27

Continuation from "Creation in Mathematics ,9,1976"

PROBLEMS AND RESULTS IN COMBINATORIAL ANALYSIS

By PAL ERDÖS

4. Some remarks on a theorem of Stene and myself. Stone and I proved that for $n \ge n_0(\epsilon, k, t)$ every $G(n; n'(1-\frac{1}{k-1}+\epsilon))$ contains a $K_k(t)$ (for k=2 this is again a weaker form of the Kovari-Sos, Turan theorem). Our original proof did not give a very good dependence of n on t and ϵ . A very much sharper result in this divertion was just published by Bollobas and myself; a further improvement which is nearly best possible has recently been obtained by Bollobas, Simonovitz and myself.

Recently I succeeded to extend this theorem to r-graphs. as follows: To every r, ϵ , t and t there is an $n_0 = n_0(\epsilon, r, t, t)$ so that every $G^{(r)}(n; \alpha(t, r) + \epsilon)(\frac{r}{\epsilon})$ contains a $K_t^{(r)}(t)$ where $\alpha(t, r)$ is defined by (1) of chapter 1. Here we do not yet have a good estimate of n in terms of ϵ , k and t (unlike for r=2).

The following problem is open and seems very challenging to me: Let $G^{(n)}(n_1)$, $i=1,\ldots,n_1 \rightarrow \infty$ be a sequence of r-graphs of n_1 vertices. We say that the family has subgraphs of density $\geq \alpha$ if there is a sequence of subgraphs $G(m_1)$ of $G(n_1)$, $m_1 \rightarrow \infty$, so that $G(m_1)$ has at least $(\alpha + G(1))\binom{m}{r}$ edges. The theorem of Stone and myself implies that every $G(n; \frac{n}{2}(1-\frac{1}{l}+\epsilon))$ contains a subgraph of density $1-\frac{1}{l+1}$ and it is easy to see that this is best possible. Thus the possible maximal densities of subgraphs are of the form $1-\frac{1}{l}$, $2 \leq l < \infty$. Now it may be true that for $r \geq 2$ there are also only a denumerable number of possible values of the maximal densities of subgraphs. As stated at the end of the previous Current Address: Mathematical Institute, Hungarian Academy of Sciences, Real Tanoda U13-15, Budapest V, Hungary.

chapter, I proved that every r-graph of density ε contains a subgraph of density $\frac{r!}{r!}$. The simplest unsolved problem states: Is there a constant $\alpha_r \ge 0$ so that every r-graph of n vertices (n large) and $\frac{r!}{r!} + \varepsilon$)n edges contains a subgraph of density $\frac{r!}{r!} + \alpha_r$. This is unsolved even for r=3. Perhaps every $\frac{r}{r!} + \alpha_r$. This is unsolved even for a $\frac{r}{r!} + \frac{r}{r!} + \frac{r}$

by the method of probabilistic graph theory it is easy to prove that to every £ and 0 4 \(\alpha \) 41 there is a C=

= C(£, \alpha) so that for n > n₀(C, £, \alpha) there is a G'(n, \alpha(\frac{n}{r})) so that for every m > C(\log n)^{\frac{n}{r}} every spanned subgraph of its m vertices has more than (\alpha - \varepsilon) \binom{m}{r} and less than (\alpha + \varepsilon) \binom{m}{r} edges and it follows from the results of my paper on graphs and generalized graphs that this result is best possible (Israel Journal Math. 2(1965), 183-190).

P. Proc and A. Stone, On the structure of linear graphs, Bull.

Amer. Math. Soc. 52(1946), 1087-1091.

- B.Bollobas and P. Erdős, On the structure of edge graphs,
 Bull.London Math. 15(1973), 317-321. The triple paper with Simonovits will soon appear in J.London
 Math.Soc.
- P. Prdos, On some extremal problems on r-graphs, Discrete Math.1(1971), 1-6.
- W.G.Brown, P. Erdös and M. Simonovits, Extremal problems for directed graphs, J. Comb. Theory, ser. B. 15(1973), 77-9
- 5. In this chapter I discuss various combinatorial problems on subsets. First of all I call attention to my paper with Kleitman quoted in the introduction. Here I mainly discuss problems not considered in our survey paper.

First we consider some problems related to a result of

Ko, Rado and myself. Let |S|=n, A; CS, |S|=k. Denote by t(n; k, r, ∞) the size of the largest family A_i , $1 \le j \le t(n; k)$, r, α) satisfying $|A_{j_1} \wedge A_{j_2}| \leq r$ and every element is contained in at most $\alpha t(n; k, r, \alpha)$ of the A's. $t(n; k, r, \alpha)$ is the size of the largest subfamily with the same properties but now every element is contained in fewer than Out(n; k ,r , <O) of the A 's. Ko, Rado and I proved that for $n \ge 2k$:

 $t(n; k, 1, 1) = {n-1 \choose k-1}$ (1)

29

For n > 2k equality holds iff all the A 's have a common element. For $n > n_0(k,r)$ we further proved

(2)
$$t(n; k, r, 1) = {n-r \choose k-r}.$$

Our estimation for no(k,r) is probably very poor, but Fin observed (2) does not hold for all n = 2k. We conjectured that $t(4l;2l,2,1) = \frac{1}{2} \left\{ \binom{4l}{2l} - \binom{2l}{l}^2 \right\}$ (3)

(3) if true is best possible. We state in our paper several other problems most of which has been settled since then, but as far as I know (3) has not been settled as yet.

Hilton and Milner proved that for $n \ge 2k$ $t(n; k, 1, <1) = 1 + {n-1 \choose k-1} - {n-k-1 \choose k-1}$ (4)

Equality in (4) occurs if (and no doubt only if $n > n_{\alpha}(k)$ r)), A_1 is an arbitrary k-tuple, x_1 is not in A_1 . All the other A's contain x, and have a non-empty intersection

Observe that for fixed k

with A1 .

$$t(n; k, 1, 1) = (1 + o(1))n^{-2}\binom{n}{k}$$
.

Now Rothschild, Szemeredi and I took up this investigation. We first of all showed that for $\Omega = \frac{2}{3}$ 13.

(5)
$$t(n;k,1,\frac{2}{3}) = 3\binom{n-2}{k-2} - 2\binom{n-3}{k-3}$$

Equality iff (until further notice n is supposed to be large), there are three elements and the A.'s contain at least two of them.

We further proved: $t(n;k,t,<\frac{2}{3}) = cn^{-3}\binom{n}{k}$.

The extremal family is obtained as follows: given three elements x_1 , x_2 , x_3 and a set A_1 not containing any of the All the other A's meet A_1 and contain at least two of the x's.

Let now $\varepsilon > 0$ be sufficiently small. We are fairly sur that a family of size $t(n; k, 1, \frac{2}{3} - \varepsilon)$ is obtained as fo lows: Let x_1, \ldots, x_5 be five elements, the A's contain three or more of them and $t(n; k, 4, \infty)$ is constant between $\frac{1}{2}$ and $\frac{3}{5}$. There seem to be only a finite number of values of $t(n; k, 4, \infty)$ for $\frac{3}{7} < 0 < \frac{2}{3}$. $t(n; k, 4, \infty)$ is probably obtained as follows: Consider a set B < |B| = 7 and the 7 Steiner triples of B. The A's are all the sets which meet B in a set which contains at least one of these triples. We also are fairly sure that

$$t(n; k, 1, < \frac{3}{7}) < \frac{c}{n} \binom{n}{k}$$

More generally we conjecture that

$$t(n; k, 1, < \frac{1}{k-l+1}) - \frac{c}{n^{l+1}} \binom{n}{k}$$
.

If there is a finite geometry on 12 - 1+1 elements, then it is easy to see that

 $t(n; k, 1, \frac{t}{t^{2}-t+1}) = \frac{c}{n^{2}} \binom{n}{k}$,

but if there is no such finite geometry we conjecture that $t(n; k, 1, \frac{1}{12-1+1}) \leq \frac{c}{n^{1-1}} \binom{n}{k}.$

Needless to say these last two conjectures are very specul tive.

Kneser made the following pretty conjecture: — Let |S| = 2n + k and define a graph $G_{n,k}$ as follows: Its vertices are the $\binom{2n+k}{n}$ n-tuples of S. Two vertices are justices are the corresponding n-sets are disjoint. Denote by K(G) the chromatic number of G. Kneser conjectured $K(G_{n,k}) = k+2$. $K(G_{n,k}) \le k+2$ is immediate but the opposite inequality seems to present great and unexpected difficulties szemeredi proved (unpublished) that $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K. Hajnal and $K(G_{n,k})$ tends to infinity uniformly in K.