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EMBEDDING THEOREMS FOR GRAPHS
ESTABLISHING NEGATIVE PARTITION RELATIONS

by
P, ERDOS (Calgary) and A HATNAL (Calgary)

§ 0. Introduction. Notation

We started to work on this paper with the following observation. If §
is a graph on ®, vertices and establishing the negative partition relation
%, == ([%,, #,])2 then § is universal for countable graphs. This last statement
means that every countable graph ¥ is isomorphic to a spanned subgraph
of §.

We have stated a number of results and problems of the above type in
our paper [4] written in 1971. (See Problems VLI, IX, X on pp. 285 —286.)
Quite o few of these problems will be golved or modified by the results of this
'_[JIRIJEI'.

5. Shelah has made an important remark concerning our problem. He
hias shown that our starting result cannot be generalized for higher cardinals.

TrEOREM (8. SEELAn [8], Th. 4.1, p. 11}, Let M be a countable trasitive
model of ZFC +- GCH. Assume M |=""», i, 1 are cardinals, each of cofinality
greater than o, § is a graph establishing = + ([4, t]iz". Let N be the model
ohigined ,I’mm M by adding one Cohen real. Then N ="§ establishes x +~
4 ([A, 7))t and there is a graph W on 8, vertices isomorphic to no spanned
subgraph of §".

This reeult explaing why moest of this paper deals with embedding
countable graphs into graphs of cardinality ®,. We will discuss the problems
left open by Shelah’s result at the end of § 6. In what follows we work in ZF(.
Set theoretic notation will be standard. In particular, ordinals are identified
with the set of their predecessors, and cardinals with their initial numbers.
All Greek lower case letters but g, v, denote ordinals, », 2 always denote car-
dinals, i, § #, m denote non-negative integers.

We use the well-known partition relations, the “ordinary partition rela-
tion” the “polarized partition relation" and the “square bracket partition
relation’ as defined e.g. in [3].

AMS (MOS) subjeet clussificotions (1970). Primary 04A60. Becondary 05C40.
Kejy words and phrases, Partition relations, graphs.
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We collect the main graph theory notation below:
Daerivrrion 0.1,

(a} A graph § is an ordered pair (g, @) where @ C [g]. g is the set of
vertices of §, 7 is the set of edges of §.

(b) Where § = (g,6), % = (h, H) are graphs, I is a subgraph of § if
hS gand HS G We denote this by ¥ S § if there is no danger of
confusion.

(¢) Where §=(g, @) is a graph, (g, [s\G) is the complement of § and
is denoted by 7§.

(d) Where § = (¢,@) is a graph, ASyg, (h, [APNG) is the subgraph
of G spanned by b and will be denoted by G(A).

le) A eomplete »-graph is a graph of the form (g, [¢TF) where |g| = x.
A complete . l-bipartite graph is a graph § = (g, @), where

g=qUd goNo =19, |5 =x.9 =4

G = [gp l?x]l'l = {{x-ﬂ]‘: mEguﬂy'Efr}*

We often speak about “‘the” complete x-graph or (=, 1)-bipartite graph
and we denote them by [x], [, 1], respectively. Whenever we write [»] =8¢
we mean that § contains a complete #-graph as a subgraph. We use this short-
hand for other classes of graphs as well.

(f) Whenever § = (g, &) is a graph, hsyg, z€g, we put Gz, h) =
= {y€h: {z,y}) €G}. Glx, k) is the set of vertices of § lying in
h and adjacent to x. | Gz, &) | is said to be the valency of the vertex
x in § for h. We briefly write §lx) for §(z, g) if there is no danger of

confusion.
(2) A half (3, »)-bipartite graph is a graph @ = (g, @) where ¢ = g, U g,.
o N =8, gyl = || = = and there are one-to-one enumerations

of gyand g, gy = {20 % << %}. ¢y = {¥.: = < =} such that Gz, 9,) =
= {yp o << f <" «} for « <Z x. We denote “the half (», x)-bipartite
graph” by [xfx].

Dermrriox 0.2. A mapping f: [g) + y is said to be a 2-partition of g
with 3 colors. There iz a canonical isomorphism between the set of graphs
with vertex set g and the set of 2-partitions of g with 2 colora given by the
relation

@ = {{=, y}: fl{z. y}) = O}.

We will sometimes allow uz the liberty to identify 2-partitions with 2
colors to the corresponding graph.
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DermyiTioN 0.3,

(a) Assume f,, f, are 2-partitions of g, and g, with y colors. We say that
fo embeds into f, if there iz a set h © g, such that f; is isomorphie to f,} h. By
this we mean that there is a one-to-one mapping @ of g, onto & such that

ful{z, ¥}) = Ll {e(=), pl#)})

holds for all {z, ¥} € [g,F. If f, embeds into f, we write f, — f,.
As a special case of the above we state

(b) Assume §; = (gy, &), G = (gq: Gy) are graphs. We say that §, embeds
into € if @, is isomorphic to a spanned subgraph of §,. We write §, = &,
to denote this fact.

(¢) We say that §, weakly embeds into §, if either §,~ &, or §,~ 1§,
We denote this fact by %aﬂ ;-

Dermvrrios 0.4,  (Establishing negative partition relations).

(a) Assume § = (g, @) is a graph, and 4,, A, are either [x] or [x, 4] or
[#/x] for suitable cardinals %, 1. We say that G establishes the negative partition
relation 3 4= (Ag, AP if 4, € G, 4, 1§ and |g]| = =

The reader at first may skip the following more general definition which
we will only use to give hints to possible generalizations of the theorems we
will state.

(b} Assume f is a 2-partition of g with  colors. Assume further that
Ay: v << p are symbols like 4, 4, appearing in definition (a). We say that f
establishes the negative sguare bracket relation

#% 4 [4,],,
if |g| = » and 4, %G, for v << y where g, = g and
& = {{m y} ELgF : [({z y}) = v}
Assume that 4, 4, are one of the following symbols:
(.1 [ 8] (%80 (800 8]

Our main aim in this paper is to characterize the class of all countable graphs
which embed in to all graphs § establishing #, 4= (4,, 4,

To have short notation we make the following definitions.

DrmyiTion 0.5,

{(a) O Ay Ay, %) = {3: ¥ is a graph of cardinality less than &, and ¥~ G
for all graphs @ establishing » = (4, 4,7}.

3 Porodica Mat. 9 (2)
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(b) Coo My, Ay, %) = {H: W is & graph of cardinality less than 8, and
I > § for all graphs § establishing » = (4,, 4,1}
(¢} Bub,(§) = {H: U is & graph of cardinality less than R, and ¥ — §}.

Since we have a special interest in the case @ = 1 we briefly write
Coldy, 2, #) = Cldy, Ay #), Cwfdy, Ay, #) = Cldy, A, %) and - Sub,(§) =
= Sub(G).

Clearly
Cu(dy Ay, ) = [ {Bub(§): § establishes x -+ (4, 4,)°},
Cro (g Ay, 2¢) = [ {Sub(§) U Bub,(1§): § establishes x -+ (d,, 4,)*} and
Gty s w5 OB A ) S Gt A s

We will see that in the last line proper inclusion holds in some cases.
We will concentrate our main efforts on the investigation of the classes
O (g, 4y, #) since the classes Cw, do not seem to lead to genuinely new pro-
blems,

To give some information we deseribe g typical situation in advance.

DeFmNTTION 0.6,

(a) We say that a graph §= (g, @) is o Sierpinski graph if there exist
a well-ordering =<, and an ordering =<, of g such that

G={{z.y}:x <4z <y}

(b) § is =aid to be an ey real-Sierpinski graph if g consists of reals, <<,
is an wmy-type well-ordering of g and =, is the natural ordering,

1t is a well-known fact that all o real-Sierpinski graphe establish &, 4+
+ ([8;, %;])% This is the strongest rvelation of type %, + (1, 4,)* known to be
true in ZFC. In § 2, Theorem 2.1 we are going to prove that

Cllg, &1 [8p #®] #) =The clags of countable Sierpifski graphs =
Sub(g), for all @, real-Sierpiriski graphs §.

Since Sub(§) = Sub (1§) holds for all @, real-Sierpinski graphs, the above
class is equal to Cw((g, .1, [#, %] &) a8 well. The theorem mentioned
gives a positive solution of Problem X. (1) of [4].

In fact there are only two more graphs § known to establish a partition
relation of type 8y (4, 4,)* and nice enough to restrict Sub(g).

One of them is "“the Souslin tree’’ (see 3.1) which exists under the assump-
tion that Souslin’s hypothesis iz false, and the other “the Bhelah graph®
constructed by Shelah in [8] under the assumption that CH holds
(see Def, 5.4).
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In the main line of the paper we will prove embedding theorems in ZF(C,
and we will tryv to show them to be “'hest possible” aspuming CH or the exis-
tence of a Souslin tree or both, However we will prove embedding theorems
assuming Souelin’s hypothesia and Martin's axiom as well.

In §§ 1—6 we treat the cases C(d,, A, #). We will summarize the
results pnd problems concerning to the different special cases in the mﬂpﬂﬁtivﬂ
chapters. In § 7 we summarize all the results concerning the embedding of
finite grapha. In § 8 we give gome results concerning weak embeddings and
correct the result (4) (a) on p. 286 of [4] which was incorrectly stated there:

At the end of the paper we give a list of special notation we use for graphs
and cligses of graphs.

& 1. The case A, = [®;/®:]. A, = [8, %]

Tarores 1.1. dAsswme » = w is @ regulur cordinal, Then C([x/x], [2, #], %)
is the class of all countable graphs, henece

O/, [x: 2], %) = C[2, 2], [2/x], %)
holifs as well.

Corornary 1.2, Ol D [y 801 8] i the class of all countable graphs;
hence
Cllwy/ %], [8, 8] #) = OR8], [Hu“tﬁl 8y
Rolds as well.
This is a stronger result then the one we elaimed in [4] (p. 285).

First we should mention that if CH is true then Corollary 1.2 does not
hold vacuously hecanse of

Prorositiow 1.3 ([5], Theorem 17/A). Assume » > and 2°= xt,
Then b = [[#, #* 1]

On the other hand to the best of our knowledge it is not known if g, —
— (88, [8y, &, TP is consistent with ZFC, Nor doe we think that x 4
4= ([#/3], [, 2] has been proved in ZFC for any = = m.

The following generalization of Theorem 1 is true as well.
Assumie » = w iz a regular cordined, 2 <" n < w. dssume further that
f: [#F — n establishes
# = [ [, 2] [l I
Then Bo=+ [ holids for all 2-partitions b with n colovs of a countable sel.

We omit, the proof of this.
For the proof of Theorem 1.1 we will need a sequence of ensy lemmas,

3*
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DerisrrioN 1.1. Assume § = (g, G) is a graph, » a cardinal, 4, B € g.
The pair (4, B) is said to be x-good for § if forall A" € [AT, B’ € [B]" there
is an x € A’ such that |G(x, B')| = .

Lumma 1.3. Assume § = (g, @) is a graph, cf(x) >, |g| = ». Assume
further that

VO E[gl3 A4, BE[CT ((A, B)is x-good for both § and 1§).
Then K+ § holds for all eountable graphs XK.

Proor. Let us first remark that if (4, B) is x-good for G, A" € [A]* and
B’ € [B]" then (4, B') is »-good for § as well.

Define sequences A, B, of subsets of g by induction on n € w as
follows. 4, = y. Assume A, € [¢]" has already been defined. Pick disjoint
subsets B, A4,,.€[4,1° such that (B, 4,,,) is »-good for both § and 1§.
Then B, € [g]", the B, are pairwise disjoint and (B, B,) is %-good for § and
1§ for all n <~ m (< @). We may now assume that ¥ = (@, A). Claim: There
is an z,(€ B;) and a sequence BIE[B.T) for 1 < % << w such that B} ©
S Glay, B,) if {0,n} € H and B} © 1@z, B,) if {0, n}q H.

If this is not true then, because of ¢f(x) > o, there are an n (1 << n << w)
and a subset A’€ [B]" such that either |§{x, B )| << for all €4’ or
|G, B,)| << » for all z € A’. This contradicts the fact that (B, B,) is x-good
for § and 1G.

By repeating this procedure we can obtain a sequence z, € B, such
that {z, z.} €6 iff {n, m} € H.

Hence | — @.

Levua 1.4, Assume § = (g, 6) iz a graph, x >, x is regular. dssume
further that [x, %] € 1§. Then

VABe[gl*IA€[A,*3 Be[B,]"
either (A, B) is n-good for G or (B, 4) iz x-good for §.

Proor. If (4,, B) is »x-good for § then we are home. We may assume
that the are A4, € [4,]", B, € [B,]* such that |Gz, B))| << » for all z € 4,.

If (B, A)) is »-good for & then we are again done. We may assume that
there are A4,€[4,]* and B, € [B,]" such that |§(y, 4,) <<x for y € B,
Using the fact that if # > @ is regnlar and ¥ is a graph all whose vertices have
valeney <2 » then all components of # have cardinality < #, this would imply
that there are 4, € [A,]", B, € [B,]* such that [Ag, B,]S 1§ a contra-
dietion,




ERDOE, HATNAL: EMBEDDING THEOREMS FOR GRAPHS 211

Lesma 1.5. Let § = (g, @) be a graph, » > o a reqular cardinal. Assume
that [x=] E G Then

VA4, BE[g]" ({4, B) is x-good for 1§).

Proor. Assume there are A’, B’ € [g]" such that |7§(z, B')| << = for
all o € A’. Using the regularity of » we can pick sequences x_ € .A4°, y € B’
go that x,, y, are all different and y, ¢ U {1§(x,): § << a} holds for all « < x.
This in view of Definition 0.1 {g) would mean [#/x] € §, a contradiction.

Proor of Theorem 1.1. Assume § = (g, @) is a graph establishing » 4
e ([2f2], [#, #])% Assume C € [¢]". By Lemma 1.4, there are A, B(€[C]")
such that (4, B) is x-good for §. By Lemma 1.5, (4, B) is #-good for 1§ as
well. Then, by Lemma 1.3, all countable graphs embed into §.

§ 2. The case A, = 4, = [, ¥]

Dermmrrioy 2.1, Let 8 denote the class of all eountable Sierpiriski
graphs.

TaroreM 2.1. dssume » > w s a regular cardinal. Then
8 € C([=, x], [x, =], x).

If in addition » is not weakly compact, then § = C([, x], [% =], %).

CoroLrarY 2.2. C([R; ®: ] [y 8] 8) = Cw[iy ®, 1 [B # #) =8 =
= the class of all countable Sierpiniski graph.
' The second part of Theorem 2 follows from the following observations.

If % 4 (x)} then, by a theorem of HaNF [7], there is an ordered set (x, <,)
not containing well-ordered and reversely well-ordered subsets of cardinality
# and Trom

ProrosiTION 2.3, Assume (x, <) is an ordered set satisfying the above
condition and let § = (x, G') be the Sierpinski graph obtained by choosing <, as
the natural well-ordering of ». Then § establishes x - ([, 2]);.

Proor. Assume 4, B € [=]". It is easy to see that becanse of the assump-
tion imposed on (x, <) there i3 an z € » such that both 4|<,z and 4|, >=
are of cardinality =,

Then we may assume that B| >z has cardinality x. Obviounsly 4|<, =
< B|7, x and there are y € 4| <, z, z € B|,> = satisfying either of the condi-
tions ¥ <, 2, 2 <, 4.
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As to the generalization of the result for 2-partitions with more than
two colors we could not even formulate a conjecture,

Prorrem 1. Characterize the class of those Z2-partitions & of countable
sets with 3-calors for which kb » f for all [ establishing &, < {[®,, #0)i.

We mention that if g =3, ({0, 1}) =0, &({{0,2}) = 1 &{{1, 2}) =2,
then A is a member of the above class. ]

Finally we remark that “most” countable graphs are not Sierpinski
graphs. E.g., a pentagon without a diagonal is not a Sierpinzki graph.

Proor of Theorem 2.1. Let § = (g,6) be a graph establishing x4
+4=([#, #]);. We may assume that there is & eountable graph X which does not
embed into § Then, by Lemma 1.3, there is a C'€ [g]" such that no pair
(4, By with 4, BE[CT" is xag{m{l for both § and 7§. We may as well assume
that ¢ = g.

As a corollary of thig, and Lemma 1.4 we may assume that for all

C € [gT* there are A, B € [C]* such that
(1) ANB=4d, Yecd(§x, B) <) and Yy € B(|Gly, A)| < 2).

Call such a pair 4, B(€ [¢T*} a convenient pair. Notice that if 4" €[4T,
B’ €[BY* and {4, B) iz convenient then so is (4, B'), Let now § be the set
of diadically rational numbers r(€(0, 1)). We eclaim that for r €@ we can
select a set A, € [g]* insuch a way that for all r, s € Q, r <~ &, the pair (4,, A4,)
is convenient.

We outline the construction. Applying (1) twice we can select sets
B, By, B, € [¢]" such that (B, Bj) is convenient for i < j 3. Call B,
A,y Repeat this procedure in both B, and B, Call the sets in the middle
Ayg Ay, respectively and repeat the procedure in the remaining four sets,
and so on. This procedure obviously leads to the required system.

Using that » is regular, by an easy transfinite recursion we can define
a subset D(€ [g]") and a well ordering < of type = of D satisfying the follow-
ing conditions:

A=A NDe[DT for r€EQ and

forall € 4), y€ AL r<"#; r, 8 €0 we have
r<ye {ry}€G.

Let now X be a countable Sierpifiski graph. We may assume that 3 = (x, )
for some o <7 w, and there is a one-to-one mapping ¢ of « into @ such that for

all =y <
{8, v} e H =plf) < oly).
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Using that cf(») = w, we can select o sequence xg (f = =) in such a way
that x,; € A and 2, < x; holds for all y < f < «.

Then [z, 2;} €§ = @lf) < @ly) o {f.y} € H for all 3,y (< «). Hence
I f.?

§ 3. Preliminaries. A characterization of Sierpifiski trees
Firat we recall some well-known defimitions.

DerFmwrrion 3.1. A poset (T, <) is a tree if the set T|<ax= {y€:
y < z} is well-ordered by < for all €T, tp 2(<) is called the height of
xinT. 1t T is a fixed tree, we will denote T|< z by @, T|> = by = and tp z(<)
by ht{z). The z-th level of T' is the set T, = [z € T: ht{z) = z}. The length
of T' iz the smallest ordinal « for which T, = 8.

A chain of a tree is a subset X{S T) ordered by <. A branch of a tree
is & chain of 4 such that y < € 4 implies ¥ € 4. An antichain of & tree is 4
gubset X|{E T such that no two different elements of X are comparable in T'.

A Bouslin tree is o tree of length @, in which every chain and antichain
is countable. Souslin’s hypothesis = SH says that there are no Souslin trees.
Results of Jensen say that 15H holds in L and that SH is consistent with ZFC
ZFC 4 2% = 8. (See [11)

Dermvirion 3.2, Given a tree (T, <), we denote by Gr the graph with
vertex set 7', and whose edges are the pairs {z, y} for which  and y are com-
parable in T. We eall § the projection of (T, <). We say that § = (g.G)
is a ptree if it is the projection of a tree. We use the expression p-free because
the word “tree' is used for graphs in a different sense.

The reader will easily verify the following well known fact:

Prorosrrion 3.1. If (T, <) is a Souslin-tree, then Gr establishes g, 4~
= (I8 ] &)™

This is best possible since if (T', <) is a Bouslin tree then [R, &,] S Gr
and [#,, %] S 16

DermviTIoN 3.3. From now on we denote by & the class of countable
p-trees.

For every ordinal =, §_ is the class of graphs which are projections of
trees of length < =

The elements of 8 N F will be called countable Sierpisiski trecs. As a
corollary of 3.1 we have
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Prorosirion 3.2. dssume 78H. Then

(a) C([#yf,] (8] ) EF
(b) Ci[&;, %, [#,] 8) E8N 8.

We do not know if equality holds in any of the above cases. We will
prove partial results in both cases.

First we give a characterization of Sierpitiski trees, which is of some in-
dependent interest.

DermsiTioN 3.4

{n) Assume Z is o class of trees. Lot Z° be the class of all trees (T, <)
which contain a countable branch B such that, for all y e T\ B,y = {x€T:
¥ = x} is a subtree of I' which belongs to Z. _

{b) Define a transfinite sequence of classes of trees as follows. Z, con-
siste of the empty tree and of the one point tree, Assume p > 0. Let &, =

=Z;forv+ 1= pandlet Z, = || Z, for limit g.
T<p
(c) We say that the tree (T', <) embeds into the Sierpiniski graph

G = (g, &) determined by <, and =, if

<y (@<, yhe<,¥)
holds for all », yEg.

(d) We denote by 8, the class of graphs which are projections of elements
of Z,.

{e) We denote by T, the complete binary w-tree. T, is a tree of length o
with a smallest element called root and such that each element of T'; has
exactly two immediate successors.

THEOREM 3.3.

(a) Assume g < w, and (T, <) € Z,. Then (T, <) embeds into a Sierpinaki
graph.
(b) Assume that the projection of the countable tree (T, <) is a Sierpinski
graph. Then (T, <) € Z, for some 0 < 0, As a corollary of these § N8 = |J 8,.

ooy

First we prove
Lunmma 3.4, The projection of Ty is not a Sierpinski graph.

Proor. Considering that a confinal subset of T, contains a tree isomor-
phic to T, if the statement is not true then the tree 'y embeds into a Sier-
pirieki graph. Let @, be such a Sierpinski graph with the smallest well-order-
ing. Let §, = (., G), <, is an ordering of 2, <, a tree ordering on o isomorphic
to T, and such that

A<ye@<y A< for By <ua
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Assume f}, y are two incomparable elements of  in the tree. §=
={8€a:8=<,8), p={8€x:9=,8). Then B, p are isomorphic to T, as
well. We may assume o.g. § <, .

Then f§ <,y <, 8 for 8€y, hence <, being a tree, &< f§ holds for
8 € y. Then 9 E § <= & a contradiction to the minimality of a.

Proor of Theorem 3.3.

{a) Let J denote the class of countable trees which embed into Sier-
pinski graphs. It is obviously sufficient to see that Z, & ¢ for ¢ <7 ;. Assume
ZCSF, Let (T, <) €2’ Let B ST be a countable branch such that (y, <) €Z
for y€T\ B Let C={y€T: y is a minimal element of T'\ B}. Let
Obviously T = BU |J {y:y€C} where the summands are disjoint. By
the assumption, there are well-orderings -{E and orderings -{; for yle )
such that

w<ve(u<gohu<iv) for w,véy yeC.
For y € C there is a section By of B such that B, = {u€ B :u < y)}.
Define the orderings <, <, of T' by the following stipulations:
w<yveu <ty for wvey JEC
u<,veou€B, for wEBAuEy: yeC.
Choose an auxiliary well-ordering <, of €' and put
w<gv e (Byc BA(By= B,Ay <,2)) for u€j, vez; y=z€0.
Clearly <, iz a well-ordering.
<, veu<,e for uvey yeo
u=<,v for wu€BAvEY yer
u < vev<,u for uéy véz y=z2€C.
It is easy to check that <, is an ordering of T and
w=veuw=<,vhe <;v) holds for w,veT.
Hence Z' € §. Z, © J¢ follows by transfinite recursion on ¢ <" @,.

(b) By (a) U Z,E 85, andeo |J S, ES8N4F.
[t By
We claim that if (T', <) is a countable tree and (7' <) ¢ | Z, then (T, <)
Py
containg T',. First we prove that every such tree containe two incomparable

elements z, y with . 4 ¢ |J Z,. If this is not the case then let B = {z€T:

iy
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{:f:. =<)d 1) Zﬂ}, By the indirect assumption, B is a countable branch of T,
=y
and (., <) € |J Z, for yl€ T~ B). But then (T', <) €U Z,, a contradiction.

] ooy
This proves our last claim. By a repeated application of this it follows
that all such trees contain T indeed.

Assume now that the projection of (T', <) iz a Sierpinski tree. By the
claim just proved and by Lemma 3.4 (T', <) € |J Z, This implies § N8 = (J 8,
as well L ooy

§ 4. The cases A, — [#,/,] or [, 8] 4, = [#,] A consequence of SH

TEROREM 4:1.

(n) Assume G establishes 8, 4= ([, ®; ] 8% Then cither § S Sub(§)
or G, € Sub (§).

(b) Assume § establishes, 8, + ([8,/8,], #,)". Then either Sub () is the
class of all countable graphs or G, € Sub (§).

CoroLLABRY 4.2.

(a) F,N08 S w10 8,0 8)

(b) g, S O[w/w ] [8,] #)
ProprEM 2. Is it true (in ZFC) that

() B NS SO (I8, ][] w0
(a) T S OfInw, ] I8, )

By 3.2, if 18H holds, then § NS and § include the respective classes.
We will see in Theorem 4.5 that 5H = €' ([#,], [&,] %) £ §. Fist we prove

Lewra 4.3, Assume § = (o, G} is a graph such that [8,] € 1§ and
YO E [, 34, BE[CT* with [4, BI"' NG = .
Then Gy, ~ §.

Proor. To establish that the projection of T, embeds into & it is obviously
sufficient to see that for all D€ [w,]" we can find x € D and two disjoin
subsets 4, B < [D]" such that A U BS §{z) and (4, B]"' NE = 0.

Assume now D € [w,]". Then, because of [8,] % 71§ there is an 2 € D
with |§(z, D})| = R,. Then, by the assumption on §, there are A, B(€ [§(x, D)]*)
such that AN B=@and [4, B]"' NG =4.
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Proor of Theorem 4.1. Let § = (w, ) be a graph establishing ®; -+
4= ([ 8] 8% or W, - (28,1 8,7 It follows from Theorems 2.1 and 1.1
respectively that either 8 © Sub(@) or Bub(@) contains all countable graphs or

YO E[my]™ 34, BE[CT [4, B]" NG =49
Bince [§;] £ 1§ holds in both cases, it follows from Lemma 4.3 that G —§

To see the effect of 8 H. on our problems we prove [irst

Lemma 4.4, dssume § = (w,, (V) establishes 8, 4 (#,);. Then one of the
follomping assertions (1) (2) holds:
(1) There are o »s f < oy with {x, f} ¢ G and |@f’““"] 1 (B, )| = 8y
(2) Pulting o < fe (o< fA{x, ) €EG), there is 0 TE [, such
that (T, <) is a Sowuslin tree.

Proor. Assume (1) is false. For X © m, let

N(X) = {Gla, o) NGB, w,): {x, B) € [XING).

Then |N(X)| < 8, forall countable subsets X of ;. We define the sequence
T,: 2 = w; by recursion on g so that T_ is a maximal independent subset of

oy sup N( | Ty). By the assumption [r,] €18, 0 < |T,| < &, boldz for all
A=l
<" w;. We claim that T' = || T, satisfies the requirement, and in fact T,

will be the z-th level of the tree.
First we see that E,y <l =E<yVn<E Indeed, £ 9y <{ implies
& m <L Henceif{ € T, then T, being independent, & n€ | T;, and {£ 9} @
A

would imply DEN(|JT;), a contradiction. Next we see that for all § < =
fm
and £ €T, thereisa unique n € T, such that §§ < «. Indeed, by the maximal-

ity of T'y, there is an €T, such that {n, &} €G. Then n < & since 5 < &
The unigueness of 5 follows from the statement proved previously and from
the fact that Ty is independent.

To see that (T, <) is a tree we only have to show that < is a partial
order. Assume E€T,, 7€ Tﬂ. £ ETT and £ < n < Them o< § << There
ida 5 €7, such that & < L. Then & < 7. Henee &' = £and § < L.

To conclude the proof we remark that T is a Souslin tree indeed becauso
G establishes #, 4 (8,)%

Derixrrion 4.1, Let R, be the class of countable complete graphs and
independent graphs (containing no edges). For n € let R, be the class
of graphs § of the form g = {a, b} U ks, a == 64 Ak, {a, b} 4G, [{a. B} A]V C@
and G"{h] €R,, ie, R, is the class of graphs which ean be obtained from a
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member G of R, by adding two new vertices which are not adjacent to each
other but are adjacent to all vertices of 6",

Finally put B =) &,

Clearly ;€ R where %, is the "quadrilateral without diagonals”,
ie., hy=4, H,={{0,1}, {1, 2}, {2.3}, {0, 3}}.

TeeorEM 4.5, SH implics that

R C O8] 8], &)

In § 6 we are going to prove a stronger embedding theorem assuming
Martin's axiom. We do not know if Theorem 4.5 can be improved using SH
alone, The following is the simplest case:

ProBrEM 3. Assume SH Let § establish 8, -~ (8, )i

Doee then there exist three vertices z: i < 2, {x, 7} 4§ for i <<j <3
and such that |§lx,. g) N Gizy, 0) N Glay, g)| = 1,2

Proor of Theorem 4.5. We prove R, S C{[x,]. [#,] &) by induction
on # € w. For n = 0 thig is true because of &, — (#,, 8,7 Assume the state-
ment is true for some n(€ w), and § = (w,, &) establishes #; -~ (%,)*. Then,
by 8H and Lemma 4.4, there are «, § € &, and C € [, ] such that {x, f} §&
and € < §lz, w) A §(A;, wy). By the induction hypothesis each member
of R, embeds into §{C'), hence each member of K_,, embeds into §.

Since ¥, is not a p-tree, Theorem 4.5 shows that even for finite graphs
one cannot prove in ZFC that Theorem 4.1 is best possible.

Nothing we have said up to now prevents the following to be true

ProerEM 4. T8 there o nice consistent extension of ZFC in which
Cll%g 8,1 [#,1 8y) = C([8y/8,], [¥,], 8,) = the class of countable graphs

and
Cilry 8 [#:] 8) = C([1#,]. 8,) = C([&,], [8:], &) = 8¢

§ 5. The case A, = A, = [x]. Preliminaries

In this caze we will be able to prove genuine embedding results for un-
countable graphs as well. First we need some preliminaries concerning the
clasges of graphs which will appear in the main result. We start with the
gimpler one.
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Drrisrrion 5.1,

(a) Let P be the class of graphs § such that both § and 7 § are p-trees.

(b} We briefly denote by C*(x) the class of graphs ¥, |¥| <~ %, which
embed into all § establishing % 4= (x);.

Note that C¥(x) = C,([%], [*], #) where &, = x.

First we need an easy characterization of the elementa of P.

LemMa 5.1, Assume that for an element §€ P, §and 1§ are the projec-
tioms of the trees (g, <) (g, <), respectively, Then there is a unigue well-ordering
< of g and a partition g = g, U g1, g, N 9, = 9 such that

<L feaa<f
holds for all z, fE€g, x Eqy, + < 2.

Proor. For all pairs x-= 8 €g exactly one of the relations = <, 8,
# =<, 1 holds. An easy discussion shows that

(1) e < BAF <)==y

gince all the cases
P @<y P
are excluded. :
Define x < f# & J1€2(x <, 7). Then by (1), < is transitive, hence < is
a well-ordering of g. (1) alsotells usthat forall e < f <y, a <, feou<y,
and this yields the required partition of g.

DEFINITION 5.2. We denote by P, the class of graphs (€ F) for which
there is a well-ordering < of g of type at most £ satisfying the requirementa
of Lemma 5.1,

In [8] answering a problem of us SEELAR proved that if G.C.H. holds
and x = it = 2° for some regular (> w) then there is a 2-partition f of x
with A colors establishing = + [#]} and such that all three vertices span a two.
colored subgraph, i.e., the function A mentioned on p. 212 does not embed into f.
Thie result certainly shows that only very weak embedding results can be
proved for 2-partitions with at least 3 colors. However we will make further
use of it since the 2-partition f constructed by Shelah has some very strong
properties even in case of 2-colors. For the convenience of the reader we will
restate Bhelah’s result for this special case with detailed proofs.

Durmvrrior 5.3. For A{> w) we denote by R, the set {f € 2: f is not
eventually 1}, and by @, the set {f€ R,: there is a largest x(<Z 4) with
flx} = 1}. If there is no danger of misunderstanding we will denote the usual
lexicographical order by <Z.
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Clearly R, €, are the set of reals and rationals, respectively. It is well
known that quite a few properties of reals and rationals remain true for thess
general sets. We need the following well-known resulis,

Prorvosmrionw 5.2, Assume A= o) is regular. Then
(a) |B;] = 2, |@s| =22 = 3 o

Fdl
(b)) €4 is o dense subset of .R:.
(0) For all subsets A, BIE[Q, 17" A == B implies that there is an r€Q,
with A < {r} << B.
(d) Assuming 2* = At = » and 28 = J, there is @ “Luzin set” 8, TR,
such that |2, = » and for all subsets A€ [E,T7) 4 is dense in some non emply
intervall of B;. We may assume £, @, = 8.

DEFINITION 5.4, Assume A > o is regular, 22 = 2, 28 = 0+ — 5,

Define a graph §;, = (£,.7,) as follows.

Let ¢, = {r, : 2 << 4} be a one-to-one enumeration of Q,. Let @) U
U@ =@, be two disjoint subsets of @, both dense in R,. For x, y € R,
let aix,y, A) =iz, y) = min {x:7, € (x.y)) and put [z, 4} €6, if r, €Q)
for & = elz, ).

Tueorem 5.3. (Saeran's theorem). Under the conditions of 5.4, §; es-
tablishes » 4= (2).

Proor, Assume 4 € [E,]". By 5.2(d), there are z <y, 2,y € R, such
that 4 is dense in (z,y), For i <~ 2 there are x<= 4 and r,€Q} N (z, y).
By 5.2(c), there are v, 8 € (r,y) N Q; such that r < r,<s and 7,4 (r,3)
for f <7 «. Then A being dense in (z, y) thereare r < w <" r, << v <7 s;u, v € A.
Then a{u, v) = &, hence {u, v} €6 for i = 0 and {u, v} §G for i = 1.

Note that if we split ¢, into the union of i pairwise disjoint sets and
define a 2-partition with A colors similarly as in Proposition 5.4, we get Shelah's
result for colorings with 4 colors,

Derixrrion 5.5. We call a graph a A-Shelak-graph if it can be embedded
into gome ;.

We will denote by She, the class of subgraphs of cardinality <C 4 of §;
for all A(Z= &) satisfying the requirements. Shey, will be denoted by She.

The following result contains some useful information about Shelah
grﬂphs.

ProrosrTion 5.4.

(a) For all A, and for all A-Shelah graphs § = (g, @) there is a partition
go U g1, 50 N gy = B (gg, 01 == 9) such that either [g,, 1,17 S @ or [g,, 71" N
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M@ =@. Let us call such a partition a splitiing partition of G.

(b B S She where K is the class of graphs defined in Definition 4.1,
(o) All finite Shelah graphs are Sierpinsii graphs.,

(d) There i a finite Sierpiviski graph which is not a Shelah groph.

{G} r.il-é'.l! T8

We enly give hinte for the easy proots. (a) follows from the definition:
To see (b) one proves by an easy induction that R, © Sk, (e) can be geen by
induction on the numbers of elements of a Shelah graph and using (a).

W, = (4, H,), H, = {{0,1}, {1, 2}, {2, 3} }, o path of length three, iz a
Sierpingki graph which is not Shelah and hence (d) is true. (8) follows from the
fact that §r, is a Bhelah graph.

We remark that similarly as the class of Sierpinski trees the class She M 8
can be caracterized as follows. Assume F is a class of graphs, Let F" be the
class of graphs § = (g, &) for which there iz a disjoint partition g = |J g,

w41

such that |g,| <1 and a funetion f: @ — 2 such that §lg,) € F for n < o,
Lo 9] S @ for n<&<w+1 if fiy)=0
gl NG=0 for n<i<w+1 if fn)=1

Now She N 8§ is the class of graphs which ean be obtained starting from
the empty graph and the one element graph by transfinite iteration of the
operation " in less than e, steps. Since we do not actually use this in the paper
we save the reader from the cumbersome details.

Now we come to the lemma which expressea the main restrictive effect
of Bhelah graphs.

LrMma 5.5, Assume A = R, and let § = (4 + 2, @) be the “typical element”
of Pyig die, for E<<m<<A+2 E<C)

{&.n} €G iff & i3 even.

Then § is not a A-Sheluh graph.
(Note that we do not specify whether {4, 2 -+ 1} € @ or not.)

Proor. Assume §» ;. Then there is 4 one-to-one sequence {x,:
x<A+21C €, such that for all a <A 2<f<ii2 [x,7)€06,
iff « is even.

Let A, = {v;: a < p <A+ 2}, A, the convex closure of 4, in R,
and X, = §,(A4,) for m <7 4.

We remind the reader that @, = {r,: & < A} as in Definition 5.4.
If = min {8: r, € A} for some x < i then 4, =d[|<r Ud,|>r, is
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a aplitting partition of the graph ¥_ as defined in Definition 5.4 (a). Now med-
itation shows that the enly splitting partition of ¥, isd, = {x,} U (4 {z.}).
Let y, = min {y:r, € A} fora << 4. Then either 4,:; < {r, }or{r,} < 4.1
holds for = <7 4, and as a corollary of this the sequence {y,: o <2 A} is clearly
increasing. On the other hand considering that =, %, €4, for a < 4 it
follows that p, < min {y: r, € (2, 2;1,) or r, € (¥;5,, %)}, a contradiction.

DerisrtioN 5.6. For each i > o, let ¥ = (h', H") be the following
graph.

W= |J Ry, where the summands are disjoint,
w=m 41

[hial = 4 for < w; |h;,| =1, and

[Py s By I S H? for n<<a < o+ 1ifnis even,

[y 0 By T Y H'=@ for n<a<ow-+1if »nis odd.
We have

COROLLARY 5.6. Adssume A > w) is an infinite regulor cardinal, and
G € U P:isa A-Shelah graph. Then § — il

E<it

Proor. By Lemma 5.5, the “'typical element’ of P, ; , described in Lemma
5.5 does not embed into §. An easy discussion shows that then f »» b

§ 6. The ease A, = 4, = [#] (continued)
Theorem 6.1. Assume w < 4 <7 x are regular cardinalls
(a) If ©* < = for all cardinal t <= = then
P, S O%x).
(b} If there is a x-Souslin tree then

O*(x) € U Py
£<n

(c) If there is a x-Souslin tree, J* = 2* = » and 22 = } then
C*(x) S Bub,(¥") where =, =

CoroLLARY 6.2,
(a) P, S O¥g,) = O([8, ] [#,] 1)
(b) If 1SH. then C*(8)) S U P;

[

<l
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(e} If T8.H. and C.H. holds then
C*(r,) S Bub (X”)
where W is the countable graph given in Definition 5.6.
ProrueM 5. Does I = @ hold for all graphs § establishing 8, = (8,)*?
Note that %* €SN SheNP,,: ;.

Proor of Theorem 6.1. First we prove the '‘negative’ parta. If (T, <)
is a x-Souslin tree, then both §r and 71§y establish # 4= (x);. If § » §r and
@+ 1Gr then 7@ »+ Gy, hence §E P. Thus |G| <~ x implies @E U P; and
this proves part (b).

To see (c) assume § € C*{x). Then, by Shelah's theorem 5.3 § — §,,
hence § is a A-Shelah graph. Then, by Corollary 5.6., § » %"

The positive part (a) of Theorem 6.1 15 a reformulation of an old result
of us, the proof can be carried out with the methods of [6] and will be given
in details in the book [6]. For the convenience of the reader we outline the
proof. In fact the following stronger statement is true.

Prorosirion 6.3, Assume [: [ — 2 is a 2-partition of » with 2 colors,
such that there is no homogencous subsel slationary in ». Assume further that,
A, » satisfy the assumptions of 6.1. (a). Then all elementz of P,:, embed into

the graph corresponding to f.

First we can define the canonical partition tree < on » associated with
f satisfying the following conditions:

(1) §<n=E<n.

(2) If & < =< £ then f({& 5}) = f({$. C}).

(3) I §<<m, E=9N& and v < E(J({C, §}) = f({L, 7)) then & < 1,
Note that E={l€x:0<E&. Put L i) ={nek:f({n &) =i} for
i < 2. It is easy to see that (2) and (3) imply

(4) LiE, i)y =Lin,i)ANE<<n=>E <y for i < 2.

By Lemma 5.1 it is glearly sufficient to see that there is a & < » with
¢f(£) = A such that L(£, i) is a cofinal subset of & for i > 2.

Now start with the remark that {& < x : ¢f(£) = 4} = A is a stationary
subset of . If the claim is not true, then there is a stationary B(E A4) and
an i{<" 2) such that sup L(£, 1) < & for all £(€ B). Then there is a stationary
subset C(C B) and a p{< %) such that L(£, i) € o for £€C. Now using the
cardinal assumption |o/* < % we would get a stationary subset D{E C) such
that L(£, i) = Liy, i) for & 5 € D. However this would imply by (4) that D
i8 & chain in <. Then (2) would imply that there iz a stationary E(S D)
which is homogeneous for 1 — i, a contradiction.

4 Periodion Math, 9 (3
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We think it is time to mention some other problems for embedding
uncountable graphs. Assume 2% = @, A 2" = &,. Shelah’s result mentioned
in the introduction implies only that

C{[#;, 8], [®;, ®y], Ry) i8 not the class of all graphs of cardinality %,
but this does not exclude all embedding theorems. E. g. the result just proved
says that

P, 11 S C(IR]): [%]. 8)
Proprem 6.

(a) Can one prove in ZFC - 2% =1 | 28—, that C{[#;, 8] [ %], #a)
does not contain all graphs of cardinality », ¢

(b) Assume § is a graph establishing w, + (o, 4+ wi. Do all graphs of
cardinality %, embed into §?

In [8] Shelah conjectures that there is a positive answer to (a). The
existence of graphs establishing @, 4 (@, + @)} is known to be consistent
with ZFC 4 (2% = g,) A (2" = #&,) (see e.g. [4]) and Bhelah's result does
not exclude a positive answer to (h).

§ 7. A discussion of the results for the classes Oy (4, A, 8,);
the ease 1, = [8, 8], 4, = [#,]3 a consequence of Martin’s axiom

Let us first recall our results concerning finite graphs. Assuming 7 8H
we had a complete characterization in each of the cases considered up to now.

Col[®a/8, ], [85, 8,1, ®,) = the class of all finite graphs. By Theorem 1.1,
Coll#y 310 (8, 8,1 #;) = the class of finite Sierpifiski graphs, by Theorem 2.1.

Assuming 718H Cy[xy/s;], [8,], 8) =Cy([#,, 8,1, [1&,], 8,) = the class of
all finite p-trees.

This follows from Theorem 4.1 since, e.g. by Theorem 3.3, all finite
p-trees are Bierpinski graphs.

Assuming 18H

Colly ], &), 1) =

= the class of all finite graphs § where both § and 1§ are p-trees€ U P,

n<w

This follows from Corollary 6.2, and Lemma 5.1 describes these graphs com-
pletaly.

We turn back to problems left open in case we do not sssume 7 8H later
in this chapter.

First we want to point out that the only case not convered by these re-
sults is ‘dﬂ = [Rn- ﬂl]- di — [“]]'
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In this case we have very little information, since we do not know any
graph & establishing &, <+ ([®,, 8], [#,]) (in any consistent extension of ZFC)
which is not universal for countable graph.

However we do know that g[8, 81 [, 8 is “la.rgar” than
OIS/, ], [8,], 8,) since we will prove in ZFC that it contains the finite ele-
ments of I, hence it containg H; which is not a p-tree. This will be the conse-
guence of the following

TemormMm 7.1. B © O([w; %0 [0 #,):

Proor. Assume § = (w, 6) establishes &, 4= ([&q %], &)%. Theorem
4.5 tells us that either K € Bub (§) or there is a Souslin tree. But in fact the
proof of Theorem 4.5 tells us that either & & Bub (§) or there is a T(€ [, ]*)
such that §(T') is the projection of a Souslin tree. But this is impossible since
the projection of a Souslin tree contains [8,, ®,]-

The following are the gimplest unsolved cases

ProrreM 7. Let ¥, be the pentagon without diagonals, ie., b =5,
fII = {{ﬂ| ]}1 LRI o | {]:4}| {ﬂ1 4}}- IH :T]_'E Cﬂ{[xﬂl “1]! [R]_]r “1}g DI' iH
Wy € Cyllng, #,1, [8], 1)) 2

i, is the simplest graph which iz not Sierpiniski and ¥, defined on p. 221
is a Sierpinski graph which is not an element of R.
As we have already mentioned when stating Problem 4 it might happen

that C([#,1, [,1, %) = & in some congistent estension of ZFC. However we

know that 8H is not strong enough to imply this since as a corollary of Bhelah’s
result 5.8 we know that

L — “_1 = C”Rl}l [ﬂ]_]-n “1} c8 n She.

It would be nice to prove, as a generalization of Theorem 4.5 that

13]:[ = Gt[ﬂl].:l [z'z]'_]r &1} == E‘l' n r_wu_
and

MA + 2% =, = Cllt ] [ 8y) = 8
but we have no hope to do so.

For MA = Martin's axiom see [9]. We will prove one more theorem work-
ing in this direction which is by no means best possible.

TaEoREM 7.2, Assume MA + 2% = n. Then WE€O([r,] [#:] #&) for
all finite Shelah graphs K,

4%
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Proor. We prove this by induction on |A|. Assume i = (h, H) is & finite
Shelah graph, and we know the statement for all Shelah graphs ¥* with
8| < n.

By 5.4 (a) we know that there is a splitting partition & = A, U &, of ¥,
and by symmetry we may assume that [Ay k1" S H. Assume § = (wy, G)
establishes &, 4= (8,);

Let us call a finite function f: @, — w a good coloring of & if
Vo, B € D(f) ({2 B} €G = =) == f(P)).

We know that the chromatic number of § is #,, otherwise [#;,] S 18. Then,
by Lemma 5.2 of [2] and by MA + 2% =g, there iz a sequence [: o < oy
of good colorings of G such that f_ U f,; is not a good coloring of § forz == f§ <Z .

From thiz we get as in Lemma 5.3 of [2] that there exists a sequence
D, € o,z < o) of pairwise disjoint subsets w, such that [D,, D] contains
an edge of @ for all z < § < w, and |D| == for some n < w and for all
o =T iy,

Let D= 1) D, and let 7 be a uniform ultrafilter on w;. For each

LE N
€D, xED_let
rie) = {B <oy :1x << B AG(x, D) N Dy == 0},

Let A= {xeD: riz)£U}. By the assumptions 4 meets each 1), hence
|A| = B

Using that | D | = n for & <~ o, it now follows that there is a B(€ [4]%)
such that

N {8 D) :2z€ F}|=w,
for all finite subsets F of B,

Since §(B) establishes ®, <+ (%), by the induetion hypothesis, there is
an F,€[B]") such that (k) is isomorphic to G(F). Let now C'=
= N {§lz, D): x € F;}. Then |0| = &, and §(C) establishes 8, <4+ (8,)i, hence
again by the induction hypothesiz there is an F, € [C']™ such that {h)
is isomorphic to §(F,).

Then ¥ is isomorphic to §(F, U F,), hence | ~ §.

8 8. On weak embeddings

Dermvarion 8.1. Whera & is & class of graphs, let @a(F) = (1% : ¥} € &F}
We have already seen that as a corollary of Theorems 1.1 and 2.1

Cw([8,/8, ] [#,, 8,1, 8,) = the class of countable graphs,
Ow([8;, 8,1, [, 8,1, &) = 8.
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Let us see first that the cases A, = [#,/8;] or [#;, 8,], 4, = &, do not
lead to genuine new problems.

By 3.2.
Cwll®y/g] 8] 8) ST U Es(d)
Curl[8y, %, (&, 8) S (T UCT)HN &
provided 78.H. holds.
Om the other hand, by Theorem 4.1
§,U&(F,) € Cwl(x,/%,] [ 8,) and
(@, N 8) UEalF, NS) S Ow ([ry 1] [, ] ®y)-

Note that G2, NS) = Ea(F )N S, and we are back to Problem 2. In
fact we do not even know if

11 N8 S Cuollse, 8] (8], 8y)

or
Fop1 S Cooly/8, 1 [, 10 8y)
holds.
However we can prove a theorem in case 4, = 4, = [8,]
TaEOREM 8.1
() Cwi([®,], [®,] &) EF U Ee(F) if 18H holds,
(b} Cuwl[8,.] [8,] %) & e if CH holds,

(e) Cuwllw, ], [%,], 8)) & 5,
d) 3, nsc Gw{[ﬂl]r [H111 H;]'

Cororrary 8.2, Adssume 18H, Then

Cop([8:]: [8:]: 8,) = Cugl[2y/38,]. [, 8) = U T V€l L) ).
<o H<Tiw
i.e., this class consists of finite p-trees and their complements,

In [4] 4. a p. 286 we made the mistake of saying that this class consists

of the finite p-trees which is obvicusly impessible sinee it is eclosed under
complementation.

Corollary 8.2, follows from Theorem 8.1 and the remarks made about
Caul[Ry8, ] [8] ®,).

Proor of Theorem 8.1, (a), (b}, (c) are restatements of earlier results,
For the proof of (d) assume that § = (m;, @) establishes &, 4 (8,)3. If there is
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a C(€ [w,]") such that &{C) establishes %, = (#;, [#;, #,1)% then by Theorem
4.1(a) either S S Bub(§) or §r, — 1§.

Hence we may assume that
VOE[o"34,Be[C]" [4.B"'Ng=2¢

Then, by Lemma 4.3, Gr, =+ § This proves the stronger statement that for
all graphs @ establishing 8, -+ (8,); either 8 & Sub() N Sub (V§) or §r, =~ G,
Note that (a) (b) of Theorem 8.2 strongly reatrict the class Cho([i, ], [8,1.8,).

Derisrrion 8.2. Let §,:, = the class of projections of those trees
(T', <) which do not contain a chain @, such that tp@ (<) = w 1 2 so that
the n-th element of the chain has incomparable successors for n < w.

Cororrary 8.3, dasume 18H and CH Then

Cro([#:], [8,], 8) Eﬁw-_'-l U @alT,11).

Proor. Assume
T = H!-, H} E Uift.[ul]r [“[]r “1}

Then by Theorem 8.1 (a) either ¥ or 7% is the projection of a tree (k, <).
If (h <) Ef.ﬂ'm"_, then (h, <) contains a subtres whose projection is isomor-
phic to the “typical element” of P, -, a8 described in Lemma 5.5. But then, by
this lemma, ¥ is not a Bhelah graph, and this contradicts to Theorsm 8.1 (c).

At this point we do not try to deseribe the class of graphs for which the
problem remains open. We only remark that 3" as defined in 5.6 is an element
of §,:1. It is clear that if A" »% § then K™ »+ § for all §. Hence the problem

it ®” € Cw([®,] [#,] #,) is equivalent to the problem if %" € C([®,1, [#,]. &)
{zee Problem 6).

A list of the graphs and classes of graphs used in the paper

[#] the complete »-graph Daf. 0.1 (e) p. 208
[ 2] the complete (x, 4)-bipartite graph Def. 0.1 (e) p. 206
[2¢/2] the hall (=, x}-bipartite graph Def. 0.1 (g) p. 206
C (g Ay m) Cledy Ay ) Def. 0.5 (a) p. 207
Cun ( Ay, Ay, #), Con(dy, 4y, #) Def. 0.5 (b) p. 208
Sub (&), Sub (&) Def. 0.5 (o) p. 208

Sierpinski graphs Def. 0.6 (a) p. 208
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8 the clazs of countable Sierpinski graphs Def. 2.1 p- 211
@T the projection of the tree (T, <) Def, 5.2 p. 213
p-tree Def. 3.2 218
& the class of countable p-trees Def. 3.3 p- 213
J, the class of p-tree which are projections

of trees of length <« Def. 3.3 p- 213
Sierpifiski trees SnNa Def. 3.3 p- 213
Z, a class of trees Def. 3.4 (b) p. 214
§, the projections of the elements of Z, Def. 3.4 (d) p. 214
s the complete binary w-tree Def. 3.4 (e} p. 214
&, the class of countable trees which embed into

a Bierpinski graph p- 215
Xy the quadrilateral without diagonals Def. 4.1 p- 218
¥id a class of countable graphs Def. 4.1 p. 218
;i the olnss of p-trees whose complement iz a

p-tree ag well Def. 5.1 P. 218
P, a subclass of P Def. 5.2  p. 219
C%(3) C_([x]. [#], %) for #, == Def. 5.1 p. 219
& a A-Shelah graph Def. 5.4 p. 220

Def. 5.5  p. 220
Shey, dhe  the class of A-Shelah graphs and Shelah

graphs, respectively Def. 55 p. 220

£ a 4-point Sierpinski graph 5.4 {d) p. 221

H o special A-Shelah graph Def. 5.6 p. 222

at, the pentagon without diagonals Problem 7. p. 225

0o (§) (1§:G€F) Def. 8.1  p. 226

- n class of trees Deof. 8.2 p. 228
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