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In this paper we prove that if k is an integer no less than 3, and if G is a
two-connected graph with 2n - a vertices, a E {0, 1}, which is regular of
degree n - k, then G is Hamiltonian if a = 0 and n > k2 + k + 1 or if
a = I and n > 2k 2 - 3k =, 3 .

We use the notation and terminology of [1] . Gordon [4] has proved that
there are only a small number of exceptional graphs with 2n vertices which
are not Hamiltonian when all vertices have degree n - 1 or more. The
present authors proved [3] that if G is a two-connected graph with 2n vertices
which is regular of degree n - 2 and if n > 6, then G is Hamiltonian. We
now partially extend that result to regular graphs of degree n k, k > 3 .

Throughout this paper we suppose that G is a graph with 2n a vertices,
with a c {0, 1), which is two connected and regular of degree n - k, where
k is an integer no less than three . Let P be a longest cycle in G, choose a
direction around P, let R = V(G) - V(P), and let r = I R 1 . For the lemmas,
suppose r > 1 . By a theorem of Dirac [2], ((P) , 2n - 2k. For v c R, let
C„ be the set of vertices of P adjacent to v, let A,; be the set of vertices of P
immediately preceding elements of C, in the ordering of P, and let B,, be the
set of vertices of P immediately following elements of C,, . The first lemma is
trivial .

LEMMA 1 . Let v and w be in R . Then v is not adjacent to any vertex in
A,; u B„ , A v and B., are independent sets of vertices, and w is joined to at
most one vertex of A,, and to at most one vertex in B„ .

LEMMA 2 . If n > 3k + 2 - a, then R is independent .
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Proof. Let Q be a longest path in a component of R and suppose 1'(Q) 1 .
Let v and w be the ends of Q and let d - max{deg,Rw, deg ( , )w} . Then
l(Q) > d. Thus Q contains at least d + 1 vertices. Going around P, let
there be t occurrences of a vertex y joined to one of v or w and followed
(not necessarily immediately) by a vertex z joined to the other of L, and 14, ;

then there are at least d + I vertices between y and z on P which are joined
to neither v nor ii , , for otherwise P could be extended . Thus 2n - r - a -
I(P) > number of edges from v to P + number of edges from w to P ---
number of vertices of P joined to v and/or w + t(d 1) > 3n 3k - 3d +
td

	

t . Since v and w are both joined to vertices of P, t > 2 . Further,
1 < d < r - 1 . Thus 1 -d< 0 . It follows that n < 3k

	

I

	

a. But
n > 3k + 2 a, so /(Q) - 0 and R is independent .

Now we fix v and let A = Az , B - B,,, and C = C„ , Let X - V(P) -
(A U B U C) and let s - I A

	

B I - B A I . It is easy to see that s > l
when k>3 . By Lemma 2, IAI - IBI-- Cl - n-k and IXI -

2k-(r+s)-a. Since IX~>O,r+s<2k a.

LEMMA 3. If n > 3k 2 - a, then r < k - a .

Proof. Let d be the number of edges from R to B . Then d < r - 1 by
Lemma 1 . Also by Lemma 1, B is independent . Thus there are (n k)
(n k + r) -- 2d edges from R U B to the other n + k r - a vertices
of G. Since G has (2n a)(n -- k)/2 edges, (n - k)(n - k + r) 2d + d <
(2n -- a)(n - k)/2, from which we get r < k - 2a + (k - ? a 1)/(n - k-1) .
Since r is an integer and n > 3k 2 - a, r < k - a .

LEMMA 4 . If n > k2 + k l , then r + s < k .

Proof. Suppose r + s > k. By Lemmas 1 and 2, 1 E(<A u B u RJ
S2 + 2(r 1) . Since A U B U R I -- n - k I r + s, there are at least
(n--k+r+s)(n-k) 2(s2 +2r-2) edges from A U B U R to C U X;
further, I CuX ; =n+k r-s-a.Thus

(n-k+r+ s) (n-k)-2(s2 +2r 2)<(n+k-r-s- a) (n-k),

whence (using the assumption that r + s > k + 1),

n < k + [(s2 + 2r 2)/(r + s - k + a)] .

Denoting this upper bound for n by .f (a, k, r, s), holding a, k, and r constant,
and recalling that k 1 r < s < 2k -- a - r, we find that f (a, k, r,
k + 1 - r) is a maximum for ,f except when a - I and the pair (k, r) is in
{(3, 1), (3, 2), (4, 2), (4, 3), (5, 3), (5, 4) ; . But in these exceptional cases,
f (1, k, r, s) < k2 + k . Further, in all other cases as r ranges through [1, k],



treating the cases a = 0 and a = 1 separately and holding k constant, we get
f (a, k, r, s)

	

k 2 fi k . The lemma follows .

LEMMA 5 . Let X„ be the subset of X such that the elements of Xo are
adjacent to no vertices of A n B. Then

(1) if a - 0, 1X,1 >k-r-s+ ;and
(2) if a - 1,I X„I >k-r-s.

Proof. There are s intervals on P in which vertices of X might be found .
Number these intervals as 1, 2, . . ., s with m; elements of X in interval i in such
a way that ml , m 2 , m3 , . ., mP are even and n? v . , .l , M e- -2 I-, m, are odd, with
e > 0. It is easily seen that if two vertices of X which are successive around
P are both joined to elements of A n B, then there is a cycle of G larger than P.
Hence at least the smallest number of nonconsecutive elements of the
sequence of vertices in X in interval i, or {(rn; -- 1)/2;, are not joined to any
vertex in A n B. Thus
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2 (s - e) > 2 (2k r 2s a) .

If a=0,IX„I >k-r - s-! - 1r>k-r --s

	

sincer>1 .But,Xo !,
k, r, and s are integers, so Xo ? k - r - s + 1 . If a = 1, 1 X,,
k-r-s-{- -r-l

	

k r-s - '_, whence X,

	

k-r s .

THEOREM . Suppose k ~>- 3 . Then G is Hamiltonian if

(a) a=0 and s>k2 +k+l,or
(b) a - i and n > 2ík 2 - 3k + 3 .

Proof. Suppose G is not Hamiltonian . By Lemma 4, r + s <_ k . By
Lemma 5 and the definitions, A U B U R U Xo > n+ 1- a. Choose11
a subset X„' of X„ such that I A U B U R U X„' j- n+ L a . By the
definitions and Lemmas 1 and 2, we have at most
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in G and no other edges in (A U B u R u X,'j . Thus there are at least

(az + 1 - a)(n - k) 2 ls2 + 2r 2 + 2s(k r s = 1 a)
(r-1)(k-r s 1 a)+2(k-r-s-a)(k-r-s-{-I-a)}

edges from A U B U R U X„' to (C U X) - Xo ' . Since this number is less
than or equal to (n - 1)(n - k), we get

n

	

k

	

2
	2

a
{(r + s r - 1) 2 + 2(r ;s) - 3

-

(k

	

(r + s)

	

i

	

ca) (2(r + s)
k-(r+s)-a )~

2

	

1'

Since r + 1, and replacing r + s by t which now ranges in [2, k],

n +k=, 2 	~(t
2

	

2)2 + 2t

	

3
-a

(k t+I-a)(2t
2+ k t a))

Routine manipulation now shows that if a - 0, then n + k2 + k - 1, while
if a = 1, then n + 2k2 3k + 2 . Since n exceeds the specified bound in
each case, G is Hamiltonian .

Non-Hamiltonian graphs satisfying the conditions of regularity of degree
n - k with 2n or 2n - 1 vertices, and two connectedness, are known . For
example, choose graphs H,', H2 ', and H 3' such that Hi' is isomorphic to K, .
In V(Hi '), choose disjoint sets Ai and Bi , each of cardinality 2t/3 - [i/3],
and form Hi from H i ' by deleting from Hi ' a matching, each of whose edges
joins a member of A, to a member of B i . Form a graph H by joining a new
vertex a to every member of every Az and a new vertex v to every member of
every B i . Then, letting k = t - 2 and n - 3k - 5, H is non-Hamiltonian,
has 2n vertices, and is two connected and regular of degree n k . Many
other similar examples can be constructed . Thus the theorem clearly requires
some lower bound for n . But this lower bound surely is not as large as the
ones used here .
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