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BIASED POSITIONAL GAMES

V. CHVÁTAL and P . ERDOS
Department of Computer Science, Stanford University, Stanford, CA 9430_5, U.S.A .

Two players play a game on the complete graph with n vertices . Each move of the first player
consists of claiming k previously unclaimed edges, each move of the second player consists of
claiming one previously unclaimed edge . The second player's goal is to claim all the edges of
same tree on the n vertices, the first player's goal is to prevent the second from doing that . If k is
sufficiently large (resp . small) with respect to n then the first (resp . second) player has a win . We
prove that the breaking point comes around k = n/log n. In addition, we consider several other
games of this kind .

1. Introduction

Two players, who we shall call the Maker and the Breaker, play a game on a
multigraph G = (V, E) . They take turns, with the Breaker going first, and each of
them in his turn claims some previously unclaimed edge of G . The Maker's aim is to
claim all the edges of some spanning tree of G ; the Breaker's aim is simply to
prevent the Maker from achieving his goal . A more general version of this game has
been studied by Lehman [7] . His game, generalizing Shannon's "switching game",
is played on the elements of a matroid M ; the Maker's aim is to claim all the
elements of some basis of M. Lehman characterized those matroids on which the
Maker can win against every strategy of the Breaker and he described the Maker's
winning strategy . His results were complemented by Edmonds [3] who character-
ized those matroids on which the Breaker can win against every strategy of the
Maker and described the Breaker's winning strategy . In the above special case of
Lehman's game, the existence of two disjoint spanning trees of G implies the
existence of Maker's winning strategy . (An easy proof goes by induction on the
number of vertices of G .) On the other hand, Tutte [9] and Nash-Williams [8]
proved independently of each other that the nonexistence of two disjoint spanning
trees of G is equivalent to the existence of a set A of edges whose deletion splits G
into at least 21 (1 A + 3) components. When such a set exists, the Breaker wins simply
by claiming edges form A as long as there remain any . (The theorem of Tutte and
Nash-Williams is more general . It asserts that G has k pairwise disjoint spanning
trees if and only if there is no set A of edges whose deletion splits G into more than
1+I A ilk components. This theorem has then been generalized in the context of
matroids by Edmonds [2] . Edmonds' theorem is accompanied by an efficient
algorithm which, in the special case of multigraphs, terminates by constructing
either the set A or the k pairwise disjoint spanning trees .)
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When played on a large complete graph with n vertices Lehman s game is
overwhelmingly in favor of the Maker We shall make up for this handicap by
allowing the Breaker to claim many edges per move More precisely we shall
choose a positive integer b and let each move of the Breaker consist of claiming b
previously unclaimed edges Clearly if b is large with respect to n then the first
player has a win ; if b is small with respect to n then the second player has a win
The following heuristic argument suggests the breaking point ought to come around
n log n The duration of the game allows for approximately n b Maker s edges
In particular if b = n c log n then the Maker will have the time to create a graph
with cn log n edges A random graph with n vertices and en log n edges is almost
certainly connected for c > and almost certainly disconnected for c < That
is the statement of an unpublished theorem by Erdös and Whitney which has been
sharpened by Erdös and Rényi [4] We shall prove that the breaking point does
indeed come around b = n log n ; more precisely it is between n 4 F log n and
I n log n for all sufficiently large n
Lehman s switching game belongs to the general class of positional games

studied by Hales and Jewett [6] Erdös and Selfridge [5] Berge [ ] and others Of
course every positional game can be made biased by allowing one or both of the
players to claim more than one position per move Those games that we shall study
here fall into the following general pattern They are played on some hypergraph
H The two players the Breaker and the Maker take turns in claiming previously
unclaimed vertices ; the Breaker has the first move On each move the Breaker
claims exactly b vertices and the Maker claims exactly m vertices The Maker s aim
is to claim all the vertices of some edge ; the Breaker s aim is simply to prevent the
Maker from doing so In the next section we shall solve an extremely simple game
of this kind : b = l the edges of H are pairwise disjoint and almost equal in size
The solution to this box game will be handy in two different contexts when we
shall discuss the biased version of Lehman s game In the following three sections
we shall study games for which m = and the vertices of H are the edges of a
complete graph For the edges of H we shall successively take spanning trees
hamiltonian cycles and complete subgraphs of prescribed size The last of these
games generalizes quite naturally into the context of r graphs

The box game

We shall say that a hypergraph H is of type k t if its edges A A A are
pairwise disjoint and such that I I A ; ! = t If in addition the edges are almost
equal in size that is if I A ; ! and A ; ! differ by at most one for all choices of i and j
then we shall say that H is canonical of type k t The box game B k 7 t m is
played on a canonical hypergraph of type k t The two players take turns with
the Breaker having the first move in claiming previously unclaimed vertices of H
On each move the Breaker claims only one vertex whereas the Maker claims m
vertices The Maker s aim is to claim all the vertices of some edge A
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It is convenient to think of the actions of the two players in the following way By
claiming a vertex from some edge A; the Breaker removes this edge from H; by
claiming a vertex v from some edge A the Maker replaces this edge by A; {v}
Hence after each move of the Maker and the counter move of the Breaker the
hypergraph H reduces into a new hypergraph H* Note that the Maker can always
play in such a way that the new hypergraph H* is again canonical

In order to present a solution of B k t m we shall define f m = and

f k m =[k f k

	

m m k J

for all positive integers k and m such that k a It is not difficult to verify that
k

I

	

k Im kI _f k m <mkI
= i
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a winning strategy on B k t m if and only if

Proof To prove the if part we shall use induction on k Responding to
Breaker s move the Maker can create a canonical hypergraph H* of type
k l t* such that t* < t LtkJ rn Since the right hand side of this inequality

is at most f k m we are done
To prove the only if part we shall again use induction on k This time

however we shall prove a slightly stronger statement : if t > f k m then the
Breaker has a winning strategy for the box game played on an arbitrary not
necessarily canonical hypergraph of type k t The strategy consists of removing
at each move the smallest available edge No matter how the Maker responds the
resulting hypergraph H * will be of type k t* such that t * t Lt k f m
Since the right hand side of this inequality is strictly greater than f k m we
are done again

3 Spanning trees

By T n b we shall denote the biased version of Lehman s game described in the
introduction : the Breaker claims b edges per move and the Maker wants a spanning
tree

Theorem 3 If e is positive if n > n E and if b > E n log n then the
Breaker has a winning strategy for T n b

Proof The Breaker proceeds in two stages In the first stage he will claim all the
edges of some clique C with k vertices such that k = ~ n log nI and such that
none of the Maker s edges has an endpoint in C In the second stage he will claim
all the remaining edges incident with some v E C thereby preventing the Maker
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from joining v to other vertices The first stage lasts no more than k moves During
the first t moves < t k the Breaker has created a clique C with t
vertices such that none of the Maker s edges has an endpoint in C At the moment
there are exactly t Maker s edges ; hence there are vertices u v C which are
incident with none of the Maker s edges On his t move the Breaker claims the
edge uv and all the edges joining u and v to vertices from C thereby enlarging C
by two vertices The Maker may in his turn eliminate one vertex from C by
claiming an edge incident with that vertex Nevertheless the size di C will still have
increased by at least one vertex In the second stage the Breaker thinks of every set
of edges joining some u E C to all v V C as the edge of a canonical hypergraph of
type k t with t = k n k He then plays the box game on this hypergraph
pretending to be the Maker By Theorem the inequality

k

t b k~ i

is sufficient to guarantee his victory And as can be seen after the appropriate
substitutions this inequality is indeed satisfied

Our next theorem provides a winning strategy for the Maker We shall describe it
in the more general context of the game T G b which is played on the edges of a
multigraph G

Theorem 3 Let G = V E be a multigraph with n vertices and let b be a positive
integer Assume that for every subset S of V and for every vertex v such that v S and

J S j n more than

b~

edges of G join v to vertices of S Then the Maker has a winning strategy for T G b

Proof For each u E V we shall denote by dk u the number of edges of G that
are incident with u and have been claimed by the Breaker during his first k moves
For each subset S of V we shall define

dk S = min dk U
ES

We shall denote by Mk the subgraph of G consisting of the edges claimed by the
Maker within his first k moves The strategy is quite simple : after the Breaker s k
move the Maker finds a component A of Mk _ which maximizes dk C over all
components C of Mk _ We guarantee that there will be an unclaimed edge joining
A to V A This will be proved below The Maker claims this edge and the
Breaker resumes the play Making his n s move in this fashion the Maker will
complete a tree on n vertices and win
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In order to prove that this strategy can be carried out we shall denote the
following hypothesis by H k : for every integer t such that t n k and
for every choice of components C C C of Mk we have

~ dk C < bt E

Note that H holds trivially since d„ u = for every vertex u Assuming H k
we shall derive the existence of the unclaimed edge joining A to V A and
establish the validity of H k
To begin with we have

dk C b

	

dk C bt :5~
_

	

t i

for every choice of components C G_ C of Mk _ In particular we have

dk C < bY ~

for every component C of Mk _ Hence every component of Mk includes at least
one vertex u such that

dk u ~ b~

From this fact and from the hypothesis of our theorem it follows that

for every component C of Mk _ and for every subset
S of V such that I S I > n and C n s= there

	

is an unclaimed edge uv such that u E C v E S

Now the existence of an unclaimed edge joining A to V A follows immediately :
if J A I < n then we use with C = A and S = V A if A ~ > n then we use

with S = A
It remains to verify H k For each component C of Hk we shall choose a

vertex u such that dk u = d k C ; we shall call this vertex the root of C By we
have

dk u ; _ bt~

	

3
=

	

=e t

for every choice of roots u u u„ such that I < t <_ n k Let w denote the
root of A ; by maximality of dk A we have

dk w dk u for every root u

	

4

Now let us assume H k false Then we have
t

	

~ dk C > b t ~
U

5

for some integer t such that t n k and for some choice of components
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C C C of Mk Note that each C includes exactly one root u; such that
u w ; by 5 we have

t
dk u;

	

dk C > b t y=

Setting u = w and using 4 we obtain

E dk u % t
	 t l J: dk u > btE

contradicting 3 Hence H k is valid and the proof is completed

Corollary 3 3 Ifs is positive if n > n s and if b < n 4 log n then the Maker
has a winning strategy for T n b

Remark Bondy observed that there are multigraphs G with an arbitrarily large
number of pairwise disjoint spanning trees and yet such that the Breaker can win
even T G The simplest example is the path of length n each of whose edges has
multiplicity s For this G the Breaker can view T G as the box game
B n s n with himself in the role of the Maker If

s~

	

then by Theorem he has a win At the same time however G has s pairwise
disjoint spanning trees

4 Hamiltonian cycles

By H n b we shall denote the game which differs from T n b in only one
respect : the Maker s aim is to claim all edges of some hamiltonian cycle What is the
largest f n such that the Maker has a winning strategy for H n f n ? In this
section we shall prove that f n for all sufficiently large n It is not unlikely that
f n x as n x ; however we cannot even prove that f n > for all sufficiently
large n

Theorem 4 For all sufficiently large n the Maker has a winning strategy for
H n

Proof The strategy proceeds in three stages The first stage is the simplest It lasts
exactly m = [ n 3] moves ; by the end of that stage the Maker will have claimed all
the edges of some cycle G whose length is between n 4 and n 3 In his first k
moves < k < m the Maker has claimed all the edges of some path u u z • • • u k In
his k`h move he claims a previously unclaimed edge ukv such that vX u ; for all i ;
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on his m ` h move he claims a previously unclaimed edge u iu; such that < i < n 4
and 7n 4 < j m
By the end of the first stage at most eight vertices outside C have at least n 4

Breaker neighbours that is neighbours in the Breaker s graph in G Such vertices
will be called dangerous For each dangerous vertex v the Maker will use four
moves to enlarge his current cycle C into a cycle C* containing v Hence the entire
second stage will last at most 3 moves In order to construct C* the Maker first
finds three vertices w w w outside C such that the edges vw vw vw are
unclaimed and such that each w ; has at most n 4 3 Breaker neighbours in C
This can be done for the following reason The vertex v has Breaker degree at
most n 3 3 ; the cycle C has length at most n 3 3 Hence there are at least
n 3 65 vertices w outside C such that vw is unclaimed If all but possibly two of
them had at least n 4 Breaker neighbours in C then the Breaker s graph
would have at least n 3 65 n 4 > n 3 3 edges a contradiction The
Maker claims vwi and after the Breaker s next move he claims another vw ; After
the following move of the Breaker each of the two vertices w ; and w; still has less
than n 4 Breaker neighbours in C An easy averaging argument shows that there
must be three consecutive vertices u w_ u on C such that none of the edges w ic k
and w u has been claimed The Maker claims w iu and on his next move either
w;u or w;u
When the second stage is over every vertex outside the Maker s current cycle C

has at most n 4 3 < n 8 Breaker neighbours in C If at some time during the
three stages a vertex v outside C will have at least n 8 Breaker neighbours in C
then we shall call v outstanding The Maker proceeds in steps each step consisting
of two moves He selects a vertex v outside C preferably an outstanding one if
there is any and in two moves he enlarges C into a cycle C* containing v Hence
the entire game will be over in fewer than n moves Consequently at most 7
outstanding vertices will make their appearance ; each of them will wait no more
than 44 moves for the inclusion into C During that waiting time the number of its
Breaker neighbours in C may grow to at most n 8 44 < n We con
clude that at every point of the third stage every vertex v outside C will have fewer
than n Breaker neighbours in C An easy averaging argument shows that there
will be three consecutive vertices u u u3 on C such that all three edges vuk are
unclaimed In order to enlarge C into C* the Maker claims first the edge u v and
on his next move either u v or u v

5 Complete subgraphs

By C n 3 b we shall denote the game which differs from T n b and H n b
in the Maker s aim : he wants to claim all three edges of some triangle

Theorem 5 If b < n 5 then the Maker has a winning strategy for
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C n 3 b On the other hand if b n then the Breaker has a winning strategy
for C n 3 b

Proof The Maker chooses a vertex u and claims as many edges incident with u as
possible When all the edges incident with a have been claimed he finds an
unclaimed edge vw such that both uv and uw have been claimed by himself ;
claiming vw he wins Of course we have to show that he can always carry out this
plan Let us assume that he cannot Then at some point of the game he has
claimed exactly d edges uv ; all the remaining n d edges uv as well as
d d edges vw have been claimed by the Breaker Hence

n d d d < d b

However this inequality has no solution d as long as

4b b 8n 7 <

which is the case when b < n 5
Next let us describe the Breaker s strategy If the Maker has just claimed some

edge uv then the Breaker will claim [n j J edges incident with u and [n Z ] edges
incident with v Hence the degree of w in the Maker s graph will never exceed
[n ] Of course the Breaker must prevent the Maker from completing a
triangle Hence he must claim immediately every edge xy such that for some
vertex z both of the edges xz and yz have been claimed by the Maker Since he
does so systematically the only dangerous edges xy at the moment have either the
form uy such that vy is the Maker s edge or the form vy such that uy is the Maker s
edge Since the Maker degree of u and v does not exceed Ln J there are at
most [n ] dangerous edges of each kind Hence the Breaker will be able to claim
them all
The concept of C n 3 b generalizes into that of C n r k b This game is

played on the edges of a complete r graph with n vertices each edge being an
r subset of the fixed n set of vertices The Breaker claims b edges per move ; the
Maker wants to claim all the ;` edges of some complete r graph with k vertices

Theorem 5 For every choice ofpositive integers r k and b such that k r there is

a positive integer n r k b with the following property : for every n > n r k b the
Maker has a winning strategy for C n r k b

Proof Trivially n k b = k b and n r r b is the smallest integer x such
that > b By double induction on r and k it will suffice to prove that the Maker
has a winning strategy for C n r k b as long as

n l n r n r k b b
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The Maker proceeds in two stages In the first stage selecting some vertex v he will
claim only those edges S for which v E S He will interpret each of them as the

V Chvátal P Erdős
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r set S {v} ; similarly he will interpret each of the Breaker s edges T as some
r set T* such that v T* T* C T Altogether he will interpret the first stage
as the game C n r n r k b b By 6 he has a winning strategy for
this game ; he will indeed follow that strategy By the end of the first stage there will
be a set X of vertices such that I X I = n r k b v X and such that for each

r subset A of X the edge A U {v} has been claimed by the Maker In the
second stage the Maker will simply play C X r k b restricting his choice of
edges to subsets of X
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