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1 . Throughout this paper, we use the following notations .

c 1' c 2' . .- denote positive absolute constants . We write e X = exp (x) . log kx deno-

tes the k-fold iterated logarithm . If x is a real number, we put { x } = x - [x I and

we denote the distance of x from the nearest integer (the "norm " of x),by llx II ,

i .e ., llx II =min { x - [x] , [x] + 1 - x } . For N =1,2, . . ., I' (N) denotes the set of

the subsets of 1,2, . . ., N. The number of the elements of a finite set S is denoted

by I S I . A, B, . . . denote strictly increasing sequences of positive integers . The ele-

ments of such sequences are denoted by the corresponding lower case letters, in other

words, e .g. A = { a r a 2 , . . . } . We write

A (n) =

	

E

	

I ( = I A n {1,2, . . .,n } I), B (n) = E

	

1, . . . .
aEA

	

bEB
a< n

	

b <n

If the infinite sequence B = { b r , b 2 , . . ., } is such that the equation

aX-a y = bz

is solvable for any infinite sequence A = { a r a z , . . . } of positive lower (asymptotic)

density (in other words, B intersects the difference set of each of these sequences

A) then we say that B is a difference intersector set. (This terminology is due,

partly, to R . Tijdeman .)

	

Similarly, if

(2)

	

a X +a y=b z

204
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is solvable for any infinite sequence A of positive lower density then B is said to be a

su`n intersector set.

We shall use this terminology also for finite sequences B Cr(N) . In fact, if

A (N) >e N

implies the solvability of (I) (if N is large in terms of e) then again, B is said to be a

difference intersector set . In the definition of (finite) sum intersector sets, (3) must be

replaced by

A ( [N/2] )> cN .

Namely, if a u a v > [N/2] then a u + av > N thus B does not intersect the set of

these sums a u+a v .

In [3] and [5] , respectively, the second author showed that both sequences

1 2

	

2 2 , . . ., z
2 , . . .1

	

and

	

2--I, 3-1, 5- I, . . .,p-- I . . . . } are difference intersector sets .

More exactly, he proved that

Theorem I (A . Sárközy, [ 3 ] ) . If N is large, A C P (N) and

(4)

	

A (N) > e, N

is solvable .

Theorem 2 . (A . Sárközy, [5 1) . If N is large, A C IF (N) and

(log2N) 2/3

(log N) 1 / 3

a,,-a y = z 2

	

( z > 0)

(6)

	

A (N) > c N
(log 3 N) 3 log 4 N

2

	

(10
92N)2
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then

(7)

	

axa y = p-1

is solvable .

We guess that Theorem 1 is true even with N112+6 on the right hand side of (4)

but it seems to be hopeless to prove this at the present time . On the other hand, the

second author showed in [4] that the statement of Theorem 1 is not true replacing the

right hand side of (4) by

1

	

log N 1093N
N z exp (

-2 -E )

	

to N

	

} (for any e >0 and N > N o (e )) .
gz

Also, we guess that the right hand side of (6) in Theorem 2 can be replaced by N E (for
cg

any e >0) or, perhaps, by (log N) . On the other hand, it is easy to see that there

exists a constant c 4 such that Theorem 2 is not true replacing the right hand side

of (6) by c 4 log N, and the authors conjectured in [2] (see Problem 5) that

(8)

	

A (N) / log N - + -

does not imply the solvability of (7), in other words, for N

	

> + -, there exist se-

quences A C r (N) such that (8) holds and (7) is not solvable .

In Part I of this paper (see [1] ) the authors proved two general theorems saying

that if a sequence 3 b i , b z , . . ., b i i

	

is well distributed simultaneously among and

within all residue classes of small moduli then it must be both difference and sum in-

tersector set. Also, they applied these theorems to investigate the solvability of the
a	x-a y 	+

	

a°-av

	

ar	s
+a,

)=+1, (
a

t
+a

equations (		 Z ) _ -1
p

	

p

	

p

	

p

a
(where (-)denotes the Legendre symbol) and to show that "almost all" sequences

p
are both difference and sum intersector sets .

The aim of this paper is to continue the investigation of difference and sum interse-

ctor sets .
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2 . In this section, we show that our conjecture concerning the solvability of (7)

follows easily from a theorem of A . Schinzel, and we formulate two conjectures related

to Theorems 1 and 2, respectively .

Theorem 3 . There exist constants c s ( > 0) and No such that if N > N o then

there exists a sequence A C r(N) for which

(9)

and (7) is not solvable .

log 2 N 1og,N
A (N) > c s log N -

(log, N) 2

Proof of Theorem 3 . Let us denote the smallest prime in the arithmetic progres -

sion kn + Q ( n = 1,2, . . .) by p(k, Q ) . In [6] , A. Schinzel proved the following the-

orem :

There exists an absolute constant c 6 >0 such that for every Q* 0,

p (k, Q) >c 6 k log k
log s k log, k

(1093 k)Z

holds for infinitely many k relatively prime to Q .

Applying Schinzel's theorem with

	

Q =1 , we obtain that there exist infinitely

many integers k such that

log z k toga k
(10)

	

p(k,l) > c 6 k log k

	

(log 3k) 2

For such a number k, let

(11)

	

N = p (k,l)-1

and
p (k,1)-1

A = k, 2k, 3k, . . .,	k

	

k
i

.
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Then obviously, A C 1'(N) . Furthermore, a xCA, a Y CA, a x > a y, imply that

1< a x-a y < p(k,l)-i,

	

k/a x --a y

or in equivalent form,

2 <ax-ay+I<p(k,l),

	

a X-a y+l = i (mod k)

By the definition of p(k,l), this implies that

ax- ay + 1 * p

thus in fact, (7) is not solvable .

Finally, we have to show that also (9) holds (for large k) . Obviously,

For large k, (10) implies (with respect to (11)) that

c6

	

109 2 k 109 4 k

	

log 2 k logo k
(13) N = p(k,l)-1 > --- k log k -	 = c ,k log k

2

	

(log, k) 2

	

(log 3 k) 2

Let us put

A (N) _
_p(k,l)-1 _ N

k

	

k

(14)

	

x=c,klogk
log 2 k log 4 k

(log 3k) 2

Then for k - +- we have log x

	

log k, thus we obtain from (14) that for large k,

1

	

x

	

(1093 x) 2

	

2

	

x

	

(109 3x)2

)k <c, log x

	

log 2 x log 4x

	

c, log x

	

1092X 1094X

For large x, this is an increasing function of x, and by (13) and (14), we have N > x .

Thus
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2

	

N

	

(Iog 3 N) 2
k <-

c 7 log N 109 2 N 109 4N

N

	

c
7	 1092	

N logo N
A(N)= ->-- log N

k

	

2

	

(log 3N) s

and this completes the proof of Theorem 3 .

As Theorems I and 2 show, both sequences

1 1 2 , 2 2 , . . ., z 2 , . . .
(

	

and { 2-1, 3-1 , . . ., p - I , . . . } are difference intersector sets .

On the other hand, this sequences are not sum intersector sets . In fact, if

A = 1 1,4,7, . . ., 3k+1, . . . ( then

A(N)

	

1

N

	

3

a X +ay = z 2

is not solvable . Similarly, for A = 3 4,7, . . .,ák + 1, . . . } , we have

A (N)

	

1

	

1

N

	

3

	

N

a x +a y==p-1

A (N)

	

1

N
>-3 + e

implies the solvability of both equations (16) and ( 1 7 ) .

2 09

is not solvable . We guess that these examples are extremal in the sense that for e >0,

N >N o f e),
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B= ~ [ a ], [2a] , . . ., [na .], . . . }

A = ] [ a ] , [4P1 , . . ., [(3k -2) R] , . . . } .

A (N)

	

1

	

1

N

	

3Q

a X +a,=[na]

( 1 9 )

	

A C I'(N),

Bull . Greek Math . Soc .

3 . In this section, we prove that if a( > I) is a fixed irrational number then the

is a difference intersector set but it need not be a sum intersector set .

In fact, let 0 be any real number satisfying 0 > I and let us put a=3f

Let

Furthermore, if a j [(3x-2) R] C A, a y= [(3y-2) (i ] C A then we have

in (18) .

a x + a v ~< (3x-2) a+ (3y-2) 0= 3(x+y-1 ) a-O =(x+y-1) a-~ <(x+y-1)a-i < [(x+y-1)1

a x+a y >(3x2)(3-1+(3y-2) (-l = 3(x+y-2) a+2 a-2> (x+y2) a >[(x+y-2)a]

Thus the sum a x

	

v lies between the consecutive elements [(x+y2) a ] , [(x+y-1) a]

of the sequence B, consequently,

is not solvable . This proves that in fact, the sequence (18) is not a sum intersector set .

On the other hand, we are going to prove that

Theorem 4 . Let a >I be any irrational number. Then there exist infinitely many

positive integers N such that
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(20)

	

A (N) > a /' N lh

imply the solvability of

(21)

	

a x-a y = [za] .

Proof of theorem 4 .

The theory of the continued fractions yields that there exist infinitely many positi-

ve integers p, q such that

1
(22)

	

0 <a-
P
<- .

q

	

q2

We are going to show that the integers N of the form

(23)

	

N = pq

satisfy the conditions in Theorem 4 .

(22) implies that for 1 < i <q,

and

hence

(24)

	

[iq a] = ip

	

for 1 < i < q .

For a sequence A sitisfying (19) and (20), let A
j

denote the set of those integers

a for which a E A and a = j (mod p) hold . Then

iq a > ip

1
iqa <ip+iq .

	

<ip+ 1,
q

1)
(25)

	

A = V Aj .
j=1

By (20), (22), (23) and (25), there exists an integer j for which



212

p 'h

	

'/z

IA~

	

A(N) >al~ NIh
>	 q)	N

	

=( N )'h =1
i

	

p

	

p

	

p

	

pq

holds, thus j A i I >,2. Assume that 0< ay < a x , a x C Al , a y C A i .Then

obviously,

(26)

	

1 <a x- a y < N = pq

and

(27)

	

p / a x -ay .

(24), (26) and (27) yield that (21) holds with z = iq where i = (a x-a y )/p and this

completes the proof of Theorem 4 .

(It can be shown easily that Theorem 4 is near best possible . In fact, the right

hand side of (20) can not be replaced by a function f(N) such that f(N) =o(N 1/2

holds .)

4 . In Sections 4, 5 and 6, we shall investigate "sparse" intersector sets . In parti-

cular, in this section we discuss the case when the intersector set is finite . We show

that for N -->+ -, there exist difference intersector sets B C F(N) such that B(N)

is bounded ; on the other hand, for sum intersector sets, B(N) ---> +- must hold . The

first statement is near trivial .

Theorem 5 . If k, d are positive integers, E > 0 is any real number, N >N o (k,d,E)

and we put B = { b 1 b 2 ,---,b k f = 3 d, 2d, . . .,kd ~, then A C r (N) and

1
(28)

	

A (N) > ( k+I
+E ) N

imply the solvability of

(29)

	

a x-a y = b, .

Proof of theorem 5 .

For r = 1, 2, . . ., d and i = 0, 1, 2 , . . ., we write

P. ERDOS and A . SÁROZY
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A(r i) = A n 1 r+i (k+l)d,r+(i(k+l)+1)d,r+(i(k+l)+2)d , . . ., r+((i+1)(k+1)-1) d}
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Then

N

[ (k+1 )d l

	

d
(30)

	

A C

	

U

	

u A(r , i)i=0

	

r=1

For large N, (28) and (30) imply the existence of r, i such that I A (r j) I > 2 . Then

there exist a x , a y with ax E A(r,i) , a y E A(r i) , a x > a y . The difference a x-ay

of these numbers can be written in the form jd where 1 < j < k, thus a x-ay E B

which proves the solvability of (29) .

Theorem 6 .

	

Let

(31)

If N> N 0 ( e ), B C F (N) and

1
(32)

	

B(N)
< 2log 1/e

log N

then there exists a sequence A CF(IN/2J) such that

1
(33)

	

AQN/2] ) > ( 2 - c) [ 2

holds and

(34)

	

a x +ay =b z

is not solvable.

Proof of Theorem 6 .

We shall need the following well-known theorem on simultaneous approximation :

Let k be a positive integer, a r , a z , . . ., ak , Q real numbers, Q > I . Then there

exist integers q, p r .p a , . . ., p k such that

(3 5 )

	

1 < q 5 Q

and

1
0<e<-

4

pi

	

1
-

	

I~
q

	

qQ l/k

N
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whence

(36)

(37)

Then with respect to (35),

(38)

For i = 0, 1, . . ., s--1, let A i

	

denote the set of those integers a for which

1 < a < [N/21 and

hold. Then obviously,

and

b
Let us apply this theorem with k = B(N), a i =

	

`

	

(b I b 2 , . . ., bB(N) denote
[N/2 ]

E
the elements of a set B satisfying (32)) and Q =

4
[N/2] (for large N, Q >- 1

holds trivially). We obtain that there exist integers q, p i , p z , . . ., pk such that (35)

holds and

	

I

	 hi

	

pi

	

1

[N/2]

	

q
	 1<

qQ ] /k ,

q

	

I

1 [N/2] hi
-- pi 1 < Q] k -,

q

	

1
II [N/21

	

hi II < Ql /k

Let us define the positive integers r, s by

r

s

	

[N/2]
q

	

, (r,s) = 1 .

1

	

r

	

q

	

Q

	

E

s C s

	

[N/2] C [N/2]

	

4

[N/21

	

a

	

l s

	

a

	

s

s-1
j 1,2

	

, [N/2] } = U A i
i=0



Vol . 18, 1977

	

ON DIFFERENCES OF INTEGERS

Aol = I A, I

	

I A,, I

(note that s/[N/2] by (37)), hence

(39)

	

A i

A=	 I	 i
U

1

	

1

	

A i'
2QI/k~ e < 2 2Q I/k

Then A C I Q N/2] ) holds trivially . We are going to show that also (33) holds and (34)

is not solvable .

In fact, a xG A, a
Y
C A imply that

(40)

and

thus

and

Let us define the sequence A by

1

	

q

	

I

	

1

2Q
1/k C [N/2]

	

x ~

< 2 2Q1 /k

1

	

1 _

	

1
2

	

2Q 1 /k
	 q

2Q1/k

s

[N/2]
(a x+ay

) _ 1 [N/21

	

ax 1 + 1 [N/2]

[N/2 ]

[N/21

(for i = 0, 1, . . ., s-1) .

ay
1

215

1

	

1
2QI/k + 2QI/k =

1

	

1
[N/2] (a x~.~ y) } _ { [N/2]

	

aX } +

	

[N/2] ay }< ( -2 - 2Q1/k )+
1

	

1

	

1

+( 2

	

2Q1/k
)- 1

	

Q1lk
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1
II [N/2] (a a + ay )lI > Q1 /k	 .

In view of (36), this inequality yields that none of the integers

in the form a, + a y , in other words, (34) is not solvable .

Finally, by (38), (39) and (40), we have

(41)

	

A([NJ2])=1 Ai = 1

	

1 E<

	

1

	

1 Ail =

2Q

	

s 2

	

2Q 1/k

[N/2]
(

	

E

	

1_

	

E

	

1-

	

E

	

I)
s

	

0< i<

	

s

	

o< i<1
2

	
,/k (I-1

2

	

2Q1/k
)s <i< l

2
s

2Q

> [Ns2]
(z

s-(
2Q

1/k
S+')-( 2Q 1/k s+l))= [N/2](z-(

Q1 /k +s
))

1

	

1

	

2

	

1

	

1

	

E
[N/2] (

2
-( 77k-

	

>+
s

))

	

[ N/2] (2 -Q1 k - 2 ) .

With respect to (32), for fixed e and N - + - we have

k = exp (- 1 log Q) = exp (- 1

	

log

	

[N/2] )6TA

	

B(N)

	

4

b ZE B can be written

2 log 1 J E

	

E

	

2 log e
< exp ( -

	

logN

	

log

	

4

	

[N/2] ) = exp (
log N

	

(log N+(0(1))) _

=exp(2 log E+0(1))= (1+o(1))E ~ .

Thus in view of (31) , we have

1

	

E
(42)	 Q1

/k
	 < 2E 2< 2

for large enough N . (41) and (42) yield (33) and the proof of Theorem 6 is completed .
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bk+1
(43)

	

lim inf

	

=1
k ~ O

	

h k

must hold . First we prove this conjecture*.

Theorem 7 .

	

If A > 1, B = { b, , b z , . . .,b k , . . . }

	

is a strictly increasing infinite

sequence of positive integers and
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5 . In this section, we investigate infinite (but sparse) intersector sets .

R. Tijdeman raised the conjecture (in a letter written to the first author) that if

B = i b 1 , b z , . . . } is an infinite difference intersector set then

(44)

	

inf	 bk+l 	> 0 ( > I )
k=1,2, . .

	

bk

then there exists a strictly increasing sequence A = { a i a a ,	a k , . . . } of positive

integers such that

(45)

	

lim inf
A(N)

> exp

	

log
3 ( - (

	

- + I ) log 24)
n - ~

	

N

	

log 0

and the equations

(46)

	

a X- a y = b , ,

(47)

are not solvable.

We shall need two lemmas .

a u +a~=b

Lemma 1 . If

(48) 0 <'Y < 1,

and d 1 , d 2 , . . ., d k are positive integers for which

(49)	 d k+1 .> 2 + y

	

for k = 1,2,	 d		 . . .
k

* Note added in proof. In the meantime, this conjecture has been proved independently also by C .L .
Stewart and R . Tijdeman . (Unpublished yet ) .
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then there exists a real number a such that

(50)

	

lid k all>
7

	

for k = 1,2, . . . .
6

Proof of Lemma 1 .

We are going to construct intervals

conditions :

(i)

	

The intervals 1 1 , I z , . . ., 1 k , . . .

(ü) Ik+1 C I k for k = 1 ,2, . . . .

x E I k implies that

(for k = 1,2, . . .) .

(iv) The of the interval Ik [u k , v k] is

y

	

1

	

y

	

1
11 = [ - - , (1 -

	

) - ] satisfies (i), (iii) and
6

	

d 1

	

6

	

d l

(iv) . Let us assume now that the intervals 11 , I z , . . ., I k = [u k , v k ] have been defi-

ned. Then Ik+1 can be defined in the following way :

With respect to (48), (49) and (iv), we have

Obviously, the interval

II dkxll >
y

6

v k u k=(1- 3 )
1
d

*k

'Y

	

kdk+l vk-dk+luk-(vk-uk)dk+l-(1- 3 ) dd+l >(1- 3)(2+y) _
k

=2+ 3 (1_y) > 2 .

Thus there exists an integer t such that

1 1 , 1 2 ,

	

. .,

are closed .

I k satisfying the following
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or in equivalent form,

t

	

t+1
(51)

	

uk <	<	< v k .
d k+1

	

d k+l

Let

for x E I k+1 , we have

t+ 'Y t+ I -
y

_

	

6

	

6
l k+l = [u k+1 ' v k+1 1 -

	

d

	

d

	

1
k+1

	

k+l

and

	

Y
t+l- -

6

	

y
= t+l - -

d k+l

	

6
d k+I x < d k+1

which implies that (iii) holds (with k+1 in place of k) . Finally,

v k+l -u k+l =

t +-
6

	

'Y
dk+1 x> d k+1 d

	

= t+ 6

k+1

t+1 - y

	

y

	

1- y
6

	

6

	

3

d k+I

	

d k+I

	

d k+I

219

Then the interval I k+1

		

is closed . (ü) follows from (48) and (51) . Furthermore,

7

thus also (iv) holds (with k+l in place of k) and this completes the proof of the existen-

ce of intervals I r , 12 , . . ., I k, . . . satisfying (i)-(iv) .

By (i) and (ü), the intersection of the intervals I r , 12 , . . ., I k , . . . can not be empty .

Thus there exists a real number a such that a C I k for k = 1,2, . . . . By (iii), this

number a satisfies (50) for all k and the proof of Lemma 1 is completed .

Lemma 2 . If

(52)

	

0 < 6 <1,

k is a positive integer, at , a 2 , . . ., a k are any real numbers, then for N > No (6, k,

a r , . . ., a k ), the number of the integers n satisfying
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(53)

	

1 < n < N

and

(54)

	

II na i II < 5

(simultaneously for i = 1, 2, . . ., k) is greater than ( S J
k
N.

2

Proof of Lemma 2 .

Let us define the positive integer t by

1
(55)

	

t > -,>t- l .

For 1 < n < N, let P n denote the point ( { na,}, I na.y	{ na kO in the k-di-

mensional Euclidean space . Let us form all the k-tuples (r, r 2 , . . .,r k ) such that r r ,

r 2 , . . ., r k are integers and 0 < r i < t-1 for i = 1, 2, . . ., k. For each of these k-

tuples (r I , r 2 , . . ., r k ), we form the k-dimensional cube consisting of those points

r .

	

r . +1
(x D x2 , . . ., x k ) which satisfy -' < x <	'	 for i = 1, 2, . . ., k. The number of

t

	

t

these number of these cubes is t k , and each of the N points P r , P2 N, . . ., P N is contai-

ned in one of these cubes . Thus one of these cubes contains at least

	

of the points
t

P I , P2 , . . ., PN . In other words, there exist integers n r n2 , . . .,n S such that P nr , P n2 ,

. . ., Pn lie in the same cube and
s

(56)

We may assume that n 1 < n2 <. . . < n s . Then

II(n i -n 1) ai 11=11 n i a i-n i a 1 11=11 { n i a i )-i n 1 a i ~11<I{r. a i ~ -In 1 a i ~ 1 <

< 1 <s
t

simultaneously for i = i , 2, . . ., k and for all 2 <j < s, and obviously,

0< n
i
-n 1 < n i < N for 2< j< s. Thus the integers n= n 2 -n, , n 3 - n t , . . .,

n s - n 1 satisfy (53) and (54), and in view of (52), (55) and (56), their number is at
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least

N

	

N

	

N ó
ks-1 >	k - 1 '>	 - 1 >	 _(

	

) N
t

( cS +1)k

	

( b ) k

for large enough N which completes the proof of Lemma 2 .

Completion of the proof of Theorem 7 .

Assume that the sequence B satisfies (44) and define the positive integer k by

(57)

	

A k > 3 >pk - 1

Then

(58)

		

k <	
log 3

	

+ 1 .
log

For i = 1,	k, let B i = ; b i b i+k,bi+2k, . . .,b i+jk , . . . } . Then obviously,

k
(59)

	

B = u B i
i=1

and with respect to (44) and (57),

bi+ U+l)k

	

1+(j+l)k - -1

	

bn+1

	

i+(j+l)k-1

	

k
_

	

ti

	

11

	

0=A >3 .
bi+jk

	

n = i+jk

	

bn

	

n=i+jk

Thus for each of the sequences B i , B 2 , . . .,B k , we may apply Lemma 1 putting y =1

and with the sequence B i in place of d 1 , d 2 , . . . We obtain that there exist real

numbers a 1 , a2 , . . ., ak such that

1
(60)

	

II b ai II > 6 for b c B i

(where i = 1, 2, . . ., k) .

Let A denote the set of those positive integers a for which

1
(61)

	

liaai 11< 12
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I
holds simultaneously for i = 1, 2, . . ., k. Applying Lemma 2 with S = -- , we obtain

12
with respect to (58) that

1

	

k

	

log 3
A (N) > ( -24 ) N >N exp ( - ( lo	 + I ) log 24)

g
	 o

which proves (45) .

To complete the proof, we have to show that (46) and (47) are not solvable . By (61),

y E A, a E A, a ll CA, a" E A imply that

and

1

	

1

	

1
11(a-aa v )a, I1-<lla ka, Il+lla y a ;ll< - +

	

_
12

	

12

	

6

1

	

1

	

1
11(a„ + a v ) a i II

c
Ila u a i

II+ II a „ a,11<- +

l~

	

1_

	

6

By (60), this implies that a x - a y (t B t. and a
u
+ a v 't B

t
.

	

for i = 1, 2, . . ., k, thus

by (59), a - a
y

	

B and a u + a v Q' B which completes the proof of our theorem .

6. It can be shown easily that for difference intersector sers, Theorem 7 is best possi-

ble . In fact, let B denote a sequence of the form

+ 00

B =

	

b t b, , . . . } = U ( n , n

	

+1, . . .,n i +j i

i=1

where n i

	

+- rapidly and j
i
- + -slowly . As Theorem 5 shows, this set B is

a difference intersector set, and obviously,

(62)	 b k+1 > 1 + e	 b		
k

k

where e k --> 0 arbitrary slowly .

On the other hand, we do not know whether Theorem 6, also Theorem 7 for sum

intersector sets are best possible . In other words, the following problems can be

raised :
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(i) Is it true that if litre f (N) _ + - then for e > 0, N > N u (e ), there

exists a sequence B C F (N) such that

B (N) < f (N) log N

holds, and A C l'([N/2] ),

implies the solvability of (47)?

[1]

MTA Matematikai Kutató Intézete
Reáltanoda utca 13-15

Budapest

A ([N/2] ) > e [N/2]

imply the solvability of (34)?

(ü) Is it true that if Ek -> 0 (and E k> 0) then there exists an infinite sequence

B= 3 b 1 b z , . . ., b k , . .- i such that (62) holds, and

lim inf A (N) > 0
N--a+ ~

	

N
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