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Continuing our work of [3] we obtain lower bounds on the number of

simplices of different volumes and on the number of hyperplanes determined

by n points in Ek , not all of which lie on an Ek-1 and no k of which lie

on an Ek-2 . We also determine the minimum number of triangles t determined

by n noncollinear points in the plane and discuss what values of t can be

achieved .

L . M . Kelly and 14 . 0 . J . Moser [4] proved a number of results that

we use in this paper . They proved that if n points are given in the real

projective plane, with no more than n - k points collinear, and if

(1)

	

n > 1/2{3(3k-2) 2 + 3k-1}

then the number of lines t containing two or more of the points satisfies

(2)

	

t > kn - 1/2(3k+2)(k-1) .

The result is therefore true in the euclidean plane also . Putting k = [c v7-n],

we see that (1) holds for n sufficiently large if c2

	

2/27, and for such

c, we have

(3)

	

t > cn3/2 + 0(n),

the requirement that n be sufficiently large now being redundant . Kelly

and Moser also show that if t,i is the number of lines containing exactly

i of the points, then



(4)

	

t 2 > 3 + F

	

(i-3)ti .
i>4

Adding t2 + t3 to both sides of (4) we obtain 3 max(t 2 ,t 3 ) > 2t2 + t 3

3 + t2 + t3 + t4 + . . . = 3 + t . Consequently,

(5) max(t2 t 3 ) > 1 + 3t,

This useful inequality first appears in P .D .T .A . Elliott's [2] as (6) .

In [3] we proved the following

Theorem 1 . Given n points in E2 , not all on a line, the number of different

areas determined by the triangles formed from these points is at least

cn3/4 , where c is a positive absolute constant .

Here we prove the following :

Theorem 2 . Given a set 5 of n points in E , no three on a line, not all on

a plane, there are at least cn3/4 distinct volumes among the simplices .

Proof : Fix a point P of S and project the remaining points of S from P

onto a plane 7, obtaining n - 1 distinct projected points . Suppose that

there is a line in 7T containing at least 2 n points of S . By theorem 1

there are cn3/4 different areas among the triangles, and fixing a point

Q of S not on the plane yields cn 3/4 different volumes . We may therefore

suppose that no line of 7 contains more than n/2 points, and by (3)

there are at least cn 3/2 connecting lines in "if . These give rise to cn3/2

planes through P containing three or more points of S . Let
Tr0

be one

of these planes . Let 7 1 , . . ., TT s be the connecting planes parallel to TTO ,

and let 7s+l' " " TTr
be the planes parallel to 7 O containing one or two
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points of S . We may suppose that r <

nl

	

en3/2 en3/2 __ cn3

C 3/

	

2

	

2

	

'

En3/4 for any c > 0 . To see this,

pick a point Xi from T I for 1 < i < r and 3 points A, B and C from 7T 0 *

The simplices XiABC determine at least r/2 different volumes . Hence we may
s

indeed assume r < En3/4 for any positive c . Now

	

L ITri l > n - 2En3/4 > 2n
i=1

and by a well-known inequality

which is impossible if E is sufficiently small, and the result follows .

Remark .

	

Erdös has made the following conjecture : There exists a constant

c > 0, independent of n and k so that if there are given n points in the

plane, no n - k on a line, then the points determine at least ckn lines .

If true, this conjecture with k = n/2 together with the proof of

theorem 2 implies the existence of at least cn distinct volumes .

In Ek we have

Theorem 3 Given n points in Ek , k > 3, no k on an Ek-2 and not all on an

Ek-l , the k-dimensional simplices with those points as vertices have

at least dknak distinct volumes where ak - k -
	 2 and d k > 0 .

To prove this we need the following

Lemma 1 . Given n points in Ek , no k on an 1?k-2 , not all on an
Ek--1 , there

are at least cknk-1 distinct hyperplanes containing exactly k points .
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Taking the triples from all the cn 3/2 parallel families, we obtain
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Proof . If k = 2 this follows from a result of L . M. Kelly and W . 0 . 3 . Moser

[4] stating that n noncollinear points in the plane determine at least

3n lines with two points . Let k > 2 and use induction on k . Let P be one

of the points, and project the other n - 1 points from P onto a hyperplane

H . No three points are collinear, and so H has n - 1 distinct points, not

all on an E k-2 , and no k - 1 on an E
k-3 .

By the induction hypothesis H

contains
ck-lnk-2Ek-2 spaces with exactly k - 1 points . When joined to

P these become the same number of hyperplanes through P having exactly k

points on them . If we do this for the n choices for P, each hyperplane is

counted k times . Thus we get

hyperplanes as claimed .

Remarks . The example of k - 1 skew lines with k
n1 points on each shows

that the hypothesis of no k points on an E k-2 is necessary . Dirac [1]

proved the existence of one such hyperplane when k = 3 .

Proof of Theorem 3 . Project the system from one of the points P onto

a hyperplane H . Then H has n - 1 points, not all on an E k-2 , and no k - 1

on an Ek-3 . By lemma 1 there are at least
ck-lnk-2 distinct Ek-2 spaces in

H containing exactly k - 1 points . This leads to the same number of E k-1

spaces through P containing exactly k points, and no two of these

hyperplanes are parallel . Let H0 be one of these, let Hl , . . . ,H s be the

connecting hyperplanes parallel to flog and let Hs+1' " ''Hr be the hyperplanes

parallel to Hp containing fewer than k points . We may suppose that

k-1
ck-ln

	

_

	

k-1
k

	

e
k
n



a
r c En k for any fixed c > 0 . To see this, pick a point

1 < i < r and k points y1 , . . ,

at least 2 different volumes . Now

y k from H0 * The simplices XiY1 . . .Yk determine

n- kCn

	

> Z n if E isY 1Hi 1
i=1

sufficiently small, and by a well known inequality

k-a (k-1)s/ J Hi I > s

	

n - k
l
k >	 cnk >

	

cnk

	

_ cn

	

k
k - k!

	

2 s

	

s k-1 -- (~nak, k-1

	

Ek-1

Taking the k-tuples from all the ck-lnk-2 parallel families, we obtain

k-2 k-ak (k-1)

(n)

	

ek-ln

	

en

k

	

Ek-1 ,

X, from H, for

which is a contradiction if ak = k-1 and E is sufficiently small . The

theorem follows .

If the condition of no k on an Ek-2 is dropped, then we can only

prove the following :

Theorem 4 . Given n points in
F -

co
k distinct volumes, where

E k , not all on an E k-1 , there are at least

Ek = 3(3k-2) -1

5

Proof . If k = 2, this follows from theorem l . Let k > 2 and use induction
E

on k . If there is an Ek-1 containing m points we get cm k-1 volumes,

otherwise we get at least m volumes . Putting m = nü , where a = (1 + Ek-1 ) -1

gives

min ( m , cm k-1 ) > en k , and the theorem follows .

and the theorem follows .

It seems natural to ask the question : Given n points in space, no

s

	

ak

three on a line, not all on a plane, how many planes do they determine? We



are áble to answer this question by the following :

Theorem5 . Under the above conditions at least C21) + 1 planes are determined,

provided n > 552 .

Remark . The example of n - 1 points on a plane and one point off the plane

shows that the result is best possible .

We need the following lemma :

Lemma2 . Given n points in E 3 , no three on a line and n - 2 on a plane

at least 2\n22/ - n 22 planes are determined .

Proof . Let 7 be the plane with n - 2 points and let P and Q be the other

two points . The points of 7 and P determine (n-22) planes . It is enough to

show that Q can lie on at most

	

2

	

of these . Firstly, suppose that the

line PQ is parallel to 7 . The m planes through P and Q intersect ff in m

parallel lines generated by the n - 2 points, and so m < r2 2 ] . Secondly,

suppose that PQ intersects 7r in a point A . Since no three points are

collinear, A is not one of the n - 2 points on fr, and so the number of

planes through P and Q is again at most n
2

	 -2 .

ProofofTheorem5 . If n - I points are coplanar, then Fn-2 l + 1 planes

are determined . We suppose that there is a plane R containing at least

n - 7 and at most n - 2 of the points . Then by lemma 2 the number of

planes determined is at least 2 (n27 1

	

n2 7

	

and this is greater than

n-1

	

+ 1 for n > 23 .
2

We may therefore suppose that at most n - 6 points are coplanar . From

one of the points P we project all of the points onto a fixed plane 7 .
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Since no three points are collinear the plane 7 contains n - 1 points,

and at most n - 7 of them are collinear . It follows from (2) and (5)

that there are at least 3 n - 22 lines in TT containing either two or

three projected points, provided n > 552 . Hence there are at least 7 n - 22

planes through P having

for P, and each plane

the number of planes is

l n-11 + 1 for n > 55 .l2

We next show that you

is counted at most four times in this way . Hence

to planes containing only three or four points .

Theorem 6 . Given n points in E3 , no three on a line, not all on a plane,

the points determine at least I n2 - cn planes having three or four points

on them .

Proof . If n - 1 points are coplanar, then

	

n2 1 planes through three

points are determined . If at most n - 6 points are coplanar, then the

result follows from the proof of theorem 5 . Suppose that there is a plane

Tr containing at least n - 7 points and at most n - 2 points . Let P

and Q be two points not on u . From the proof of lemma 2 we see that there

are at least 2 (n27) - rn27 - planes through P or Q . There are at most

five other points, and each can be on at most n - 7 planes . Hence

the number of planes through three or four points is at least

four or fewer points on them . There are n choices

at least n 7
4 (3 n - 22) , and this is greater than

get nearly as many planes if you restrict yourself

2 (n27) - -n27

	

-

	

5(n-7),

and this is greater than 2 n2 - cn for suitable c .
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P . D . T . A. Elliot proves in [2]

Theorem 7 . Let S be a set of n > 3 points in the plane, not all on a

line . Then S determines at least

	

n21 distinct triangles .

Elliott's proof seems only to be correct for n > 16 . Here we

present a simpler proof which is true for n > 3 .

Proof of Theorem 7 . Let ki, 1 < i < r, be the

ith line of the r lines determined by S . Then

number of triangles t is

t
=3

	

~',2 (n

	

k1.) .
i=1

number of points on the
r ki

	

n
2 = 2

	

and the
i=1

If n - ki > 3 for all i the theorem follows . Suppose n - ki = 1

for some i . Then there is a line with n - 1 points on it and t

We may therefore suppose that n - ki = 2 for some i . There is a line with

n - 2 points on it . The worst case occurs when the two points not on the

line are collinear with a point on the line, and t = 2 n23

	

+ 3(n+3) .

This is greater than or equal to (n22) for n > 3, and the theorem follows .

Remarks . The above proof does not use the fact that the n points lie in

a plane . In fact the same argument proves the following theorem about sets :

Theorem 8 . Let ISI = n be a set, and let 2 < IA k' < n, 1 < k < m be

a family of subsets so that every pair (x,y) of elements of S is contained

in one and only one of the A, . Then the numberr t of unordered triples
i

(x,y,z) so that x, y and z do not lie in the same Ai satisfies t > n21
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Remark . The method of theorem 7 can also be used to show that n noncoplanar

points in E3 , no three of which are collinear determine at least n31 simplices .

It seems natural to ask what values of t between ( 3) and (n21) can be

achieved in the plane . We have

3

	

nTheorem 9 . If cn 3 < m <( 3), where c is a certain constant, then there

exist configurations of n points in the plane with exactly m triangles . To

prove this we need

Lemma 3 . Every integer t<(3) - cn8/3 can be written in the

t =
i

nn i
ai 3

	

'

where

	

a1.n 1. < n, n1. > 3 and the a1, are positive integers .
-

	

-
i

Proof . Let n1 be the largest

n
6(nl - 2) 3 < ~̀ 3 <

n(1-2cn 1/3
), or n1

n1 < n1+1

	

nl

	

n

3

	

3

	

3

n
Then --16 (n2 -2) 3 < 3 < t -

	

<

31/3 n 2/3 (1-cn-1/3 ) 2/3 < 31/3 (n 2/3 - 2/3cn 1/3 ) . Thus n 2 < 3 1/3n2/3

ln1

	

n2

	

n2+1

	

n2

	

n2
for c large enough . Thus t

	

` 3 -

	

<3

	

3

	

3

	

2, <

Also t

n2-2 <

32/3 n 4/3
2

Then 1(n3-2) 3 <

Let n3 be defined by

t -

3
< nt 6

< 2 + n - 2cn2/3 < n

integer such that t

en 8/3 . Hence

~n13

-1/3 1/3
n1 - 2 < n(1-ócn

	

)

	

<

cn2/3 for c sufficiently large .

Let n2 be defined by 3 < t

	

3

form

. We then have

2/3 2
< 1/2(n-cn

	

) ,

3)
< (n 3+1)

~ n3, <

	

- (nl3

	

t

	

3~

2/3
< 3 2 n4/3 , n3 < 2 + 2n4/9 < 4n4/9 .
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Put •al

(n3) < 8n 8/9 .

a2 = a3 = 1, a4 = t

and the result follows from lemma 3 .

The proof of theorem 9 can be modified slightly to show

3- 13
Theorem 10 . If en

m #( 3 ) r i., where the

exists a configuration

Then putting n4 = 3, we

,n _
3}

	

niai

	

3

	

'
i

< m <
1
3

I
, where

which determine exactly m planes .

have t =
4

	

n,i

i=1 i 3~ a

/n3+1

	

n3

(, 3

	

3

for n > n 0 . Taking c sufficiently large will force n > n 0 .

Proof of Theorem 9 . Let a i and ni be given by lemma 3 .

points so that there are a i lines having n
i points on them, with the

points in general position otherwise . The number of triangles is then

and I an, <n
i i -

Place the

c is a certain constant, and

r i , 1 < i < k are certain integers, then there

of n points in E3 , no three of which are collinear,
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