ON THE LENGTH OF THE LONGEST HEAD-RUN

P. ERDOS — P, REVESZ

1§. INTRODUCTION

Let X, X,,... beasequence of independent and identically distrib-

! and let SO =0,

uted random variables with PEX, = Dy=iRiX; & 1= 5

S”:Xl ‘{“X2+‘.,+ X” (n= ],2) and

IN, K) = max (S

S ) (N = K).
DsnsN-K n

n+ K

Define the r.v.'s Zy (N=1,2,...) asfollows:let Z, be the largest
integer for which

IN,Zy) = Z,,.

This ZN is the length of the longest head-run. Studying the proper-
ties Z, resp. I(N,K) Erdds and Rényi proved the following:

Theorem A. (|1]) Let 0< ;<1< (,‘2 <o then for almost all
w& Q2 (8 s the basic space) there exists a finite Ny = Ny(w, C,, C,)
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such that®
[C, log N]< Z, <[C, log N]
!f N 2 _z'\'ro.

The aim of this paper is to get sharper bounds of Z, . In connection
with this problem our first result is

Theorem 1. Let € be any positive number. Then for almost all
w € Q) there exists a finite Ny = Ny(w, €) such that
ZN = [log N - logloglog N + logloge — 2 — €] = ocl(N} = a,
if N= No'
This result is quite near to the best possible one in the following sense:

Theorem 2. Let € be any positive number. Then for almost all
w € 82 there exists an infinite sequence NI. = f\-"l.(w_. €e) (i=1,2,...) of
integers such that '

ZN‘_ < [log N, — logloglog N, + loglog e — 1 + €] = a,(N) = «,.

Theorems 1 and 2 together say that the length of the longest head-run
is larger than «, but in general not larger than «,. Clearly enough for
some N the length of the longest head-run can be much larger than o,
[n our next theorems the largest possible values of Z, are investigated.

Theorem 3. Let {vy,} be a sequence of positive numbers for which

D 2 o,
n=1

Then for almost all w €S2 there exists an infinite sequence
N,=N(w,{7,}) (i=1,2,...) ofintegers such that

/ =
ZN' i " T.-'\-" ‘,-'

This result is the best possible in the following sense:

*Here and in what follows log means logarithm with base 2; [x] is the integral part of x.



Theorem 4. Let {6n} be a sequence of positive numbers for which

D T M e,

n=1

Then for almost all w € 82 there exists a positive integer
NO = NO((.IJ, {5:: }) such that

Z- 2By
if N>N,.

Theorems 1-4 are characterizing the length of the longest run contain-
ing no tail at all. One can ask about the length of the longest run contain-
ing at most 7 tails. In order to formulate our results precisely introduce
the following notation: Let Z, (T) be the largest integer for which

I(N, ZN{T}) = ZN(T} =
This ZN{T} is the length of the longest run containing at most 7' tails.
Our Theorems 1-4 can be easily generalized for this case as follows:

Theorem 1*. Let € be any positive number. Then for almost all
w € § there exists a finite N0 = NO{w, T,€) such that

ZN (T)=[log N+ Tloglog N — log loglog N — log T! +
+ logloge — 2 — €] = aI{N, T)
if N2N,.

Theorem 2*. Let € be any positive number. Then for almost all
w € 8 there exists an infinite sequence N, = N (w, T, €) of integers such
that

Zy (D < ey(N, T) =
= |log N:' + 7T'log log N:' — log log log N:‘ —log T + log log e —
— 1+ €].

Theorem 3%. Let {7,} be a sequence of positive integers for which
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Then for almost all € S there exists an infinite sequence
N‘. = N(w, T, {v,}) of integers such that

ZN,-( T)= v,

Theorem 4*. Let {6"} be a sequence of positive integers for which
D 8727 % < oo,
n=1 "

Then for almost all w € 2 there exists a positive integer
No = Nofw, T, {6n 1) such that

Z (1)< 8,
if N>2N,.
The last two Theorems clearly can be reformulated as follows:

Theorem 3**. Let {v,} beasequence of positive integers for which

j ,YTz_"’n e
v ;

n=1

Then for almost all w € Q0 there exists a sequence N;= N, (w,{y,}) of
integers such that

|5‘

N -5

= - T.
§ T Ny, T

Theorem 4**. Let {Sn} be a sequence of positive integers for which

on

D T2 °n <o,

n=1 "

Then for almost all w€ S there exists a positive integer

No = No{w, T, {5" }) such that

S

N_LS‘

ey <Oy =T
if N>N,.
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2§. A THEOREM ON THE DISTRIBUTION OF I(N, K)
The proofs of Theorems 1-4 are based on the following

Theorem 5. We have

L KTH! [A=2K 144

(1-27%1 S5 (1 + 0, (1)) <

<SPUN, K< K-T)<

T+1 1 N-2K 1
K—lﬁﬁ___(l+ox(1))][2[ K ]]+

<(1-2-
if N2 2K.
Before the proof of this Theorem we prove our
Lemma 1. We have
2-N-1(N+2) if T=0,
PURN,N)=2N-T)={ 27V-1(N2 3+ 4_2-¥+ly i T

T+1
g1 ﬁT,—(l +o(l) if T>1.

—

Proof. Let
A=A ={I2N,N)=N - T},
A, =A, (D ={S, .y —H2N-T} (= 0,12, ..y N,
and
S . =—wo (=1,2,...).
Then we clearly have

A=Ag+ AgA, + AA Ay + .. .+ A4, . Ay Ay

where
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and

P =P(AgA;... 4, _A}) =

= 2 PAA,...A, A
k+ 1<l <ly<..<lp<k+N 0771 k= 1"k

= 2 Pl Xy =X =X, =
k+ 1< <L <..<lp<k+y = K7k ThoTh

"':X[TZO: Sk"l_-SfT-N—l<k—lT+N’

Sk—;_StT_l-N—1<k—1r_1“‘N—l,---

Sk Sy <k FN-(T-1)=

=274 Z P(Sk—l_St -N—1
k+lsly<l;<..<Ilp<k+N T

Sk=lp+WN, 8 =8 . gy Sk=lp  +N=1,...

oSy Sy <Kk N=(T-1)).

Especially if
2-N-1

(i) 7=0 then p,
2-N=lyy 2 427kt

1l

(i) T=1 then p,
i 7>1 th _Z—N—l J’V)l £ ot
[“l) en pk = [T ( € ))

what clearly implies our Lemma.

Proof of Theorem 5. Let

B, ={S,,x S, 2k-T} (k=0,1,2,...,N-K),
(I 1K
C= 2 B

N 2K
I xSk d

L (=012, =
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D,=C,+C,+...+C ,
0 0 2 2[%[1\’—’(2!(]}

D,=C +Cy+...+C

2[F (A2 - 1)) 1

Then by Lemma 1

T+1
P(C) =275~ Zgm (1 + 0 (1))

and since the events CO, C2, ... are independent we have

)=

P(D,) = P(C,)P(C,)...P(C
0 0 2 [ 2{_;_[!\’-—!(2!( ]]

T+1 [l[N— 2K 1144
=[1—- 2_K"1£ﬁ—(l+()!{(l))] 2 K ]]
and similarly
. T+1 L N=2K ¢
P{Dl):[l_E_K"lKT“U"‘()K(]))}[Z([ K ] 1)]+1'
Clearly
Dy CUN,K)2K~-Ty=Dy+ D,
and

PIIIN. KN < K — Ty = P(D, + D,) = P(D,D,) > P(D,)P(D, ).

what proves Theorem 5. The right side of the {ast inequality foflows from
the simple inequality

P(D, 1B,)>PWD,) (k=0,1,2,...,N-K).

§3. THE PROOFS OF THEOREMS 1* —4*
The following two Lemmas are trivial consequences of Theorem 5.

Lemma 2. Let N; = NI(T) be the smallest integer for which
oy (N;’ Ty=j. Then
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;=Zl P(Zy (T) < oy (N, T)} =

= 2 PUN, o0 (N, T) <oy (N, T) = TH< e,

7

Lemma 3. Let & bea positive number and let N]. = N!(T, 85) be the
smallest integer for which az(N;., T)=[j'*®). Then

P

P{I(A‘F]& az(h‘}, T}} < az(i\'}s T') = ?'} =9

j=1
if & is small enough.
Now Theorem 1* follows immediately from Lemma 2.

In order to prove Theorem 2* the following version of the Bore!
Cantelli lemma will be applied:

Lemma A. ([2]) If A, A,,... are arbitrary events, fulfilling the
conditions

Zl P{An) = oo

n
and
n n
k_Z ;P(AkAr}
(1) lim inf £=1-1= —=1,
(2 Py)

Then there occur with probability 1 infinitely many of the events A, .
Hence Theorem 2* will follow from
Lemma 4. If the event A;‘ is defined as
= ! =

then (1) holds true.
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Proof of Lemma 4. Ler

B.=1 max (S —-S)<a,(N,T)—-T}
ij U’*’*HN;‘—%U\’;'T) k-l—az(N;-,T} k 2550

(i<j),

G = max

. - S )<o,(N,T)—-T}
U ONSKkSNj—ayW;T) ) k 27

(Sk+a2wf,r

(i<j.

Then

P(AIAj) = P(4,) P( Cz.,,-)l'_l + o(1))
and

P(Af) = P(BP(C) (1 + o(1))
hence

P(A;4;) = w (1 + o(1)).

ij

By Theorem 5 we also have: P(B:.j) = 1+ o(1) what proves Lemma 4
and Theorem 2 at the same time.

Since
T T
; ay 1 a1
P(S, --;?n“a;a—f’):fv_wzo[]]—z; T 2

Theorem 4** follows from the Borel — Cantelli Lemma and Theorem 3**
is a simple consequence of Lemma A. (To check the conditions of Lem-
ma A is quite easy.)
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