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1. Throughout this paper, we use the following notations.

€ 15C,, ... denote positive absolute constants. We write e *=exp (x). log i deno-
tes the k—fold iterated logarithm. If x is a real number, we put {x } =x —[x | and
we denote the distance of x from the nearest integer (the "norm " of x),by Ix |1,
ie., lIxll =min { X — [x].[x] +1 - x} .For N=1.2...., I'(N) denotes the set of
the subsets of 1,2,..., N. The number of the elements of a finite set S is denoted
by IS|. A, B, .. denote strictly increasing sequences of positive integers. The ele-
ments of such sequences are denoted by the corresponding lower case letters, in other

words,e.g. A= {3 1:8g e }‘We write

An)y= Z 1(=|An{l2,.n})),Bn)= Z I,...

m= 2 1 { D Bm= T
ag n b <n

If the infinite sequence B = { b1 b, ,} is such that the equation

(1) a-a,=b

is solvable for any infinite sequence A = {a, A, ,} of positive lower (asymptotic)
density (in other words, B intersects the difference set of each of these sequences
A) then we say that B is a difference intersector set. (This terminology is due,

partly, to R. Tijdeman.)  Similarly, if

I
(=

2) a ta

204
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is solvable for any infinite sequence A of positive lower density then B issaid to be a
sum intersector set.

We shall use this terminology also for finite sequences B CI'(N). In fact, if
(3) A(N)>eN

implies the solvability of (1) (if N is large in terms of €) then again, B is said to be a
difference intersector set. In the definition of (finite) sum intersector sets, (3) must be

replaced by
A ([N/2])> eN.

Namely, if a  a, > [N/2] then a +a, > N thus B does notintersect the set of
these sumsa +a .

In [3] and [5] , respectively, the second author showed that both sequences
{ * 2% u? } and { 2—1, 3-1,5-1,...p l} are difference intersector sets,

More exactly, he proved that

Theorem 1 (A. Sarkozy, [3]). If N is large, A CI'(N)and

(log,N) 2/3

4 AN) >¢ N ——
(4) (N) > ¢, (ogN) 1/
then

(5) ax-ay=z> (z>0)

is solvable.
Theorem 2. (A. Sarkozy, [5]). If N islarge, AC I'(N) and

(ll’)gg I\]3 ll)g 4 N

6 A(N)> ¢, N
= ) = ¢ (log ,N)?
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then

(7) ay-a = p-—1

is solvable.

We guess that Theorem 1 is true even with N1/2+€

on the right hand side of (4)
but it seems to be hopeless to prove this at the present time. On the other hand, the
second author showed in [4] that the statement of Theorem 1 is not true replacing the
right hand side of (4) by
1 1 logN logsN |
N exp {(-—-€) ———— ((forany e>0and N >N _(€)).
2 log,N 0
Also, we guess that the right hand side of (6) in Theorem 2 can be replaced by Ne(for
c
any € >0) or, perhaps, by (log N) ’ . On the other hand, it is easy to see that there

exists a constant ¢4 such that Theorem 2 is not true replacing the right hand side

of (6) by ¢ 4log N, and the authors conjectured in [2] (see Problem 5) that
(8) A(N)/logN -+ o

does not imply the solvability of (7), in other words, for N — + <o there exist se-
quences A CI'(N) such that (8) holds and (7) is not solvable.

In Part I of this paper (see [1] ) the authors proved two general theorems saying
that if a sequence (b, ,b , .. b;} iswelldistributed simultaneously among and
within all residue classes of small moduli then it must be both difference and sum in-
tersector set. Also, they applied these theorems to mvesugate the solvablllty of the

a d
equations (——X—)=+1,( 3y S s R, YN % y=+1,
p p

a
(where (—) denotes the Legendre symbol) and to show that "almost all" sequences
P

are both difference and sum intersector sets.
The aim of this paper is to continue the investigation of difference and sum interse-

ctor sets.
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2. In this section, we show that our conjecture concerning the solvability of (7)
follows easily from a theorem of A. Schinzel, and we formulate two conjectures related

to Theorems 1 and 2, respectively.

Theorem 3. There exist constants ¢ s( > 0)and N  such thatif N >N ; then
there exists a sequence A C IYN) for which

log, N log /N

9
(9) A(N)> cs logN (log, N2

and (7) is not solvable.

Proof of Theorem 3.  Let us denote the smallest prime in the arithmetic progres -
sion kn+ £ (n=12,.) by p(k, 2).In [6] , A. Schinzel proved the following the-
orem:

There exists an absolute constant ¢, >0 such that for every 2% 0,

log , k log, k

p(k,L) >c, klogk
(log, k)?

holds for infinitely many k relatively prime to £.
Applying Schinzel's theorem with € =1 | we obtain that there exist infinitely

many integers k such that

log 2k loga k

(10 k,1) > ¢, klogk
) p(k,1) ¢ klog (log 30)°

For such a number k, let

(11) N=p (k.)-I

and

A

k) -1
k, 2k, 3k,..., % .k
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Then obviously, A CI'(N). Furthermore, a , €A, a, €A a. > a imply that
1 < a4, < p(kJ)-1, k/a —a g
or in equivalent form,
2 %ax—a}&l(p(k,l), a,—a y+1 =1 (modk)
By the definition of p(k,l), this implies that

ax—-ay+! *p

thus in fact, (7) is not solvable.

Finally, we have to show that also (9) holds (for large k). Obviously,

(12) A(N)= -

pk)-l N
k k

For large k, (10) implies (with respect to (11)) that

G log sk log 4k log a2k logs k
(13) N=pKD-1> = klogk -—2— B9 0 klogk —oi OB ©
2 (log 2k) * (log 3k)?
Let us put
log 2k log 4k
(14) x=c¢ 7k log k PNl

(log ;k) 2
Then for k - +00 we have log x ~ log k, thus we obtain from (14) that for large k,

1 X (logz x) 2 2 X (log 3x)?
(- ~k <=
¢, log x log 5 x log 4x ¢y logx logax logax

For large x, this is an increasing function of x, and by (13) and (14), we have N >x.

Thus
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(15) k<—
7 logN log, Nlog 4N

2 N (log 3 N)?
C

(12) and (15) yield that

N Cq log Nlog, N
AN)= —>— logN —*—2—
k (log ,N)?
and this completes the proof of Theorem 3.
As Theorems | and 2 show, both sequences
1 12 ,22,,..,2% ,} and {E—I, 3—-1,.,p—1,. are difference intersector sets.

On the other hand, this sequences are not sum intersector sets. In fact, if

A={147.. 3k} then

A(N) 1
i > -
N 3
however,
(16) ax+ay=12
is not solvable. Similarly, for A=14.7,...3k+1,...}, we have
A (N) ] 1
= ; i ke
N 3 N
but
(17) ax+ay=p—l

is not solvable. We guess that these examples are extremal in the sense that for € >0,

N >N 0( €),

A (N)

L
N 3

implies the solvability of both equations (16) and (17).
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3. In this section, we prove that if a{ >1) is a fixed irrational number then the

set
(18) B={[al,[2a] .., [nal,.}

is a difference intersector set but it need not be a sum intersector set.
In fact, let B be any real number satisfying § > 1 and let us put a=32 in (18).
Let

A=1{[8 1.[48] ... [(3k-2)B] ... }.
Then

AN 11

N 3B N

Furthermore, if a .= [(3x-2) f] €A, a y=[(3y-2) B ] €A then we have

ayta, < (3x2) B+ (3y-2) b= 3(xty-1) p-p = (xty-1) a-p <(xty-l)at < [(x+y-1)d
and
a,ta, >(3x2)B-1+(3y-2) B-1 = 3(x+y-2) B+2 f-2> (xty-2)a >[(x+y-2)a].
Thus the sum a  +a v lies between the consecutive elements [(xty=2)a],[(x+y-1) a]
of the sequence B, consequently,
dgtag= [na]

is not solvable. This proves that in fact, the sequence (18)isnot a sum intersector set.

On the other hand, we are going to prove that

Theorem 4. Let @ >] be any irrational number. Then there exist infinitely many

positive integers N such that

(19) A CT(N),
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(20) A(N) >a” N*%

imply the solvability of

(21) ay,-a,= [za].

X
Proof of theorem 4.

The theory of the continued fractions yields that there exist infinitely many positi-

ve integers p, q such that

1
(22) 0<a_._p < —

q q?
We are going to show that the integers N of the form
(23) N=pq

satisfy the conditions in Theorem 4.

(22) implies that for 1 <i <q,

iga >ip
and
- . . 1 -
iga <ip +iq- - <ip+1,
hence
(24) liga] =ip for 1<i <q.

For a sequence A sitisfying (19) and (20), let Aj denote the set of those integers
a for which a €A and a =j (mod p) hold. Then

W C s

(25) A= U Aj.

=1

By (20), (22), (23) and (25), there exists an integer j for which
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Ps %
AN o N2 ()TN N 4
lA.|> > > =) =1
. P P p Pq

holds, thus ]AJ-I =2. Assume that 0 <ay <ay,a €A,

j,a},EAJ—.Then

obviously,

(26) I <ay-a,< N=pq
and

(27) p/ay-ay.

(24), (26) and (27) yield that (21) holds with z =iq where i=(a —a Y),"p and this
completes the proof of Theorem 4.

(It can be shown easily that Theorem 4 is near best possible. In fact, the right
hand side of (20) can not be replaced by a function f(N)such that f(N) =0(NI’£)
holds.)

4. In Sections 4, 5 and 6, we shall investigate "sparse" intersector sets. In parti-
cular, in this section we discuss the case when the intersector set is finite. We show
that for N —+ oo there exist difference intersector sets B C I'(N) such that B(N)
is bounded; on the other hand, for sum intersector sets, B(N) = + 2 must hold. The

first statement is near trivial.

Theorem 5. If k, d are positive integers, € > 0 is any real number, N >N, (k,d,€)
and weput B= {b ,b,,..byxt=1d 2d,.. kd}, then ACT(N) and

1
(28) A(N) >(F +e )N

imply the solvability of
29) ay-ay=h, .

Proof of theorem 5.

Forr=1,2,..,d and i=0,1,2, ..., we write

A=A O (kDK T2) . e+ YK = 1) d )

(1,i)
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Then

d
(30) AC W A

For large N, (28) and (30) imply the existence of r, i such that | A iy| = 2. Then

there exist ay,ay with ay € A €A ay >ay. The difference ay-uy

(ri)> 2y (ri) °
of these numbers can be written in the form jd where | < j< k, thus a -ay € B

which proves the solvability of (29).

Theorem 6. Let
|
(31) 0 <e <—
4

If N>N (e) B CT(N) and

1
32 B(N) < — logN
(32) ™) 2log l/e E

then there exists a sequence A CI([N/2]) such that

. 1 N
(33) A(IN!21)>(7—€) [*2—‘}
holds and

(34) ax+tay =b,

is not solvable.

Proof of Theorem 6.
We shall need the following well-known theorem on simultaneous approximation:
Let k be a positive integer, a,,a,,.., ak,Q real numbers, 9= 1. Then there

exist integers g, p,..p;.---. Pk such that

(35) 1 <q<Q
and
; 1
ai i _EL |€
q qQ' /¥
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b i
Let us apply this theorem with k = B(N), a, = m (b1 b2 by, denote

€
the elements of a set B satisfying (32)) and Q= r [N/2] (forlarge N,Q = |

holds trivially). We obtain that there exist integers q, p, ,p, ..., p, such that (35)

holds and
| b Pi | 1
[N/2] q qQl/k
whence
q 1
‘W RS i
(36 ] b ]
) I W i ll== EUT

Let us define the positive integers r, s by

I
(37 —= rs)=
) s [N/2] ()
Then with respect to (35),
1 r €
(38) el Mg 2 o B
ss [N/2] [N/2] 4
For i=0,1,.,s-1,let A. denote the set of those integers a for which

hold. Then obviously,
s-1
{12 L N2] ) = U A,
i=0

and
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Aol = A == | Ayl
(note that s/[N/2] by (37)), hence

(39) Ay = /2] (for i=0,1,...,5-1).

S

Let us define the sequence A by

(40) A= iU i 1 Ay

1
w1 T
20];’1{ 2 20 /k
Then A C T ([N/2]) holds trivially. We are going to show that also (33) holds and (34)
is not solvable.

In fact, a € A, aye A imply that

q 1 1
<\ =)< 7 o™

and
1 q 1 1
Q< | N2 I S 2T
thus
R e N R e R R e
N2] & [Nm N2 Y7 29 0
_ 1
Ql!k
and
liq(ﬂx“a )’=|—L a ,+|-———q—-—a l< (_l__ : )+
N/2] oY IN2] IN2] Y 2 ol
1 1 1

"'(7_20—1“()=1‘ETE_
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q 1
Il _[N;‘—Z] (a, ta, )l >aﬂr.

In view of (36), this inequality yields that none of the integers b € B can be written
in the form ay +ay , in other words, (34) is not solvable.

Finally, by (38), (39) and (40), we have

(41) A(INJ"IQD=|A1 SEI | <;j_z<_1_'_- 1 | Al =
2000k 7s T2 aqllk
N/2
. IN2] ( z i T 1= z 1)
§ < ig —s i 1 _1 s
’ R QUK SIS

[N/2] S I B 2
ethes (7 5"(_2()17 s+1)—( QK st1)) = [Nf2](—2"—(—0"17i e )

1 1 2 1 1 €

With respect to (32), for fixed € and N— + o we have

1 1 1
G TG logQ@=exp(- oo log ET IN/21)

B(N)
2log 1/ € € 2log €
— = 0(1))) =
< exp ( e log 3 [N/2]) = exp( g N (log N+(0(1)))

=exp (2 log e+o(1))= (I+o(1))e 2.

Thus in view of (31) , we have

1
Ql/k

(42) < 2 =<i2

for large enough N. (41) and (42) yield (33) and the proof of Theorem 6 is completed.
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5. In this section, we investigate infinite (but sparse) intersector sets.

R. Tijdeman raised the conjecture (in a letter written to the first author) that if

B= {bi,ba,.t is aninfinite difference intersector set then
(43) lim inf el =]
koo b K

must hold. First we prove this conjecture™.

Theorem 7. IfA>1LB={b .by..b..} s astrictly increasing infinite
sequence of positive integers and
P b k+1 1 -
(44) il 2w A (1),
k=1.2,. bk
then there exists a strictly increasing sequence A = 1| a, ,a, ,....,ak,...} of positive

integers such that

A(N)
(45) lim inf =2 exp(— ( +1)log24)
= o8 log

and the equations
(46) ay—ay,=b,,
(47) a, +a =b,
are not solvable.

We shall need two lemmas.

Lemma 1. If
(48) 0 <7< 1,

and dy,d, ..., dy arepositive integers for which

d
(49) —ktl 5044 for k=12, ..
dy

*  Note added in proof. In the meantime, this conjecture has been proved independently also by C.L.

Stewart and R. Tijdeman. (Unpublishect yet ).
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then there exists a real number a such that
. v
(50) Hdkall?-ﬁ- for k=12 ...

Proof of Lemma 1.

We are going to construct intervals 1, , I, , .., Ik . ... satisfying the following
conditions:
(i) Theintervals 1, ,I,, .., Ik , ... are closed.

(i) Tpy 1y for k=12,...

(iii) x e I implies that

v
Idkxll = —
6

(for k=1.2,...).

(iv) The of the interval = [uy,v,] is

1 ¥ 1 ; e
— ,(1l=—) — ] satisfies (i), (iii) and

Obviously, the interval I; = [ X
6 d, 6 o

(iv). Let us assume now that the intervals Iy ,I,,..., I}, = [u,v ] have been defi-

ned. Then I~ can be defined in the following way:

With respect to (48), (49) and (iv), we have

v d 41 Y
dk+1“'k-dk+1Uk=(\'k—“k)dk+1=(1——3) . >( 1——3—)(2+1‘) =
k

Y
=2+ —(l-9) = 2.
3
Thus there exists an integer t such that

dyg Uy S U<t <dy, vy
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or in equivalent form,

t t+1
(SI) 1373 é—d'—< q = Vk.
k+1 k+1
Let
t+ l t+l - L
L= o P °
k+1 k+1’  k+1 ’ ;
dk+l dk+1

Then the interval Ik+l is closed. (ii) follows from (48) and (51). Furthermore,

forx €1 , we have
k+1

Y
g —
d d 8 =1+
k+1 X 2 k+l g =4
k+1
and Y
t+l— —
dpr o &y, e gl —
k+1 k+1 = = &
dk+l 6

which implies that (iii) holds (with k+1 in place of k). Finally,

T Y Y
B === i == i
6 6 3
Vipgp—Uu = - =
k+17 Tk+1
l:ik+l clk+] dk+l

thus also (iv) holds (with k+1 in place of k) and this completes the proof of the existen-
ceof intervals 14,k ,...,1, ... satisfying (i)—(iv).

By (i) and (ii), the intersection of the intervals I, ,1; ,..., I, ... can not be empty.
Thus there exists a real number a such that a € I for k=1.2,.... By (iii), this

number a satisfies (50) for all k and the proof of Lemma 1 is completed.
Lemma 2. If
(52) 0< 8«1,

k is a positive integer, ay,a, ..., a, areany real numbers, then for N >N° (6, k,

a v @y ), the number of the integers n satisfying
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(53) I<n<N
and
(54) ||na.i1| <§

(simultaneously for i =1, 2, ..., k) is greater than {2—) k N

Proof of Lemma 2.

Let us define the positive integer t by

1
(55) t> >l

For 1 < n< N, let P denote the point ( { na,}, {na,i... {nakD in the k—di-

mensional Euclidean space. Let us form all the k—tuples (r, ,r,,..r ) suchthat r ,

r, w0 areintegersand 0 < I < t—1 for i=1,2, ..., k. For each of these k—

tuples (rl, T, 4y T ), we form the k—dimensional cube consisting of those points

2

Ii r.+l1
oy et t for i =1, 2,..., k. The number of
t t

(X 15 X sery X, ) which satisfy

these number of these cubes is t X ,and each of the N points Py ,P, ,.., PN is contai-

ned in one of these cubes. Thus one of these cubes contains at least = of the points

By Bs oy PN. In other words, there exist integers n ,n, . such that Pnl i Pn: ;

..., P lie in the same cube and
5

56 N
(56) S?ﬁ

We may assume that n; <n, <++*<n,.Then

ll(nj—n ]) ai “:“ l'lj ai—n] ai"=" { njai}_{ 111 ﬂl}"Q{IE ai} _{nl ai}|<
<L <
t

simultaneously for i=1,2, ..,k and forall 2 <j <'s, and obviously,

0 <nj -n, <nj€ N for 2<j <s.Thus theintegers n=n, —n,, n,—n,,.,

n, —n, satisfy (53)and (54), and in view of (52), (55) and (56), their number is at
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least

N N N b .k
l>— - 1>— 1> =(—) N
(+ Dk (5)

for large enough N which completes the proof of Lemma 2.
Completion of the proof of Theorem 7.

Assume that the sequence B satisfies (44) and define the positive integer k by

(57) &% pagkt
Then
log 3
(58) k <
log A
For i=1.2,..k, let B i =1 D kDl R g Then obviously,
k
(59) B=UB
i=1
and with respect to (44) and (57),
b., .. it(+1)k—-1 b P+(j+1)k-1
+(j+ 1)k _ 1 nL S " A=A k23_
bk n = i+jk b, n=i+jk

Thus for each of the sequences B, , B, ....,B, we may apply Lemma 1 putting y =1
and with the sequence B; in place of d, ,d, .... We obtain that there exist real

numbers a g, @, .. a, such that
1
(60) b ajll 2? for b €B;

(where i=1,2,....k).

Let A denote the set of those positive integers a for which

1
61 aa|l<—
(61) la a;ll <
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(2]
tJ
[

holds simultaneously for i=1,2, ..., k. Applying Lemma 2 with §= i3 we obtain

with respect to (58) that

log 3
+1 )log 24)
0

Ik
A(N) > ( —21) N >Nexp(—(18A

which proves (45).
To complete the proof, we have to show that (46) and (47) are not solvable. By (61),

a €A a €A

? €A, a € A imply that

I
Ia-a ) e lI<la a i+ fl‘d}.ﬂill<F+ FE i

and
1

|
la,+a )a lI< lla, a li+]la, ai!KE + B R
By (60), this implies that a -a Yé Bi and I & B, for i=1,2,..,k, thus

by (59). a Ay & B and a o FE & B which completes the proot of our theorem.

6. It can be shown easily that for difference intersector sers, Theorem 7 is best possi-

ble. In fact, let B denote a sequence of the form

+ oo

B={b, by,.}= iljiini,ni .0 4

where g = e rapidly and j = + oo slowly. As Theorem 5 shows, this set Bis
a difference intersector set, and obviously,

b
k+1
— X S+ €
b

k

(62) «

where €, = 0 arbitrary slowly.
On the other hand, we do not know whether Theorem 6, also Theorem 7 for sum

intersector sets are best possible. In other words, the following problems can be

raised:
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(i) Isit true thatif lim f(N)=+ o thenfor € > 0,N > N (€), there

N-— oo

exists a sequence B CI'(N) such that

B(N)<f(N) logN
holds, and A C I'([N/2]).

A (IN/2]) > €[N/2]

imply the solvability of (34)?
(ii) Is it true that if €, — O (and € > 0) then there exists an infinite sequence

B= {bibigumab { such that (62) holds, and

ke
AN
lim inf L >
N— + o N
implies the solvability of (47)?
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