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A family of sets {A k } is called a strong d system if the intersection of any
two of its members is the same, i .e ., if A kI n Aka = A ka n A ka . It is called
a weak d system if I A k= rn A k . 1 is the same for any two sets of our family .
J systems have recently been studied in several papers . f (n, r) is the smallest
integer for which any family of f (n, r) sets A k , I < k < f (n, r) of size n

I Ak I = n, 1 < k < f (n, r) contains a subfamily of r sets {A kt } 1 < I < r
which form a strong d system, g(n, r) is the smallest integer for which every
family of g(n, r) sets Ak , 1 ~ k g(n, r) of size n contains a subfamily of
r sets {A kt }, 1

	

I-~; r which form a weak d system .
Erdős and Rado [1] proved

2n < f (n, r) < n ! 27,

	

(1)

and conjectured f (n, r) < c,n . This attractive and striking conjecture is open
even for r = 3. Both the upper and the lower bound in (1) have
been improved by Abbott, Hanson, and others but it is not yet known if

f (n, 3) < n!/An

	

(2)

for every A if n > n,(A) . The sharpest upper bound is due to Spencer [4] ;
he shows f (n, 3) < (1 + o(l)) n! . Thus it is not even known that for n > n 9
f (n, 3) < n! .

Trivially f (n, r) ~ g(n, r) . Erdős et al. [2] proved g(n, r) 5 . 2n-2 and
noted they cannot even prove g(n, r) < (n!)' -, . Hansondetermined g(n, 3)
for n = 5 and Abbott showed f(3, 3) = 21 .
Denote by Hn(3) the smallest integer with the property that if we color

the edges of K(H,(3)) by n colors (K(H,(3)) is a complete graph on Hn(3)
vertices), there is a monochromatic triargle . In [2] g(n, 3) < Hu(3) < en! is
proved, but as far as we know no real progress has been made on these
problems .

Let now S, I S I = n be a set. F(n, r) is the largest integer so that there is
a family {A k} of subsets of S, 1

	

k < F(n, r) which does not contain a
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strong d system of r elements . It is easy to see by the probabilistic method
that

F(n, r) > (1 -}- c,)n

	

(c,

	

0 for r > 3)

where c, --> 1 as r

	

oo. It is easy to see that

lim f(n, r) '%T _ c, -4- 1n-m

exists but we cannot even prove c, < 1 .
Abbott noticed that it is not easy to construct a family {Ak } A k C S,

1

	

k

	

to , tojn -* co so that no three subsets Ak1 , Ak2 , A k3 form a weakf
d system. Define G(n, r) as the largest family of subsets lAkb I < k < G(n, r)
of S which do not contain a weak A systo - a of r elements . We unfortunately
cannot even prove

G(n, 3) < (2 -- E)n

1 S 1 = n,

	

1 F 1 > nlogn ;4loglogn

(2 - 2E112) n < 1 Ak 1 < (z }- 2Ei/ 1 ) n

	

(4)

n(4 -- 5e l / 2 ) < 1 A, n Ak 1 < (4 4- SEli2) n .

(3)

for some E > 0 and all n . On the other hand, we are going to prove the
following

THEORE 1 . There exists a family F of subsets of a given set S so that F
does not contain a weak J system, where

Theorem I answers the question of Abbott but still leaves a tremendous
gap in our knowledge .

Equation (3) follows from an older lonjecture of Erdös which states the
following: To every r > 0 there is an e. > 0 so that if Ak C S, 1 < k
(2--- E) n , then for every j, rn < j < (t - r) n there are two sets A kt and
Akt of our family with I A k, n Akt I --- j. This conjecture would have many
applications . Here we outline the deduction of (3) from it .

et j S I

	

n, A k C S, i

	

k ~ (2

	

Without loss of generality we can
of course assume

since the number of the sets not satisfying (4) is easily seen to be <2(2 - E) n .

It is further easy to see by well-known asymptotic properties of the binomial
coefficients that for one of the A's, say A, , there are (2 - 2E)n Ak for which
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Hence there are at least (2 - 2E)n/n of them for which I A, n A k __ j
where

Q - 5E1 / 2) n < j < (4 + 5E1 / 2 ) n .

	

(5)

ow by the conjecture there are two sets A ki and A kt satisfying (4) and also
Aki

n A k . _ j, but then A, , A ki , Ak. form a weak A system as stated .
We have no idea if Theorem 1 is best possible. There is a good chance that

any set of (1 -}- E)n subsets of S, I S I = n contains for n > no(E) a weak J
system of three (or more generally of r elements, for n > n„(E, r)), and we do
not even have a good guess for the true order of magnitude of G(n, r) .

The following general conjecture is probably relevant here . et Ak C S,
I S I = n, 1 < k < (I + E) n . We conjecture that there is a subfamily
fA k . }, 1 < i

	

(1 + El)n and a y so that

1Ak i , nA 2
(y -}- O(1)) n .

Equation (5) is quite enough to deduce our conjecture, in fact we have to
replace y 4-O(1) by

y i- --log e + O ( log n

(a-E)n

	

A, nA,_2 1 <«Y+E)li,

	

1
<jl<j2<1,(X-

(6)

but the form (6) is of course more elegant. Without loss of generality we can
assume that all the A,,., are of size en and if y exists, it is, by well-known
reasoning which goes back to at least Gillis and hintchine, y

	

c2 [5] .
Just one word about the difficulty of proving (6) . If we have f (n) sets

A 1 , . . ., A, ( n ) of size cn where f (n) , oo, as n tends to infinity, it is easy to
obtain by Ramsey's theorem that there are f (n) ,E sets A 'i , Ap t , . . ., A i , ,
l > f (n) ,E so that

(7)

c, tends to 0 as E -- 0 . The proof only uses Ramsey's theorem, we could
not utilize the fact that our sets are subsets of size cn of a set of it elements .
To get sharper results we no doubt w( iuld have to use this fact . We omit the
proof of (7) since it uses standard a , gur cents .

For strong A systems we only ca t prove

THEORE 2 . et {Ail, 1 < i < t, t > 2'1-1/10(00))n~ A i C S, S = n.
Then there are three A's i1°hich form a strong A system .

Obviously there is an l so that I A i I = l for at least t/n values of i. et
{A ij, 1 < i < s, s > t/n be the subsets of size 1 of our system . For each Ai
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consider all subsets of A i of size 1 - [,1 n1 / 1 ] . The total number of these
subsets counted with multiplicity is clearly

S G11 1 /21)
i

	

.

The total number of subsets of s of size 1 - [ In'i2] is clearly

n
(l - [Zn112] .

Thus the same set occurs in at least u sets A i where

l

u %	
s

([ n1~2])- ~f([zni/2], 3) .

	

(8)
(1 - [in 1/2])

2

Denote this set by B. Consider A i -- B for all A i which contain B. We have
Ai - B ; - [2n1 % 2 ] . By the Theorem of Erdös-Rado there are three A i 's,

say A, , i2 , A, for which the sets A, ---- B, A 2 - B, A 3 - B form a strong A
system and then clearly A,, A 2 , A3 also form a strong A system, which com-
pletes the proof of Theorem 2 .

The following questions are of some interest and use : Denote by F(n, k, r),
respectively, G(n, k, r) the cardinality of the largest family of subsets of S,
I S I --- n of sets of size k which do not contain a subfamily of size r forming
a strong (respectively, weak) A system of size r . et us restrict ourselves to
r -= 3. For k < log n/log log n we have F(n, k, 3) --- f (n, 3) and G(n, k, 3) -_
g(n, 3) but as k increases we get interesting problems . It follows from the
probability method that for En < k < (I - E) n

F(n, k, 3) > (n)II - - rl(E)

but, say, if k -- (log n)~, c large, or k E (10911)"' we have no useful upper or
lower bounds for F(n, k, 3) or G(n, k, 3) . Also, as will be seen later it would
be very useful if we could prove G(n, log n 2 , 3) > n2 i for some c > 0 .
Frankl observed that by the method of Erdös et al. [3] it is easy to prove
that if we are given more than s(,. -,) k-element sets of an n set then there are
at least s -I- 1 pairwise disjoint sets among them . Consequently

F(n, k, r) -_- r `n

	

1 (g)
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ow we prove Theorem 1 . First we need a lemma from [2] .

E A . et S be a set of size n. 0 can give a family of sets
A k C S, I A k I -- c i log n, 1 < k < c zn so that the family {A k ] does not contain
a weak A system of three elements.

The constants ci and c 2 could easily be determined but this is not worthwhile .
On the other hand, it would be very useful if we could decide the following
question . et 1 S I = n, A k C S, I < k T, I A k I =_ (log n)r be a family
of sets which does not contain a weak d system of three elements . As will be
seen our construction gives that T can be as large as c r nr . Can it be larger ?
We do not even know what happens for r -= 2. Can one get more than
n2 }, sets of size (log n) 2 which are all subsets of a set of size n no three of
which form a weak A system? If we could do this we could immediately
improve Theorem 1, nut we feel that this problem is very interesting for
its own sake .

-jut of the lemma is very simple . et 21,1 < n and consider a binary
tree of length k ; the vertices of the tree are the elements, the paths of length k
are our sets . It is immediate that the sets corresponding to the paths do not
contain a weak A system of three terms and this completes the proof of our
lemma .

ow we are ready to prove Theorem 1 .
et I S,. 1 = [(log n)r][n'12] . In Sr we construct a binary tree as given by

our emma--the individual vertices of our tree are sets of size [(log n)r]
and the length of tree is log n/2 log 2. Our set will be the US, , 1 < r
log n/2 log 2 log log n, thus our set has fewer than n elements. Denote the
sets defined by our binary tree in S r by Bj(rl, I < j < [n'i1], 1 B(r ) I --

[(log n)r][log n/2 log 21 . ow finally our sets which do not form a weak
A-system are the sets

U B(r), 1

	

r

The number of these sets is

n 1 / 2 log n%2 log 2 log log n

and it is easy to see that no three sets form a weak A system . To see this let
Ar , A, , A 3 be three sets of our system . We will refer to the Bill' as coordinates
of our sets A, , A 2 , A 3 . Assume that all three sets have the same coordinates
for r > ro but no longer for r o . Since B;",,', B"d k'd do not form a weak

1

	

2

A system we can assume without loss of generality

log n
2 log 2 log log n '

1 B (ro ) n B(ro) i __ 1 B(ro) n B(ro)

	

(log n)"
il

	

i2

	

i1

	

13
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since the "elements" of B;r~) are sets of size (log n)ro . Observe that

U B;r < (log n)r, .
r<r,

Thus the "damage" done by (9) cannot be repaired .
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