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EULER’S ¢-FUNCTION AND ITS ITERATES

P. ERDOS anp R. R. HALL

Introduction. In this paper we continue our study of the values taken by Euler’s
¢-function begun in [1]-[3]. Let ¢,(n) be the iterated ¢-function, that is
b:(n) = ¢{d, -1 ()} where p; = ¢. Let

V(x) = card {m < x:m = ¢,(n) for some n}.

In [2] and [3] we obtained, respectively

V() = Vi) < - 2 exp (Byloglog ),

ogx

X

Vi(x) > l exp{C(logloglog x)*},

ogx
and our present aim is to obtain an upper bound for V,(x). Our result is as follows.

THEOREM. T here exists an absolute constant D such that

X loglog x.loglogloglog x
Vo) € —=—exp (D 2 £oo08 )
log* x log log log x

Remarks. In the case r = 1 the simple lower bound V,(x) = n(x) is available.
When r = 2, the analogous result is V,(x) = n,(x) where 7,(x) denotes the number
of primes p < x such that (p — 1)/2 is prime. Evidently the numbers

¢2(p) = (p— 3)2

are distinct. Sieve theory suggests, but of course does not yet prove, that
n,(x) > x/log? x, so that apart from the second factor on the right our estimate is
probably sharp. We hope to return to the lower bound problem: our best result so
far is x/log® x for some fixed k > 2.

It may be that for every fixed r and every ¢ > 0 we have

x/(log x)"** < V,(x) < x/(log x)" %
Notation. v(n) denotes the number of distinct prime factors of n and w(n) the
total number of prime factors. P*(n) and P~ (n) denote respectively the greatest

and least prime factors of n. Other notation will be made clear in the proof.
It is convenient to work with the function

W,(x) = card{m : m = ¢,(n) for some n < x}.
This is smaller than V,(x), but since ¢(n) > nfloglogn we have
V,(x) < Wy(ex(loglog x)?)

and this does not alter the final result.
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LeMMA 1. For each fixed A, there exists B = B(A) such that

card{n < x: w(n) > Bloglogx} < x(logx) .

Proof. Choose an integer h# so that hlogh — h = A, and let w(m h) denote

the total number of prime factors of # greater than 4. For all y,
(l + ",)m(u. hy _ zr V\I(d](l 4 1_|)['J{d}—\'(d}
i d|n : i
where the dash denotes the restriction on d that all its prime factors exceed /. This
formula is most easily proved by noting that the summand on the right, and therefore
the sum, is multiplicative. Hence for 0 < y < &,
vid)

S @+

n<x d=x

(l 4 ],)wld)_“{lﬂ

<x II (1+——~y—).

h<p<x pP— b v
since d < x implies that all its prime factors are less than x. This does not exceed

xcxp{ 3 —L——] =.\'exp| 5 (‘+4‘“j_‘j_)}

h<p<x P — 1 -y h<p<x \ D ]}'(p - ] — _\"‘}

_ yi+y )
< x(log x)* exp { % mf '

The sum in the exponential is convergent, and if we set y = h — 1 we may deduce
that
3 A < C(h)x(log x)" !

where C(h) is a function of 4 only. Hence
card{n < x: w(n, h) > hloglogx} <€ C(h)x(log x)" 1 ~leeh
and by the definition of A, the right hand side is < x(logx)~*. Next, let
w'(n, h) = wn) — wn, h)

and suppose '(n, h) > sloglogx. Then n has a divisor d = p,*'p,**...p,™
where p,, ps. ..., p,are the primesupto hand o, + o5 + ... + a, = [ = [sloglog x].
Hence

card{n < x: w'(n, h) > sloglogx} < ¥ x/p,* p,**...p.** < X x/2,
where summation is over all choices of the exponents «; such that their sum is [.
There are at most (I + 1)" such choices, and so if s > A/log2, the right hand side
is < x(logx)™. Now put B = h+s. Then w(n) > Bloglogx implies either
w(n,h) > hloglogx or w'(n, h) > sloglogx, and we obtain the result stated.

LemMMA 2. Let A > 0 and u*> > 2v > 0. Then
card {n < x:v(n) = u, o{p®)} < v}
u? xloglog x

< x(log x)™4 + ————— exp{2u — ulog(u?/2v)}.
vlog x
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Proof. Let y > | > z > 0. Then the cardinality in question does not exceed

yEzTv 3y o O(x(log x)"4),
Jx<n<x
where the dash denotes that w(n) < B(A)loglog.x, moreover in the exponential
w¢(n) is simply a condensed form of w{¢(n)}. To see this, notice that integers
n < /x, or such that w(n) > B(A)loglogx are covered by the error term: for the
remaining integers the powers of y and z are respectively = 0, < 0, which gives the
inequality as 0 < z < 1 < y. Next, we deduce that for the integers # counted by
Y, we must have P*(n) > x'/?Bleloex  Hence

Zr yu-fu) :r.iqbln] -.{._ Zr _]_,\-(u)zm.p(uj zn 1

Jx<n<x n<x pln

S zn " E ],r(nll__r-;qﬁfm}l

px m<x/p

where "' denotes p > x'/2Blosloex that is, log(x/m) > (log x)/2Blog log x. Thercfore
the left hand side does not exceed

yx(loglog x) __ y*im zodtm

J_. Z Jr\'(m}‘..,{.-u,"f[m} :rr(.‘rf'm) @

m lOg X m m
rx(loglog x) / yz“"-‘".” yx(loglog x) 2yz
4—-——[](1+ )« exp( )
log x pex p =z log x l —z
by virtue of the estimate for 3 p~ ! z2~ 1) jn [2].
Hence

vx loglog x 2yz l — 2
V- S Thilo F ol R S 2 exp ( = ulogy + v ) ;

Jy=m=¢ Iog X 1l —=z Zz ;

and we choose z < | such that z/(1 —z) = /(¢v/2p), and y = w?/2c. This gives
the result stated.

LemMMA 3. Let A, B > 0 be arbitrary but fixed. There exists C = C(A, B) such
that
Cloglog x

card {n < x:9() > =SB 0fg(n)} <Bloglogx| < x(logx) ™
log log log x

This follows immediately from Lemma 2. Notice that for all n, w{¢p(n)} = w(n) so
that we get the same result if we demand that w{¢,(n)} < Bloglog x.

Proof of the theorem. Let us set A = 2, B = B(2), C = C(2, B(2)) in Lemmas
I-3. Plainly we may neglect any set of integers of cardinality < xlog~2x, hence in
view of our lemmas we may restrict our attention to integers » satisfying the following
conditions.

(i) w{p,(n)} < Bloglog x,

Cloglog x
(i) v(n) €< u = .—"—g'ig'\—.
logloglog x
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Let m = ¢(n'), n' = ¢(n). By condition (i), w(m) < Bloglogx, hence
m(n’) < Bloglogx. Either n’ < /x, in which case it may be neglected, or we may
deduce

(iii) P*(n) > x'/2Bloslwx _ ¢ say,
Hence we have
Wy(x) < 3 W(x, k) + O(x/(log x)?),
k<u

where
Wi(x, k) = card{n < x:v(n) = k, w{p,(n)} < Bloglog x,
PH(n) > x'/2Bloglogx)
We write (n) = w{¢,(n)} and
Si(x,2) = 3 2¥® 0<z<l,

where the sum is over the n’s counted by W (x, k). If p|n then ¢,(p"n) = p*¢,(n) or
D (p*)p,(n) according as p|¢(n) or not. In either case, Yy(p*n) = o + (n). Hence

Z [z\’!(n}: 1'] p= no} < (1 _ z}“'(-"“)z“”“”,

pln

and so
Si(x,2) < (1 —2)"* T |u(n)|z¥™

(where we have replaced #, by n in the sum on the right). Suppose that

n=pps-.PsPr <Pz <..<pp

By (iii) above we may write ¢(n) = n' = qr where r is a prime exceeding t. We drop
the condition that p, p,,....,p, should be ordered, and assume further that
Fl(py — 1). Then we have
==
(l — z) -,me‘!(qr}‘

T P L
W62 < ST

where gr = (py — )(p; — 1) ... (px — 1), p; — 1 = rd, d|q, and as before w¢ in the
exponent means mf{¢}. The sum on the right does not exceed

¥ zqu)z* pIL B

g<x/t dlq r<x/q

where Y ' denotes that g/d is of the form (p, — 1) (p; — 1) ... (p — 1), and %" that
both r, and rd + 1, should be prime. This is

dx/q
< Z zwé(q) Zf e T e
g<x/t dla ¢(d)log x/q

X Zz° adlq)

1
log tm P(q) nzin

where a(=g/d) = (p, — 1) (ps — 1) ... (pr — 1). Since ¢(q) > q/loglogg, and in
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view of the definition of ¢, this is

x(loglog x)? Z@d(ma)

= (ma = q)
log x a<x m Ma

x(loglog x)* 1y = zo8m
- S (Z ) z ———
log® x \ m

a<x =1 1

The sum over m (with no restriction) was estimated in [2], and that over a does not

exceed
1 \k-1
(2:5)
p<x p— l

Hence W (x, k) < z7Blsl¢* g (x 7) and

Silx,z) < N
-z

x(1 —z) *(loglog x + O(1))**2 2z
(k — 1)!log? x AR ( ) )

We choose z so that z/(1 —z) = logloglogx. Since k < u, we deduce from
Stirling’s formula that

b log log x.log log log log x
Sk(x,z)ql 7 exp(o( g log x.log log log log ))

og x loglog log x

and hence this estimate is true of W,(x), and V,(x), as required.
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