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PROBL¥MS AND RESULTS IN COMBIRATORIAL ANALYSIS

By
PAL ERDUS

4, Some remarks on a theorem of Steme and myself. Sto-
ne and I proved that for .n =-n (e sk ,L) every G(n
gﬁ "'IElT +£> contains a K@(L) (for k=2 this is
again a weaker form of the Kovari-Sos, Turan thaarem)
Our original proof did not give a very good depqndence
of n on L and € . A Very much sharper result in
this divertion was just published by Bollobas and myself}
a further improvement which is nearly best possible has
recently been obtained by Bollo'bas.:,Simonovitz. and myself.

Recently I succeeded to exiend this thaeorem to r-graphs.
as follows: Tq every r , £ ,t and L there is an n =
n (€ ,r ,t L) so that every G(r @ ;s a(t ,r) -R-E)(f))
contalns a K( (L) where ot ,r) is defined by (1)
of chap‘ce:r 1 Here we do not yet have a good estimate of
n in terms of €, k and L '(unlike for r=2) ,

The following problem is open and seems very chellen~
ging to me: Iet G("(ni), i=1 yoreylly > ‘be.a sequence
of r-graphs of nl vertices. We say that the fa.mily
has subgraphs of density 2&x'if there is & sequence of sub-
graphs G(mi) (g(n Y3 m; —»«,so that G(mi) has at
least (o 4. 0(1))@) edges. The theorem of Stone and
‘myself implies that every G@; g“'t +€)) contains a
subgraph of density 1 - T;’T and it is easy ‘%0 see that

this is best possible. Thus the possible maximal densi-
ties of subgraphs are of the form ¢ - -} vy 2'€ L Loo

Now it may be true that for T > 2 there are also only a
denumerable number of possible valnes of tha maximal den-
sities of subgraphs. As stated at the end of -the Previous
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chapter, I proved that every r-graph of density € con-
tains a subgraph of density é-—f,!- » The simplest unsolved
problem states: .Is there a constant &> 0 so that every
r-graph of n vertices (n large) and -r-,; + £)n’  edges
contains a subgraph of density é——f} + o,.. This is unsol—
ved even for r=3., Perhaps every G(Z’KBn; n3+1> contains
cither a 6N433) or a N5;4); (1,2,3),(1,2,4),(1,2,5),
(358:5) or s M55 1 (1,230, (1,2,4), (1,3:5),12,4,5) 2
(3,495)« The same unsolved problems on the possible maxi-—
mal densities arise on multigraphs and digraphs as stated

in a recent paper of Brown, Simonovits and mysalf.

By the method of probabilistic graph theory it is eesy

to prove that to every € and O € <1 there is a C=

= C(€e ,x) 80 that for n o, (c ,e o) there is a Gﬁr@, :

B@D so that for every m> C(logn)"'é'T &very spanned

subgraph of its m Vertices has more than (& -¢ )Cn) and less

than (00 + e)@) edges and it follows from the results of

By paper on graphs and generalized graphs that this result

{e best pobsible (Isr‘aelz Journal lMath. 2(1965), 183-190) .

P.Prdts and A.Stone, On the structure of linear graphs,Bulll .
Amer.Math. Soc.52(1946), 1087-1091.

B.Bollobas and P.Erdts, On the structure of edge graphs,
Bull.London Math. 15(1973), 317-321. The triple pa—
per with Simonovits will soon appear in J.London
Math.Soc.

P.¥rdts, On some extremal problems: on r—graphs, Discrete
Math.1(1971), 1-6 &

W.G.Brown, P, Brdds and M,Simonovits, Extremal problems foxr
directed graphs, J.Comb.Theory, ser. Bo15(1973) TT—g

‘5. In this chapter I discuss various combinatorial pron
léms on subsets. Pirst ©of 211 T call attention to my papexr
w:lth Kleitman quoted in the introduction. Here I mainly d3 ¢
cuss problems niot considered in our survey paper. .

First we consider some problems related to 2 result of
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Ko, Rado and myself. Let |Si=m,A,cS,ISl=k. Denote by t(=i
k ,r ,00) the size of the largest family. Ay 1€ 5 = t(osk,
r , o) satifying ‘x“‘j (\Aj2{ < r and every element is con-
tained in at most cxt}n; k" ,r ,x) of the A's. t(n;k,r,<)
is the size of the largest subfamily with the same proper—
ties but now every slement is contained in fewer than

ot(n; k¥ ,v , €<Ox) of the A 's. Ko, Rado and I proved tlat
for n > 2k : -

(1) t(n; k ,1 ,1) = k_1)

For n >.2k  equality holds iff all the A 's have a common
clement. For n > n,(k ,v) we further proved

(2) ey R ogw M= 5 .

Qur estimation for no(k ,T) 1is probably very. poor,but
in observed (2 ) does not held for all n = 2k. We conjec—
(55 cat sl 2L .2 ,1) = SGH)-CH%

(3) if true is'best possible. We state in our paper seve-
ral other problems ‘most of which has been settled since then,
but as far as I know (3) has not been settled as yet.

Hilton ané lMilner pr.ov‘ed that for n > 2k
(4) tny k1 5 <) =14 () - O

muality in (4) ocCurs if (amd'no doubt only if n > noQ:
r)) Ay is an arbltrary k-tuple, x1 is not 4in Aq-e All the
other A 's contain x, and have a non—empty intersection
with -=ﬁ1- .

- Observe that for fixed k
t(n; kX ,1 ,1) = O 40(1))11 2@

Tow Rothschild, Szemeredi and I took up thls investiga-

tion. We first of all showed that for O=

(5) t(n;k ,1 ,3) 3(k_2) a 2(&-3)

Eﬁquality iff (until further notice n is supposed t0 be lar-
ge), there are three elements and the A .'s contain at least
two of then.

e further proved: t(njk ,t < 13) "3(11‘:!) N
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The extremal family is obtained as follows: giventhree ele
ments Xq ,Xp »X3 and a set 44 not c'ontaining any of the
All the other A 's meet A1 and contain at least two of

the x 's.’
Let now € > 0 be sufflclently small. e are falrly sur

that a family of size t(n; k ,1 ,3’ - €) is obtained as fo
1ows. Let: Xy yeeey Xg be five elements,_ the A 's contai
threa or more of themand t(n; k, 4, 00) is constant
betwean 2 and. 5? o There seem to be only a fzmte numb er
of values of t(n; k ; 4 oL ) for 7 <O<3z . t(n;k ,
I. ,3) is probably obtalned as followss Con31der a set Be
[B] =7 and the 7 Steiner triples of B . The A 's are all
the sets which meet B in a Set which contains at least
one of these triples. We aj.so are fairly sure that

o wmE, ) 25

¥ore generally we con; ecture that _

s sl -t @)
If there is a. ﬁnite geomatry on %o U1 elements,then
it is aasy tq See that . '
s x4 et =G ) ;

but if ‘there is no suc:u flmte gnometry we conjecture that
ts k1 e Sl -

Needless to say these last two conjectures are very specul

tive.

Kneser made the following pretty conjectures — Let
I8l= 2n ¢ k' .and define a graph G, i as follows: Its. vel
tices are the . Gn-t-k’) ~n-tuples of. é Two vertices are j!
ned if the correspending n-sets are disjoint. Denote by
K(€) the chromatic ixﬁtnber 0f G. Kneser conjectured K(G,
=k+2 . K(6, ,k) £ k42 is immediate but the opposite 1n-
equality seems to presemt great and unexpected difficultis
Szemeredi proved (unpubllshed) that K(G k) tends to inf
nity ‘uniformly in k. Hajnal and I and no doubt many Othel‘
tried to attack this problem by the £0llOWAINg eevvessesss

%;Bcontinuation will appear in Creation in Mathematics 1
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