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Ingham’s (nonregular) summation method (1) is closely connected with prime
number theory. An easy limitution theorem for (1) (observed by Hardy) is if
Xp, issummable (1) then ¢, = ofloglog #). We show this resuit to be best possible,

Ingham’s summation method (f) [2] (also discovered independently by
Wintner [6]) may be defined as follows: A series X, will be said to be
summable (1) to A if

oo Tt Rt 8 -5 viza 1 ,
lim — deg=1m— Y de;|=| = lim — Mo, = A,
i | !E‘ ;T’.“ i . {%‘! ¢ [d] xam X E\; mg,-'d %
where [x] a5 usual is the greatest integer in x and the three forms of the limit
are clearly equal. (I)-summability is closely connected with prime number
theory, and was used by Ingham to give an original proof of the Prime
Mumber Theorem (for further details of such connections see [2; 1: Appen-
dix IV: and 5]).
Let
=L T Ydei.
X ngmw d|n

Then, if J(x) = A <+ o(1), multiplication by x, subtraction, and Mibius
inversion show that:

If Xe, is (N-summable, then ¢, = oflog log n),

as observed by Hardy [, Theorem 265], We show this is best possible.
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THEOREM, There exists a series Za, which iv (-summable and for which
a.flog log n — 0 arbitrarily slowly as n — oo,

In the proof p will always denote prime numbers, and p(n) and #(n) their
usual meanings in prime number theory.

Progf. Define the sequence {m.} by

m=1 m=35 fork=2 m= [] p (1)
Py
Let
F ={nyd: ddivides ny , | =d < n,,kehl} (2)

Lzt S{n) be the characteristic function of &7; that is,

Sny=1, ned,
)

=} otherwise.

Let elr) be a positive function tending monotonically to 0 arbitrarily slowly
as r— oo,
Let the sequence a, be defined by

-|||_|.

Z dﬂd ' {4}
and define b, by
be = plr) elr) Sir) — plr — D eflr — 1) S(r — 1) (5)

We may note that since for & = 2, ne = e®™=t}, and 0(n,_,) = 200, )
for k = 3 (cf. [3]), that

Mgltty_y = gy (6)
and so-each element of 5 has a unique representation asmyfd, 1 < d = g 4.

Clearly Xb, converges to 0 and so 3., rb, = o(x) a5 x — oo, whence
La, is (IN-summable by (4). On the other hand from (4) and (5), by Mibius

Inversion,
o 5 (P ()
L ED e -)s(E-) o

=2 —F, say.
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For I, , we have, since m, is square-ree,

5 = ) T L0 ()5 (51).

dimg

Hence, by definition of 5, and e,

oy T D (B ) 3 XD ®
dlnig dlmy
deamy L=, T

But if d == m_, and sguare-free then o is a distinet product of primes
=, and so 4 | n; . Henee (8) vields

wn) 2, = elm) ¥ ”ﬂ(‘ﬂ s{n,] log my.y + O(1)

demy
6
~ —g e(m) log 6(n,_,)

= €'(m} loglogm, (%)

as [ — oo, where e'(n) — O arbitranily slowly as [ — oo,
To estimate X, we need to compute when {(n/d) — 1 can be of the form
mylr, 1 = r = n;_y . There are three possible cases.

Care I. k=141
Then, since {ny/my_} is clearly a monotone increasing sequence, we have,
if this ¢ase should hold,

i n n My
”I}_:_I=_J"":=-_k_‘:;ﬁ

i r = ma” m "
contradicting (6).
Caze II. k=1L
Then, if {(mfd)y — 1 =nyfr, r = d 4+ 1, and
) 1 I
m=r=3<(=y=5) =rr-D<m

again 4 contradiction to (6).

Case III. k =7—1.
Then, if (nfd) —1 = mfr-<m;y, we have 4 =ngf(m_; -+ 1). Since
only in Case Il are there possibly nonzero values of § in X, , we have

1 =
A< 3 he-i<xis oz oL
g 1) s, ftng s +0)
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where K is a positive constant. However,

L | W= T 00 )

w;:“:-"‘ti:rl_t-i-l:l dqillﬁi--l
Hence by (10), we get
L {m )% I
| Z| =02y = o).  as [ (11)
Putting (11) and (9) into (7) we get
| @n, | = | i) @y, | = (1 + (1)) €'(m,) log log m;

as { — oo, which proves the theorem.
On the other hand, as noted earlier, we must have a, = o(log log m).
Omitting the function « we have an example of an (/)-bounded series
{not (f}summable} for which a, = £(log log n).
Tt is perhaps worth making two further remarks.

(1) Although it was known to Ingham and Wintner that (I)-summa-
bility did not imply convergence (see [2, p. 180]; [6 p. 13]); the aboveis
apparently the first explicit example of an (F-summable series which is not
convergent. The effective construction of such an example s a question
apparently raised in Ingham’s posthumous papers.

(2} With {a,} as constrocted in the theorem, and ¥ .. 3 4. da; =
xf(x); we have an example of a function f{x) such that I{x) — 0 as x — oo,
but e (eld)/d) Fxfd) # 0 as x — oo (compare [4]).
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