the sum of all
terms with negative signs in the jth block. Then T,=A,—8;. Since there are vm
positive and mm negative terms in each block and the sequence {g,} is monotone
decreasing, we clearly obtain 4,=B,,, and B;=4;., for each i. Hence

q-1
= 31' (4;—B)
and
—By=I; = 4,
so that
. E ]
!E'll - UMF - H_
Also,
E &
|EE| - Eﬂmm = E.
This gives
i
ISV = [S(ND|+ 23] +[2e] =8 +5 — =2

Step 2. We apply the standard technique uvsed in the proof of Lemma 1 to

each of the divergent series 2  a,, b=0,.. . m—1. We can therefore pick
n=N*"+1
m=h{maxt m)

N,=N* and signs s(n), n=N*+1, ..., N3y, such that (2.4) and (2.5) hold. For
any N such that N*=N=N,, we have

\S(V)| = 2‘ IS,(N)| = :;? IS, (V)] = ms

which, combined with (2.8), gives (2.6).
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This completes the proof of Lemma 2.2,

Lemma 2.3, Under the hypotheses of Theorem 2, there exist a sequence
Mi=MNy=1.. andsigns e(m==x1,n=1,2; ..., suchthat for each j=1,2,...,

=7
g

N
Z E{ﬂ]ﬂ-,, e

n=1

=T fmed [i—114
for all | and N with 0=I=(j—1)!—1 and N, ,=N=N,.

Proof of Lemma 2.3. The proof will be by induction. By Lemma 1 with
I=sy4, we-can find N, and signs e{n), n=1, ..., Ny, such that

T —

2217

(2.11)

| Ny
and | ¥ e(n)a,—5,

=303 =

Suppose that My<..=N,_, and signs s(m)==x1, n=1,..., N,_y. have been
determined such that for j=1, ..., k—1,
(2.12) ay '

213 . : 0=b

; ' (1), — . 0=b=j!-

{ } | = b{"}“ﬂ- SJ'ril == (j+l}{j+l}1l 7 ll

in=Bimod f1) 1

and (2.11) hold. We will now determine N,=N,_, and signs &(n), n=N._,+
+1, oo Ny, such that (2.12), (2.13) and (2.11) hold for j=Fk Fix anl, 0=l=
=(k—1)!—1, and apply Lemma 2.2 to the subsequence {a}, n=I(mod (k—1)1),
with m=k, N, replaced by N,_,, 5, replaced by s, ; for b of the form b=l+o(k—1),
p=0 ....k—1, and

I I i
SERD T ARADGAD 2T AkFD G *

By the induction hypotheses (2.12) and (2.13), we see that the conditions (2.2) and
{2.3) in Lemma 2.2 hold. Hence there exists an N, ;=N,_; such that

&

(2.14) et = 30 13 (kD1
N 1
(2.15) ‘ 2 HMa— s < sHIETT
in=hk{mod k)

for b=I+v(k—1)), v=0,...,k—1, and

N |- 1
2 s(n)a, — 5,14 = e Ma=N=N,,.

n=1
=1 (mod (k=111

(2.16)
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Let N,=max {N, :I=0, ..., (k—D!=1}=N, .. The signs s(m)==x1, Ny,=
=n=N, and n=/*(mod (k—1)!), are already defined. For n=I{mod (k—1)!)
with I=1*, we define e{n)==1, N, ,+1=n=N,, as follows: Blocks of k positive
gigns alternate with blocks of k& negative signs in each of the subsequences.

From (2.14) we have (2.12) with j=k. To prove (2.13) with j=k, let b,
O0=b=k!—1, be fixed and set b=/(mod (k—1)!), 0=/=(k—1)!—1. Write

N N,

k L3
ff eln)a,—% = 5‘ g(n)a,— S|+ 2 e(ma, =L+,
a=1 =Ny ;+1
n=h(mod k1) n= b:m-:l.i LH n=h{mod kl}

By (2.15), 1&;|=1/2(k41){k<+-1}]. From the consiruciion the terms in X, are
alternating in signs. Therefore, |[L,| 524., = k+1D k+1)! from (2.14).
Hence |E|+ %l = 1jik+1){k+1)! which gwes (2.13) with j=k: To prove
(2.11), &nd hence completing the induction proof, fix N, N,_=N=N,, and /
O=/=(k—1)!—1. Because of (2.16) we may assume that N=N, ;. Writing

N Niyr
Z; a(n)a,—s_y, = [ Z; e(h)a, —Sp—1u|+
A= =
n=l{maod{k—1)1) n={{mad (k—1)1)
N

- =
= n‘rZ‘:_H gln)a, = 5+ L,,
m=[{mod k=131

we have |Eg|<=1/k! by (2.16) and
4k I
2R+ (k+ 1)1

since Z, consists of blocks of &k positive terms alternating with blocks of k& negative
terms, with possible exception at the two ends. This gives (2.11) for j=k, completing
the proof of Lemma 2.3,

The following lemma can easily be verified by induction.

|Z] = ‘umﬁr.‘ =

Lemma 2.4. Let the s; ;'5 satisfy the hypotheses of Theorem 2.2, Then for 1=w,
O=b=w!—1, and w=1,2,..,

E (1w =1
[2117} 2; S brow] = g e
We can now complete our proof of Theorem 2. Let N,= N,=... and signs
elm==1, n=1,2, ..., be determined as in Lemma 2.3. Fix w and & with 0=b=
=wl—1, andlet N=N,. Let r=w satisfy N,=N=N,,,. Then by (2.17), we have

N {rifwli=1 i
= 3 ima-sw= 2 | 2 s{n;aﬂ—s..,,w].
n=1 ==l =
b (mod wi) osh giv] (mod )
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By (2.11) we obtain
(hel=t 73 2! 2

|Zn| = Eﬂ UJ:H! T WD T Wi+

As N—-= we have r—==, so that I, --0. This completes the prool of the
theorem.

3. Related problems

Theorem A is equivalent to the following theorem for analytic functions
(cf. 2, 3D.
Theorem B. Let f(z2)= X a,z" with Zial==. Then if
=1

smlf) = % ké: fethim) = 0

for m=1,2,..., [ is identically zero.

z pin : ;
In [1] it is shown that the function f(z)= 3 ET}E" is continuous on |z{=1
n=1

and satisties &,{f)=0 for all m=1,2,.... This leads to the following problem.

o

Problem 1. Does there exist a function f(z)= 3 a,z", continuous on |z|=1,

m=F

with &,(f)=0 for m=1,2, ... and such that I |g,|=== and pg,—07
A more difficult question is the following.
Problem 2. Let a,=0 and I g,=-. Under what conditions on the se-

quence {a,} do there exist signs e(m)==+1, n=1, 2, ..., such that f(z)= 3 e(n)a,r"

m=1

is continoots on |z|=1 and satisfies s,()=0 for all m=1.2,...7

The following theorem shows that the sign construction in Theorem 2 cannot
be adapted to solve the above problem.

Theorem 4, Let f(2)= ¥ a,z" be such that 3 a,=0 for all b and
n=1 a=h{moqd )
m, 0=b=m, m=1,2,.... Then either =0 or [ is not continvous on |z|=1.

This theorem is an immediate consequence of the following result.

Theorem 5. Let f(2)= ¥ a,=" converge for all ==e®, t rational, Suppose

LEh
that > a, converges for all b and m, 0=b=m—1, m=12,.... Then

n=himod m)
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F(e®™ =0 for all rational t if and only if 3 a,=0 forall b andm, 0=b=
me=f{mod m)
=m-—1, m=1,2, ....
Proof of Theorem 5. Let t=c/m, 0=c¢=m—1, (e, m)=1. Then f(e*")=

o)
= S a,e*™ ™ Hence we have

=1
y m=1
1) FlaBxy = % gtechs B g,
E=40 A= bimod m)
Therefore, if 3 a,=0 for all b and m, 0=b=m—1, m=1,2, ..., f(e*"=0

a=bimod m)
for all rational numbers 7. On the other hand, if f({e™™)=0 for =0, 1/m, ...,

(m—1)/m, then (3.1) gives a system of m linear homogeneous equations for &=
= 3 a, b=0,..,m~1, with coefficient matrix (¢**"™),__ ,__ . which
 R=bimodd m)
15 clearly non-singular. Hence, s,=...=g8,_;=0.

Problem 3. Let there be given 8, infinite sets of intezers {4}, n=1,2, ...
Assume:
b | 2 laal==, n=12,..., and a,—0.

mEd,,

Is it true that we can find signs e(m)==+1 s0 thai

2 wlmia, =0 n=12..7
med,
Clearly, some conditions for the 4 's are nesded. For example, the 4,'s are

closed with respect to Boolean operations,

Problem 4. Let o=1, 0=f=gx Assume that for every = and §

a =0k
,,‘.E:; s+ 1]

Does it follow that a,=0, n=1,2,...7 Or more generally: Let {4} l=a=w,
be a family of 8, infinite sequences of integers. Find non-trivial conditions so
that if {a,} satisfies

Fa, =0, 1=u<uy,

nEAd_

then a,=0, n=1,2, ...

. Problem 5. Our main theorem gives that there is a non-trivial power series
% a,z" which is zero for every z=¢"", 0 rational. In fact, if (3.2) holds for arith-
‘metic progressions, there exist e(m)=+£1 so that = e(m)a,z"=0 at these po-
|...I a mut

ints. Does this remain true if the rational multiples of = are replaced by any
‘conntable set on |z|=17
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