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In this paper we prove that if & is an integer no less than 3, and if G 15 2
two-connected graph with 2n — a vertices, a={0; 1}, which is regular of
degree n — k, then & is Hamiltonian if ¢ = G and # =& 4k + 1 or if
= landn =2 — 3k 4+ 3.

We use the notation and terminology of [1]. Gordon [4] has proved that
there are only a small number of exceptional graphs with 2» vertices which
are not Hamiltonian when all vertices have degree # — | or more, The
present authors proved [3] that if &7 i a two-connected graph with 2n vertices
which is regular of degree n — 2 and if n = 6, then G is Hamiltonian, We
now partially extend that result to regular graphs of degree n — &, k = 3.

Throughout this paper we suppose that G is a graph with 2n — a vertices,
with @ = {0, 1}, which is two connected and regular of degree n — k, where
k is an integer no less than three.. Let P be a longest cyele in &, choose a
direction around P, let B = F(G) — V(P), and let r = | R |. For the lemmas,
suppose » = 1. By a theorem of Dirac [2]. /{P) = 2n — 2k. For v R, let
C, be the set of vertices of P adjacent to ¢, let A, be the set of vertices of P
immediately preceding elements of €, in the ordering of P, and let B, be the
sel of vertices of P immediately following elements of €, . The first lemma is
trivial,

Levma L. Lef v and wobe in B, Then v is not adiacent to any vertex in
A, B, A4, and B, are independent sets of vertices, and w is joined to-at
maost one vertex of A, and to at most one vertex in 8, .

Temma 2. Ifn = 3k + 2 — 4, then R Iy independent.
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Proof. Let (} be.a longest path in a component of R and suppose /(@) = 1.
Let v and w be the ends of @ and let d = max{deg,;,v, deg.z.wl. Then
(@) =d Thus O containg at least & 4 1 vertices. Going around P, let
there be t ocourrences of a vertex v joined to one of v or v and followed
(not mecessarily immediately) by a vertex = joined to the other of ¢ and w;
then there are at least  + 1 vertices between y and = on P which are joined
to neither ¢ nor w, for otherwise P could be extended, Thus 2n — r — g =
(P} = number of edges from ¢ to P + number of edges from w to £ —

numtber of vertices of P joined to.v and/or w -+ tid — 1) =30 — & — 3d +
id — 1. Since r and w are both joined to wvertices of P, t = 2. Further,
Il ==d=s»r—=1 This I —d=0. 1 follows that n <34 L1 — g But

f=3k + 2 — a, s0f((2) = 0and R is independent.

MNow we fix pandlet A = 4, 8= 8,,and € = C,, Let X = V(P)—
(AU BUClandlets = A4 — 8| = | 8B—A{ Itisecasy toses that 5 = |
when & 2=-3: By lemma 2 [A]| =18|=|C|=n—%k snd | X]|=
Zh—Ar+ &) — o Since | X ] =00 rd—=2h —n,

LemMa 3. Ifn=3k+2 — g thenr =<k — a.

FProof. Let d be the number of edges from R ta B Thend =+ — | by
Lemma 1. Also by Lemma |, B is independent. Thus there are (m — &)
(n — &k 4+ r) — 2d edges from R U B to the other n + k — r — a vertices
of G. Since & has (2 — aiin — &)/2 edges, (n — ko —k + 7)) — 2d + d =
(21— al{n—4&)/2, Irom which we get r = & — fa (b —da — 1)(n— &k —1).
Since ris an integer and = 3k 4+ 2 —ar < k—a.

Lemma 4. fffn = k2 -k + Liothene + 5 =k,

Progf. Suppese r + x>k By Lemmas | and 2, | E({4 v Bw R} =
3+ 2Ar— 1) Since | AW BWR|=n—k-+r—+x thers are at laast
(n — b+ r—=sin— k) —2{s* 4+ 2r — Pyedges from 4 W B U Rto O WX
further, | Cwu X =n -+ k—r— r—a Thus

H—fk+r+8n——2A+ 22— =L k—r—s—a\in—k),
whence {(using the assumption that r 4+ s = % = 1),

m=k A Ks® 4 2r — 20r -5 — &k 2+ 1))
Denoting this upper bound for i by fla. k. r, 5) holding a, &, and r constant,
and recalling that k| —r==s=2k —a— r, we find that fla k. r
& + 1 — r)isa maximum for /" except when'a — | and the pair {/, r) is in

{3010 (3,20, (4.3, (4,3), (5.3), (54, But in these exceptional cases,
SO0, &y o) < &® + k. Forther, in all 'other cases as r ranges through [1, k],
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treating the cases @ — 0O and @ = | separately and holding k constant, we get
fla, k, r, s) << k* + k. The lemma follows.

Leama 5. Ler X, be the subser of X such that the elements of X, are
adjacent to no vertices of A 0 B. Then

1y Fa=0|X13k—r—5-+1;and
(2) fa=1X12k—=r—23a

Proof. There are s intervals on P in which vertices of X might be found.
Number these intervals as 1, 2,..., & 'with »y; elements of X in interval § in such
a way that my , my, My ..., m, are even and ot M, g0, M, are odd, with
e = 0. It is easily seen that if two vertices of X which are successive around
P are both joined to elements of 4 M B, then there is a eycle of & larger than P,
Hence at least the smallest number of nonconsecutive elements of the
sequence of vertices in X in interval ¢, or {{m, — )2}, are not joined to any
vertex in A M B. Thus
BATIE o i el (BP0 { SN Ul |
Xal .X,. ( 3 2J .};—:; 3

=41
-3 3

Ha=0|X;| 2k—r—s+br=k—r—pr+ §sincer = 1. But | X; |,
k. r, and 5 are integers, 50 [ Xy =k—r—s+ L Wa=1 X =
k—r—s+r=12k—r—s—% whence | X,| 2k—r—as

I ¥ = %{s—rl == (2 —r — 25— gk

TueorEMm. Suppose k == 3. Then G is Hamiltonian if
(@) a=0andn=k*+k -+ 1,0r
(b) a=1ondn =2*— 3k 4 3.

Proof, Suppose G is not Hamiltonian. By Lemma 4, v+ 5 = k. By
Lemma 5 and the definitions, | AW BU ROV X, =n+ | — i Choose
# subset X' of X, such that |AVBURUX) | =n+ | —a By the
definitions and Lemmas | and 2, we have at most

edges from  to
5 4 B
| A R
k—r—35+1—a) A Xy
r— 1 8 R
stk—r—s-+1—a) B X,
fr—1)0k —=r—s4+1—ada) A Y
Uk —r—s—alk —r—341—a) Xl X
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in ¢ and no other edpes in {4 W BW RW X, ). Thus there are at least

=1 — g — &) — 2482 2F — 24k — =51 —a)
+r—Dk —r—s4+ 1l —ay+ Mk —r—s—adk —r—s+1—a)

edges from A W BW Rw X, to (€u X)— X, Since this number is less
than orequal to (n — 1}n — k), we get
2

2—a
+ {_-{ —{r+ 'F]' e o= ﬁ'l_l (2{;’ 4. g} =y o k= W = l'f} e 7} JJ

0 <k et s —r— 12+ 2 +5) 3

Since r == |, and replacing » + 5 by ¢ which now ranges in [2, k],

2 |
2—al

0=k +

(t— 20 +2r— 3

k=1 —a) (20— 2+‘5-—;-— )
Routine manipulation now shows that if @ = 0, thenn < £* + & — 1, while
if @ = 1, then » = 2k* — 3k + 2. Since n exceeds the specified bound in
each case. & 15 Hamiltonian,
Mon-Hamiltonian graphs satisfving the conditions of regularity of degree
n — k with 2n or 2n — | vertices, and two connectedness, are known. For
example, choose graphs My, H.', and K, such that H,’ is isomorphic to K, .
In V{H/}), choose disjoint sets A, and B;, each of cardinality 2r/3 — [#/3],
and form H, lrom H," by deleting from H,' a matching, each of whose edpes
joins a member of 4, to a member of 8, . Form a graph # by joining a new
vertex v to every member of every A; and a new vertex v to every member of
every B, Then, letting & = t + 2 and n = 3 — 5, H is non-Hamiltonian,
has 2» vertices, and is two connecied and regular of degree n — k. Many
other similar examples can be constructed, Thus the theorem clearly requires
some lower bound for n. But this lower bound surely is not as large as the
ones used here,
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