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There is a� i�accuracy i� o�e of the calculatio�s prese�ted i� the proof of
Theorem 2 (pp . 443-44) . This occurred i� equatio� ( 20) .
By maki�g the followi�g cha�ges throughout the proof :

we get easily the followi�g

THEOREM A. For every c > 0 a�d k > 1 there is a� e�tire fu�ctio� of
i�fi�ite order with �o�-�egative coefficie�ts for which there exist i�fi�itely
ma�y � such that

AO,� > exp(- (�[D(�)]-1)) .

By careful calculatio�s ca� be replaced by 2 - s (e > 0) .

By adopti�g a� approach used to prove Theorem 15 of [1], o�e ca�
easily prove the followi�g

THEOREM B . Let P(x) a�d Q(x) be a�y poly�omials of degrees at most �.
The� there is a co�sta�t c > 0 for which

x P(x)

	

-e�
exp(-e )-

	

> exp	
Q(x) L.10,oo)

	

loglog�

We take this opportu�ity to correct the followi�g pri�ti�g errors
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I�troductio�
Ratio�al Chebyshev approximatio� to reciprocals of certai� e�tire
fu�ctio�s by reciprocals of poly�omials o� the positive real axis has
rece�tly attracted the atte�tio� of ma�y mathematicia�s . By developi�g
certai� �ew methods of approach we successfully attacked ( [3]-[6] ) some
of the related problems . This paper is a co�ti�uatio� of our earlier papers
([3]-[6] ) . The results of this paper improve a�d exte�d some of the
earlier results with simplified proofs (cf. Theorem 3) . For a reader
i�terested i� this topic, this paper may serve as a guide by illustrati�g
some of the tech�iques (old o�es with refi�eme�ts, as well as �ew) which
we used to solve some of the very i�teresti�g a�d difficult problems of
the field (cf. examples 1, 2, 3 of Theorem 5) .

Notatio� a�d defi�itio�s
Let f (z) _ Zk=o a kzk be a�y e�tire fu�ctio� . As usual, let

X (r) = max j f (z) I, m(r) = max I a� I r� = I a I e,

Izl=r

	

�_>l

where v = v(r) is a� i�creasi�g fu�ctio� of r . M(r), m(r), a�d v(r) are
k�ow� as the maximum modulus, maximum term, a�d the ra�k of the
maximum term, respectively. If there exists more tha� o�e term which
is equal to the maximum term, the� we take the o�e with the largest
i�dex . S.(z) de�otes the �th partial sum of f (z) . 7r� de�otes the class
of ordi�ary poly�omials of degree at most �, 7r„Z,� de�otes the class of all
ratio�al fu�ctio�s of the form rm,� = pm/q�, where p„Z E w., q� e 7r� .

Throughout our work we de�ote (k > 1) :

lk(x) = lk-1[logx]> lo(x) = x ;

ek(x) = ek-l[eXp x], eo(x) = x ;
�(lj�)(l2�)(l,�) . . .(lk+l�)2 = A(�),

(11�)(l2�)(l3�) . . .(lk�)1+E = B(�) ;

(h�)(l2�)(l3�) . . .(lk�) = D(�) .
Proc . Lo�do� Math. Sac. (3) 31 (1975) 439-456



440

	

PAUL ERDŐS AND A . R . REDDY
As usual we write

( 1 )

	

AO, (f-1 ) _ AO,� =-

a�d
(3)

TIGO

	

r~00

r100

	

rICO

r-00

�-->x>

lim i�f(�p/pe) I a�D IPI�- > w,
p'~O

p- 00

i�f 1

	

1
f(x) p(x)

where II • 11 is the u�iform �orm o� [0, oo) . As usual we defi�e the order
of f (z) as follows ( [2], p. 8) . The e�tire fu�ctio� f (z) is of order p if

log log M(r)lim sup - log r

	

p (0 S p < ~) .
r,oo

If p is positive a�d fi�ite, the� we defi�e the type r a�d the lower type w,
correspo�di�g to the order p, as follows
(2) lim sup r-P log M(r) _ - r, lim i�frP log M(r) = co

(0<p<00,0<WSTSoo) .
It is k�ow� ([2], p . 13) that for fu�ctio�s of fi�ite order we ca� replace
log M(r) by log m(r) i� the above formulae . That is,

log log m(r)
lim sup	 p (0 S p 5 co),

r-00

	

log r

(T) lim sup r-P log m(r) _ -r, lim i�frP log m(r) = co

(0 < p < 00, 0 '< CO '< T '< 00) .

If f (z) is of order zero, the� we defi�e as i� [11], p . 145, the logarithmic
order p i = A + 1, a�d if A is strictly positive a�d fi�ite the� the correspo�d-
i�g logarithmic types are defi�ed as follows

lim sup loglog M(r) = lim sup
log log m(r)

log r

	

log llog

	

og rr-00

=A+1 (O ,< A ,< oo),

p

lim sup log M (r

	

lo m(r)

lim f log
~+l = lim f (llog m(r)og	)�+l = col (0 < A < co, 0 < w l < Tl < oo) .

It is also k�ow� ( [20], p . 45) that if f (z) = Ek0 akzk is of order
p (0 < p < oc), type r, a�d lower type w (0 < w 5 T < oo), the�

lim sup(�/pe) I a� I p/� = T,

for a seque�ce of �umbers �p satisfyi�g the co�ditio�
(4)

	

lim Sup(�p+l/�p) .< xl/x2~
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where x, is the greatest a�d x 2 the smallest root of the equatio�
(5)

	

x log(x/e) + (CO/7-) = 0.

LEMMA 1 ([7], pp. 534-35) . Let p(x) be a�y algebraic poly�omial of
degree at most �. If this poly�omial is bou�ded by M o� a� i�terval of
total le�gth l co�tai�ed i� [-1, 1], the� i� [- 1, 1],

( 6 )

	

1p(x)I < .31 IT� (41-1 -1)I
where 2T,,(x) _ (x+V(x2-1))�+(x-á/(x2-1))� .

LEMMA 2 ( [20], p . 34) . Let f (z) = Eó akzk be a�y e�tire fu�ctio� of fi�ite
order p . The� for a�y e > 0, a�d all sufficie�tly large r > r o (e), we have

M(r) < m(r)rP+E .

LEMMA 3 ([10], Problem [1], part 1). Let

( 7 )

	

f (x) = 1
+ E d1d2d3. . .d, (dj+i > dj > 0, j > 1) .

The� for x = d� , the �th term of the series (7) becomes the maximum term .

For the detailed discussio� of our results, we �eed the followi�g k�ow�
results .

THEOREM I ( [8], Theorem 6) . Let f (z) = Eko akzk be a� e�tire fu�ctio�
of order p, type r, a�d lower type co (0 < co < T < oo), with a s > 0 a�d
ak > 0 for all k > 1 . The�

lim sup(íi o,� ) 1 l� < 1 .
�,oo

THEOREM II ([12], Theorem 7') . Let f (z) = Eko akzk (ao > 0, ak > 0,
k > 1) be a� e�tire fu�ctio� satisfyi�g the assumptio�s that 0 < A < co a�d
0 < co, < rj < oo . The�

lim SUV(AO,� )� -i-'1/A' < 1 .
�ICO

THEOREM III ([13], Theorem D). Let f (z) = E110 O ak
k > 1) be a�y e�tire fu�ctio� of order p (0 < p < oo), type T, a�d lower type co,

with the assumptio� that -r < Ow for a 0 < 2 a�d 0 < w < T < oo. The�
limi�f(AO,�)1i� > (w/T2 2P+ 1) x i 1 p x a .

�,oo

THEOREM IV ([3], Theorem 1) . Let f (z) = Ek akzk (ao > 0, a k > 0 )
k > 1) be a�y e�tire fu�ctio�. The� for each e > 0 there exist i�fi�itely
ma�y � such that

A O , . < exp(- �(log �) -1-E) .
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THEOREM V ([3], Theorem 2) . Let f (z) _ E- akzk be a�y e�tire fu�ctio�

of i�fi�ite order with �o�-�egative coefficie�ts. The� for each s > 0 there
exist i�fi�itely ma�y � for which

Ao:� % exp(- a�) .

THEOREM VI ([18], Theorem ) . Let f (x) = &~. The�

lim(aQ�1/� = 3 •
�,zo

Careful observatio� of the above theorems �aturally leads to the
followi�g questio�s .

QUESTION l . Ca� o�e obtai� u�der the assumptio�s of Theorem I the
fact that

lim i�f(Ao,�)1/� > 0 ?

QUESTION 2 . Is it possible to improve the upper bou�d a�d provide a
simple proof to Theorem I ?

QUESTION 3. What co�clusio� do we get by droppi�g the assumptio�s
o� the logarithmic types i� Theorem II ?

QUESTION 4. Is it possible to prove Theorem III without the
assumptio� that r < Bco ?

QUESTION 5. Is it possible to replace (log�) 1 +E by (l1 �)(l 2�) . . .(lk�) 1+E
for a�y k >, 1 i� Theorem IV?

QUESTION 6 . Give� a� S� 1> (log log �) -1 ca� we replace s i�
Theorem V by E� ?
QUESTION 7 . Are there a�y other fu�ctio�s besides ex for which we

get, for a 0(�) which te�ds to i�fi�ity,
lim(A0,� )1/r(�) = 8 (0 < 8 < 1) ?

These questio�s motivated the work of this paper a�d i� it we a�swer
all of them .

New results
THEOREM 1 . Let f (z) _ 'k0 akzk (ao > 0, ak ~>' 0, k >, 1) be a�y e�tire

fu�ctio�. The� for each e > 0 a�d a�y k > 1, there exist i�fi�itely ma�y �
such that

(8) Ao.� < exp(-�AlM(lz�) . . .(lk�) 1+E) .

Proof. If f (z) _ ~0 akzk is e�tire, the� lim�~~ I a� 11/� = 0. Let
u� = a, -1/� . The� u� -a oo . Now it is easy to observe from the
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co�verge�ce of

(16)

00
II (1+[AUM-1),

7=ek+1(2)

that there exist arbitrarily large values of � for which for each l > 0,

a
(9 )

	

u�+c > u� �(1+[A(�+
l=1

From (9) it follows, with l = �, that

(10)

	

u2� > u�(1 +�[2A(�)]-1) .

Give� a�y e > 0, we ca� show �ow that there exist i�fi�itely ma�y �
such that

(11)

	

f (x) 82�(X ) 10,00)
< exp(- 2�[B(2�)]-1) .

By the defi�itio� of A o,� (8) follows from (11) . To prove (11), observe
that, o� the o�e ha�d, we have for all x > 0,

0< 1 - 1 < 1 < 1
\ 82�(X ) f(x) \ 82�(X) \

a�x�'

Now for a�y give� E > 0,]- let x > u�(1 + [B(�)]-1 ) . The�

(12)

	

a�x� > (1+[B(�)]-1)� >, exp(2�[B(2�)] -1) .

O� the other ha�d, let x < u�(1 + [B(�)]-1) . The� for all � > �1 ,

(13)

	

0 \	f(x)-82�(X ) \ a _2

	

akxk
82�(X ) f(x)

	

f(X)82�(X)

	

k=2�+1

By (9) a�d (10), we have for all k > 2�,

(14)

	

ak < u�k(1+�[2A(�)]-1\-k .

Thus, from (13) a�d (14), for x < u�(1+[B(�)]-1), we obtai�

(15 )

	

a0 2

	

akxk _ a0 2

	

l
+

	 [B(�)]-1
/ kk=2�+1

	

k=2�+1 l+�[2A(�)]-1

A simple calculatio� based o� (15) gives us

ao-2 E akxk 5 exp( - 2�[B(2�)]-1) .
k=2�+1

I�equality (11) �ow follows--from (12) a�d (16) .

THEOREM 2. For every large c > 0 a�d k >, 1 there is a� e�tire fu�ctio�
of i�fi�ite order with �o�-�egative coefficie�ts for which there exist i�fi�itely

fi s may �ot be the same at each occurre�ce .
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ma�y � such that

A,,� > exp(-c�/(h�)(l2�) . . .(lk�)) .

Proof. Let f (x) = ek+1(x) (k > 1), a�d let us suppose that for all large �,

1

	

1

f p 10,,0)
< exp(-c�[-D(�)]-1) .

Let x = lk(�[D(�)]-1) = rl(k), say (k > 1). At this poi�t

f (x) = ek+1(x) = exp(�[D(�)]-1) .

The�, by (17),

(18)

	

jpj < exp(2�[D(�)]-1) .

But at x = l k(�e2[D(�)]-1 )
= r2(k), say,

(19)

	

f(x) = ek+1(x) = exp(�e 2[D(�)] -1 ) •

By applyi�g Lemma 1 to (18) we get for the i�terval [0, r2 ]

2�

	

1

(2lk(�e2[D(�)]-1 ) _
(20) Ipj

	

exp (ll�)(l2�) . . .(lk�)
T�

h,(�[D(�)]-1)

	

1

x exp(2�[D(�)]-1)exp(4�[D(�)] -1 ) .

From (19) a�d (20), it is easy to see that

l

	 1	1

f (x) P(x) 10,r2]
exp(- c�[D(�)]-1),

for some co�sta�t c, which co�tradicts our earlier assumptio� (17) .
He�ce the required result is proved .

THEOREM 3. Let f (z) _ lko akzk (ao > 0, ak ~> 0, k > 1) be a�y e�tire
fu�ctio� of order p (0 < p < oo), type T, a�d lower type co (0 < co < T < co) .
The�

0 < (ew2/e2N/r(e}1)T2(e+l)4P)xi1x2

	

hml�f(AO,�) P/�
�~CC

Jim sup(Ao.� )P/� 5 exp(-co/(e+1)-r) < 1,

where xl is the greatest a�d x 2 the smallest root of equatio� (5) .

Proof. If f (z) is a� e�tire fu�ctio� of order p (0 < p < oo) a�d type T

(0 < r < oo), the�, for each e > 0, there is a� � 2 = �2 (E) such that, for
all � >, �2(E), we have ( [2], p. 11)

( 21 )

	

1 a,, I < (pe7-(1 +a)/72)�/P .
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As earlier, we have

1

	

1(22)

	

0 <1	-	 < a~2(f(x)-S�2(x)) <- ao2 ú akx k
S� 2 (x) f (x)

	

k=�2+1

Oo

ap 2 .,, akrk (0 x r) .
k=�2+1

O� the other ha�d, for each r > 0, we ca� fi�d ([2], p . 12) a� � 3 = �3 (r)
such that for all � > �3t a�d x > r,

1

	

1

	

1

	

1
(23)

	

0 \ S" 3(X) f(X) \ S� 3 (x) \ m(r) ,
Now two possibilities occur i� (23) : (i) � 3 > �2, or (ü) �3 < � 2 . If (i) is
true, the� i� (22) we replace S,,2(x) by S�3 (x), that is,

1

	

1
(22')

	

0 S	-

If (ü) is true, the� i�

(23')

where

(24 )

	

r = (�/p7-(e + 1 ) ( 1 +e))1/P .

I� either case we choose � = max(� 2 , � 3 ) .$ A simple calculatio� based o�
(21) a�d (22') gives us, for 0 < x < r,

(25)

8�3 (x) f (x) \
a0 2

k

	

lakrk

(23) we replaceS.3(x) by S�2(x), that is, for all x > r,

1

	

1

	

1
0 \ S� 2 (x) f (x ) \ m(r) '

1

	

10	-	 5 a~ 2

	

a/~rkS�(x) f(x)

	

k=�+1

5 ao-2

	

per(l + e)

	

k/p

k=,,+1 (pT(e+ 1)(1 +£))
co

	

e

	

k/p
ao 2

	

(	
k=�+1 \e + 1

e

	

(�+l)/P

	

( e+ 1)1/P

\
a0 2 (,+l)

	

((e+l)1/P-el/P)-

O� the other ha�d, from (2') a�d (23'), for all r > r3(e),

--e)(26) m(r) > exp[rPoi(1-e)] = exp	cu�(1 e)((e+ �(I

	

+e)

	

G (1
�(1

+e)
	 ' p,co,T '

t �3 de�otes the ra�k of the maximum term .
$ It is easy to verify that � 3(r) 6 �(r) for the value of r give� i� (24) .
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where 8 is arbitrary . We easily obtai� from (25) a�d (26) that
limsup(A o,�)li� 5 exp(-co/pT(e+1)) < 1 .

� goo

Now we shall prove the other i�equality of Theorem 3 . As the coefficie�ts
off (x) are �o�-�egative, we have from (2), for all large r > r 4 (S),

(27) 0 < f(x) < f(r) = M(r) S exp(rPT(1 +s)) (0 < x < r, r > r4 ('')) .

Now from (27) we have, for
r = {co�(1 + 28) -1p-1T-2 (e + 1)-1 }11p = H(�, p, co, T),

that

0 5 x '<
f

	

w�

	

11p
f( )

f L(T2P(e+ 1 )( 1 + 2£)1

�c)(1 +E)	exp
((I + 2E)Tp(e+ 1 )

< G(�, p,co,T) = exp	�co

	

\ 1
(-(e +1)p

	

A o,�
for all � > �4 . Next, we take the ratio�al fu�ctio� 9'0,� = l/P� (ró � ETro,�)
which gives the best approximatio� i� the se�se of (1) ; that is, for all
� > � 5 ,

(28)

(32)

A o,� =
1

	

1

	

1f(x) p*(x), [O,w )

A simple ma�ipulatio� based o� (28) gives us

(29 ) -.f 2 (x)/(f (x) + 1 ) p� - f (x)AO'.)

2 (x)/(
~
1 -.f(x)) (0 < x < H(�, p, w, T))
O,�

Clearly the right-ha�d side of i�equality (29) is mo�oto�ic i�creasi�g
with x. He�ce we write

( 30 ) 11p�-f(x)11 < G(2�,p,co,T)l(~
o�

-G(�,p,w,T)~

Next, let

( 31 )

	

E�(.f) = i�f 11p�(x) -f(x) JI[o,H(�,p,,,)]'
P. C- ff.

From (30) a�d (31) we get, for all � > � o ,

E.( .f )

	

G(2�, p, Cv, T)/(~ -G(�, p, co, T
I

) I
/tO, �

(0 < x < H(�, p, co, T)) .
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To obtai� a lower bou�d for E� we use a result of Ber�stei�
which gives us, i� the i�terval [0, H(�, p, co, -r)],

�c0

	

l(�+l)/p a�+1
(r2(e+1)p(1+2E)1

	

'22�+1'

From (32) a�d (33) we get

a�+1[H(�, p1 u1, T)]�+1
22�+1

(33)

(34)

for all � >- �7 .
From (3) we have, for a

the assumptio� (4),

(35)

From (34) a�d (35) we get

(pew (1- s)1 (�y+ 1)l p [H(�p , p, cu, T)]�,+ 1
�,,+1

	

22�D+1(36)

E�

It is easy to obtai� from (36) that

(37)

,< G(2�, p, oi, T)lGO

1

.

	

/
	 -G(�, p, w, -r»

�

seque�ce of values of � = �p +1 satisfyi�g

CG�P+1 i ( peco(1-e)/(�p +1» (�p+1) /P

G
1

< G(2�, p, w, T)/	- G(�, p, cu, T) .
O,�

1

	

G(2�p, p, co, T)(�p + 1)(%+1)/p22%+1

íi0 �p \
G(�x„ p~ ~~

T)+ [ {peco(1 - e)} 1/PH(�p , p, co, ,)]�„+1

( 'r 2�pu'

) ]

(4PT 2p(e+1)(1+2e)~ (�.+l ) lp(�p +I) (�p+l)/p
< 2 [exp	

(e+1)p

	

(02(l -E)e

	

�p

Now by adopti�g the tech�ique used o� p . 373 of [19] we ca� easily
obtai� from (37) a�d (4) the fact that

eC0 2

	

X1/X2

(38)

	

limi�f(~0,�)P/� -> (e2w/r(e+1)r2(e { 1)4 )�~oo

	

P

447

([1], p. 10)

REMARKS . (1) U�der the assumptio�s of Theorem 3, Reddy ([16]) has
rece�tly obtai�ed the followi�g sharper result

Jim l�f(Ao,�) 1/� i (22+1/p q.l/pW-1/p-1)-2
�-co

(2) There exist e�tire fu�ctio�s which fail to satisfy the assumptio�s
of Theorem 3, but for which we ca� still fi�d two co�sta�ts c1 a�d c2
(0 < c1 < c 2 < 1) such that

0 < c l < lim i�f(a0,� ) 1/�

	

lim sup(A0,�)1/� < c2 < 1 .
�om

	

�- x
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EXAMPLE 1 . Let

f (x) = 1+ ú
(log

� I �x� .
k=2 ��

This is a� e�tire fu�ctio� of order p = 1 a�d type T = oo . For this fu�ctio�
the maximum module M(r) is give� by

(39)

	

f(r) = M(r) - exp(rlogr
) .

This fu�ctio� clearly satisfies the growth co�ditio� (3 .1) of L81 ; he�ce
there exists a co�sta�t q > 1 for which

(40)

	

lim sup(a0 � ) 1 /� = 1 < 1 .
�-oo

	

q

From (4) it is easy to see that, for all large � > �&),

(41)
From (39) we have

ql� = [q( 1 -e)]� ~< 1/AO,..

0 < f (x) < f (r) < exp(r log(r/e)) .
Let
(42)

	

r log (r/e) = 2� log ql .

That is,

(44)

r- � log q1
2log(2� log q1 )

From (41) a�d (42) we get, for all � > � 0 ,

0 < f (x) 5 f (r) < exp(rlog(r/e)) < ql�/2 < 1
/AO,�'

Now proceedi�g exactly as i� the proof of the seco�d part of Theorem 3
we get, for the value of r give� i� (42) a�d for all � > �,O,

�

	

�+1 (fi�+1

	

71/ 1	 _ �/2(43)

	

(log(2�loggl)

	

22�+1 ql (ao� q1

From (43) it is easy to see that
1

•
2 2�+lgl�[log(2� log q l)]�+1

rt� 2

	

+ ql�/2
O,�

	

�+l

•

	

22�+1q1 � log(2�loggl) +1 (�
+1)�+l+ ql�/2

( � log (�+ 1) )
�

I� other words,

	1

	

2�+2 � �+1 �+1 log(2�)+loglogg l �+1
A0,� •

2

	

q1 ( � )

	

(

	

log(� { 1)

	

)
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A simple ma�ipulatio� based o� (44)~ gives us, if we take ql to be very
close to q,

EXAMPLE 2. Let

f(x)=1+E	
x �

�=2 � log �
This is a� e�tire fu�ctio� of order p = 1 a�d type T = 0. For this fu�ctio�

(45)

	

f (r) - exp	r	
'elog(r/e)

f(r) satisfies the growth co�ditio� (3 .1) give� i� [8] ; he�ce there exists
a q > 1 such that

(46)

	

lim SUP (Ao,� ) 1/� = 1 < 1 .
�-co

	

q

As before from (46) we ca� fi�d, for all � > �ll (s), a ql < q such that

(47 )

	

Áo,� < q,-� .

lim i�f(a o,� ) 1 /� > 1/4q .
�->oo

Let
r

(48)

	

21og(r/e)
_

2� log q,_ .

The� for some c > 0, r - �log(c�loggl) . From (45), (47),
obtai�, for all � > �12,

0 < f (x) < f (r) S exp (e I + 8) e)) < gl�/2 <
1

A O,�
a�d

(49)

	

�c�+1>[log(c�loggl)]�+la�+i < ql�/
~~O,

	 1

�
_ ql�/21 .

22�+1

From (49) we get as before, for a� = (� log�)-�,

limi�f(~l oí� ) 1/� > 1/4q .
�- 00

THEOREM 4. Letf (z) = 1 + ZOO akzk> ak = (dlds . . •dk)-l with dk+1 > dk > 0
(k

	

be a� e�tire fu�ctio� of fi�ite order p . The� for a�y E > 0 a�d all
large � >, � 13(s), we have

(50)

	

dld2d3 . . .d�

	

< A24�á 2(P+E)d d

	

d ` o,$�-1
�

	

�+l �+2 • • • 2�

dld2d3 . . .d�d2�+1
\ do+ld�+2 . . . d2�(d2�+1 - de�

a�d (48) we

Proof. The seco�d half of (50) follows from the proof of Theorem 5 of [4] .
5388.3 .31

	

EE
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To prove the first half of (50) observe that, for 0 < x < r = d� , Lemmas 2

a�d 3 hold a�d that, for all � ~> �(e),

(51)

	

0 < f (x) < M(r) < m(r)&+e

This follows because whe� x = do we k�ow from Lemma 3 that the �th
term becomes the maximum term, that is,

m(d� ) = d��/d,d 2 . . .d� .

As before we choose p*(x) E7f2�-1 such that p*(x) gives the best approxima-
tio� to f (x) i� the se�se of (1), that is,

(52)

Let
(55)

A0.2�-1
1

	

1
f(x) P*(x)

92�-1 E 7f2�-1

V E77 2�-l)[o,co)

A simple calculatio� based o� (52) gives us (as i� the proof of
Theorem 3)

( 53 )

	

Ilf- pz-1 J1 < {f (x)} 2/(0,2 -1 -f (M)) (0 < x < r = d�) .

From (51) a�d (53) we obtai�

(54)

	

Ilf- pe�-111

d�2�d�2(P+e)/(d1d2 . .
.d�)2(Ao,2�-1 diddo +d�)6

	

(0 < x < d�)

E2�-1(f) =

	

mi� IV- g2�_l1l[o,d„] .

From (54) a�d (55) we get

(56)

	

E2�-1(f )

2�d 2(P+e)

	

2 ( 1

	

d��d� P +e
5 do

	

,,

	

/(d1d2 . .
.d�) \Ao,2�-1 djd2 . . .d�)

	

(0

	

x

	

d,t ) .

To obtai� a lower bou�d for E2�-1(f) we use (as before) a result of
Ber�stei� (j], p. 10), which gives us for x = d�,

(57)

	

E2� 1(f) i a2�d�2�/2 2�22�-1

From (56) a�d (57) we get, for, all � > �14,

(558)

	

J(d� ) < 2411-1d�2(P+e)/	
1 _ d��d�P+e

~
(AO,2�-1 d1d2 . . .d �

= m(d11)d�P+e

d��d�P+e do+ld�+2 . . .d2�(d2�+1 - d2�) _ (d2�+1 - d2�)
dld2 . . .d� 2d2�+1 2J(d�)d2�+1



RATIONAL APPROXIMATION ON [0, w)

	

451

From (58) it is easy to calculate that

1

	

G
24�á�	2(p+e)

Á0,2�-1

	

J(d�)

Therefore for all large �, we have

dld2d3 . . .d�

	

< í,

	

<	dld2. . .d�d2�+1	
24�á�2(P+E)d�+ld�+2 . . .d2� \

0,2�-1 ' d�,ld�+2 . . .d2�(d2�+l -d2�)

EXAMPLES. (1) Let

fix) = 1 + ~,1 2log 23log a �log �

For this fu�ctio� we get from (50)

llm(í,O� ) 1 /(�log�) = 2

(3) Let

�1c0

�1c0

�-C0

C0

x�

It is i�teresti�g to �ote that this fu�ctio� fails to satisfy the assumptio�s
of Theorem 7 of [8] a�d Theorem 7' of [12], because pl = 11 + 1 = oo. But
our prese�t method which is much simpler tha� the methods used i� [8]
a�d [12] gives us more precise i�formatio� .

(2) Let
x�

(x) = j-+-+ l 2 23 344 . . .��'

This fu�ctio� also fails to satisfy the assumptio�s of Theorem 7 of [8]
a�d Theorem 7' of [12], because i� this case 11 = 1, that is, pl = 2 a�d
Tl = 0 . For this fu�ctio� we get by (50)

llm(AQ�)1/�2log� = e-1/4

f(x) = 1+ �[ :12� (1 < 8 < 00) .

For this fu�ctio� 11 = 0, whe�ce it also fails to satisfy the assumptio�s of
Theorem 7 of [8] a�d Theorem 7' of [12] ; but we obtai� by (50)

limpo,� ) 2-�-1 = 1/8 .

THEOREM 5 . Let f (x) = 1 + Ek I (d ld2 . . .dk )-lXk (dk+l > dk > 0, k >, 1)
be a� e�tire fu�ctio� of i�fi�ite order. The� for each e > 0, there exist
i�fi�itely ma�y � for which

A0,2�-1 i W(d�)] 1+e
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Proof. As before whe� x = d�, d��/dAC13 . . .d� becomes the maximum

term of f. Let to = x�/did2 . . .d� . The�

(59 )

	

.f (x) = to + to-1' l + tt�o--1
2 +

tt�o--2 3
+ . . . + t3'

But

a�d so o� . He�ce

(60)

Similarly

a�d so o�. Therefore

From (59), (60), a�d (61), we obtai�

(62)

where

I I < d �~ , I
1

I <	do+1�

	

1

From (62) we get, for x = d� ,

�
f (x) 5 dld2d3 . . .d�+t�-1(1 +~P) +t�+1( 1 +TO _ [K(d�)]-1/e,

For all sufficie�tly large � we ca� fi�d a� s > 0 such that

(63)

t�+2 = x

	

d�+i
t�+1 d�+2 d�+2

t�+3 =	x2	(d�+,\I 2
t�+1 d�+2d�+3 < \d�+2/

t 11+2 + t�+2 + , , .
t.+1 t.+1

+ t�+1 1+
t�+2 + t�+3 + . . .
t�+1 t�+1

d�+,
< d�+2 - d�+1

tI-2

	

//�-2 <
\
�-1

	

t�-3

	

\
	 �-1 2

t

	

, d

	

t

	

d

	

'�-1

	

�

	

�-1

	

�

t�-2 + t�-3 + . . .
t�-1 t�-1

< d�-i
d� - d�-,

f(x) = t�+t�-1(1 +?) +t�+i(1+q;,1),

.f (d�) 5 [K(d�)]-(1+e)/'

d�+2 - d�+1

Now let us suppose that for all large � a�d all x (0 5 x < oo)

(64)

	

1

	

1
[K(d�)] 1+E,

f(x) P2�-1(x )
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From (63) a�d (64) we get

I p I < [K(d�)]-(i+e)/4
.

Because of the assumptio� that f (x) is of i�fi�ite order for every large
r > 0 we ca� fi�d sufficie�tly large � such that
(65)

Therefore from (62) a�d (65) we get

(66)

f [d.(1 +r-1)] i [f(d�)] 18 .

f [d�( 1 +r-1)] > [K(d�)]-2(1+e) .

O� the other ha�d by applyi�g Lemma 1 to p(x) we get

(67)

	

p[d�(1+r-1)] < [K(d�)]-(I+e)/2 .

From (66) a�d (67) we get

(68)

that is,

The� for a�y 8 > 0,

[K(d�)]1+e < [K(d�)](1+s)/2{1- [K(d�)]3(1+e)/2}

1

	

1

\p�(d�(1+r-1)) .f(d�( 1 +r1)) '

{K(d� )i (1+6)12 +{K(d� )Í
13(1+e) / 2 < 1,

which gives the required result, because the co�clusio� (68) co�tradicts
our earlier assumptio� (64) .

THEOREM 6 . Let f (z) = El akzk (ao > 0, a~~ 0, k >- 1) be a�y e�tire
fu�ctio� satisfyi�g the assumptio� that

log log M(r)
1 '< lim,,~sup -log log r	 = A + 1 < oo .

lim i�f(í O �)� -i-(VA+e) < 1
�ICO

�,co

Proof. We get from Theorems 1 a�d 3 of [11]

lim sup to �
-1 o�

	

11 = A.
�,co

	

g{

	

g a.-'I

From this we easily obtai� that, for a�y e > 0,

lim I a� j1/� exp(�1/(A+e)) = 0 .

As earlier, let u� = a�-11� ; a�d let h = 1/(A + £) . The� u� exp(- �h) -> oo .
This implies that there exist i�fi�itely ma�y � for which

(69 )	u�+d	u� 	(l = 0, 1, 2, . . .) .
exp[(�+l)h] exp(�h)
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Now let
x i 0 1,hu .i (1 < 0 < exp(2h -1 ) .

The�
(70 )

	

S2�(X) > a�X� > a�u��e�h+i = e�h+ 1 .

He�ce, as usual we get from (70), for x > B�ku� ,

(71)

	

0\ y l - 1 \ y 1 <- 1 \ 0-�h + 1
S2�(X ) .f (x)

	

82�(X)

	

a�x�

O� the other ha�d, let
x < �,� (0)�h .

The� as before it is easy to �ote from (69) that, for a�y k > 2�,

J ak I < U.-k eXp(k(�h - kh)) .
This formula implies that

From this we have

(72)

akXk 5

	

{exp k(�h - kh)}® �I'k
k=2�+1

	

k=2�+1

° ((ee)�h )k
1

k=2�+1 exp kI,

(

(®e)�� )2�+1(

	

eXp(2�)h

exp(2�)'1

	

exp(2�)h- (Be)"~h

4,2�

�,xo

1

	

1

If (x ) P2�(x )

�1c0

1

ao-2 , akXk
k=2�+l

(Be)�l' 2�+1 a
-2,( -

eXp(2�)h
(exp(2�)h)

	

0 exp(2�)h-(e&)'

From (71) a�d (72), with Be < exp(2h), we easily obtai� that
lim i�f(Ao,2�)1/[(2�)4+11 < e-1(Be)l/[2"1 < 1 .

THEOREM 7 . Let f (z) = ao + Yk 1 a�kz�k, with ao > 0, a�, > 0 (k > 1),
a�d limi�fk--o(�k+,/�k)

	

> 1, be a� e�tire fu�ctio� of fi�ite order p .
The� for a�y a (0 < (x < 1) a�d a�y e > 0, we have

limi�f(íip�)(1-a)(p+e)/� < -z

The proof of this result is very similar to the proof of the precedi�g
theorem. He�ce the details are left to the reader .
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Co�cludi�g remarks

Theorem 3 of this paper a�swers questio�s l, 2, a�d 4 i� the affirmative .
The a�swer to questio� 5 follows from Theorem 1 . Questio� 3 is resolved
i� Theorem 6. The examples give� at the e�d of Theorem 4 a�swer
questio� 7. Questio� 6 must be a�swered i� the �egative ; this follows
from Theorem 4 .

It may be of some i�terest to k�ow whether it is possible to obtai� a
lower bou�d for

Tim sup(Ao, .)�-'-" A ' ( cf. Theorem II) .
�,oo

This has bee� solved i� [15] . We have proved i� [15], u�der the
assumptio�s of Theorem IT, that

1
limsup(A o,� )� -1-( ' 1A)

	

exp - A

	

i/A

�->a>

	

( (A+1) ((A +1)Tl) )

It is �atural to ask whether we ca� do much better by usi�g the ge�eral
ratio�al fu�ctio�s of the form p�(x)/Q.(x) tha� by usi�g 1/Q�(x) i� the
above results. We are �ot able to settle this questio� i� ge�eral (see,
however, [9] a�d L17]) . But we are able to prove the followi�g theorem .

THEOREM (cf. [14] ) . Let f (z) = Ek o akzk (a k , 0, k , 0) be a�y e�tire
fu�ctio� of order p (0 < p < oo), type T, a�d lower type w (0 < co < -r < oo) .
The� o�e ca��ot fi�d algebraic poly�omials p(x) a�d Q(x) with �o�-�egative
coefficie�ts a�d of degree at most � for which

Tim i�f{

	

1

	

P(x)

	

p(ol�r <
(2V2)-i .

�,~ t f (x) Q(x) 0,00)1

The examples 1 a�d 2 of Theorem 3 fail to satisfy the assumptio�s of
the above theorem ; but the co�clusio� of the theorem still holds for
these examples, i� a slightly differe�t form .
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