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On composition of polynomials

P. Erpos and S. FarrLowicz

We shall use the following notation: If A is an algebra then A will denote
the set of all n-ary polynomial operations of A, and A"’ will denote the set of all
polynomial operations of A: by an algebra over a field F we shall mean here a
member of the variety generated by F'=(F; +, +, (a),<¢), (we shall identify here an
algebra with its universe).

The following concept of order of enlargeability ¢ was introduced by E.
Marczewski in [4]:

e(A)=min {n WA= B S [AM Biwlh}
B

where the minimum of an empty set is assumed to be =, (Marczewski first called
£(A) the degree of extendability of A, but later he changed his terminology to the
above).

The order of enlargeability was studied extensively by Urbanik in [5] and [6].
Let y(A) be the minimal number of generators of a finitely generated algebraic
structure A. As usual if every element of A is an algebraic constant we put
v(A)=0, but if A is not finitely generated we put y(A)= . For any subalgebra B
of A let y(B, A)=mina(C) where C is any subalgebra of A containing B.
Further, we put yu(A)=sup y(B, A), where the supremum is taken over all
finitely generated subalgebras B of A. This concept was introduced by Urbanik
[5], who showed that in a number of instances it is true that y,(A)=e(A). We
shall show that this identity holds for algebras A over uncountable fields F, unless
A = F. (If the cardinality of F is Ny, then e(F)=1 but y,(F)=0.) For fields of
cardinality different than X, we have a stronger result, namely that if f: F" — F is
an operation such that for every i=n and (a,.. .., B4 YR, Hlys oo i X;
a,...,a, 1) is a polynomial, then f is a polynomial. J. Jones [3] has recently
published a problem corresponding to a special case of this theorem: F is the field
of real numbers, n=2.
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The idea of the proof of Theorem 2, below comes from Wolfgang Schmidt,
who proved that for the ring of integers we have that ¢ = 1. We are publishing the
theorem with his kind permission.

In the proof of Theorem 1 integers are identified with the set of their
predecessors. For the definition of bicentrality see [1] or [2].

THEOREM 1. Let F be a field of cardinality #N, and let {: F" — F. n=2_If
for every (a,,...,a, JeF" ' and i<n, we have that fla,..... -1, X
Q,...,0a, ) F", then fe F"".

Proof. 1f F is finite then the theorem is obvious because every operation on F
can be represented as a polynomial with coefficients from F. For infinite fields we
shall prove the theorem by induction on n. For n =1 the theorem is obvious. So
suppose the theorem is true for n, and let f:F"''— F, n=1. By the inductive
assumption it follows that for every a € F, the operation f(xy. x;...., %, y,a)€
F"™'. Thus for every ac F there exists an integer k, and functions f;:F— F,

B=0,1,..., ky— 1, such that

¥ 300 i 1 fia
f{xn.,...x,,_.,alz Z fﬂ{ﬂ]xﬂ x? I"'Xg["| ’, (*)
gekl

Because the cardinality of F is bigger than N, there are an integer k and an
infinite subset F,< F such that for every a<F,, we have k,<k. Let M be a
k" x k™ matrix such that for every a, B € k" the (a, B)-entry of M is the monomial

Bl BN Bin-1)
O+ Ala " °° Xn 1 + LET
-'j:"j{xf],l] ----- Xn—1.04 xII\I1'<-lxn-t.h""x”,k" Iywers Xn-1,k" l}

be the determinant of the matrix M. Since A is a linear combination of monomials
with coefficients =1 with no two of these monomials equal. A is a nonzero
polynomial and thus there are elements a,,€ F, ien, a € k" such that

AlBy 05505 Brim 1100 ByTsiss oa Bins 1Ty e 05/ QORN Ty0einis Emm 187 = 1) F QL

Let us consider the system of k" linear equations in the unknowns x,

. _ " By _pil & 1
HAua o s @n1a)= Z XgQoa Qra + s (e R (%)
s

where a € k". By the choice of a,, the determinant of the right side is different
from 0 and thus by Cramer’s rule the system (##) has a unique solution, which is a
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linear combination of f(dga. ..., @n-1.. a). Because for every aq, a,,.... a,-1 €
F", flag, ..., a, 1, x) is a polynomial, for every B € k" there is a polynomial mg
such that the solution of (*#) is mg(a). Again, because (*#) has a unique solution,
therefore in view of (*), for every a € F;, we have mg(a)=fz(a), Bek". Let

: 0)
'p(x[la--‘1xn—lvxn):f[xﬂa---1xn—!v-tn}_ Z Wﬁ(xn)xﬁ{ ------ . X Bmi Y
Bek™

Let (ay,...,a,—)€ F". Then y(x)= ¢(ay,..., a,-1, x) is a polynomial. But now
from (*) it follows that for every a € Fy, x(a)=0. Since F, 1s infinite y =0 and so
¢y = 0. Thus

f= Z el xh xR .., x8™ e, fis a polynomial.
k"

THEOREM 2. If F is a countable field then e(F)=.

Proof. To prove the theorem we have to show that for every n>1 there is an
operation f:F" — F which is not a polynomial such that for every n-tuple of
polynomials ¢, ¢, . . ., ¥, whose variables come from fixed (n—1) element set of
variable  f(y, U, . . ., yn,) is a polynomial. Let ¢ Y 1 — U, @a=
(Wi, ..., yn) -+ - be a sequence of all n-tuples of polynomials of n— 1 variables.
Since for every positive integer k the polynomials ¥, &5, . . ., ¢ are algebraically
dependent, there is a nontrivial polynomial o, such that o (k, us, ..., =0
Let m. =&y, 0, o and let X, ={xe F": m(x)=0}. Thus for [ =k we have that
Im ¢, < X,. Moreover, each of the sets X, is a subset of X, and Ji_, Xi =F".
Without loss of generality we can assume that X, # X, . Because each element
of F" belongs to all but finitely many sets X,. for every sequence ¢ of zeros and
ones the formula f(x)=3", &m(x) dcﬁnc:s an operation on F. Because Im ¢, =
X, we have that for every k f{g{f{ ..... U =Y Lem(h, .. 0N isa polynomial.
However different sequences g; yield dlﬁerem operations f and so some of them
are not polynomials. Thus Theorem 2 is proved.

THEOREM 3. If A#F is an algebra over a field of cardinality #X, then
e{A)=yolA).

Proof. 1f A# F then £(F)= y,(A), because by Theorem 1 £(F) equals 0 or I.
Because every two polynomial operations which are equal on F are equal on A,
by Urbanik’s Theorem 4.1 of [5], we have that e(A)=vy,(A).

Suppose now that k<ry,(A) Let f, be an operation such that



360 P, ERDOS AND S, FAJTLOWICZ

folx1,....x,)=0 if and only if the set {x;, x,..., x,,} is contained in a sub-
algebra generated by k elements. Because k < y,(A) there is an integer s such
that f; is not identically equal to zero and hence f, is not a polynomial.
Nevertheless, for every m, ..., me A we have that f.(m, ..., m)e A" be-
cause it is identically equal to 0. Thus y(A)=e(A) i.e. Theorem 3 is proved.

COROLLARY. Polynomial rings over fields of cardinality # X, are bicentral.

Proof. Let F be an uncountable field and let R be a polynomial ring over F.
Then R is a free algebra in the variety of algebras generated by F. If the number
of variables of R is infinite then the corollary follows from Theorem 1 of [2]. If
the number of variables is finite and equals n then by Theorem 3 £(R)=n. and
thus R is bicentral by Theorem 2 of [2].

Using Theorem 2 one may show that polynomial rings in finitely many
variables over countable fields are not bicentral.
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