APPROXIMATION BY RATIONAL FUNCTIONS
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Introduction

Recently approximation of ™ * by rational functions has atiracted the attention
of several mathematicians (¢f. [2]-[5], [T}-[10]). In this paper we present several new
results. Some of the methods used here may be applied successfully to several related

problems.
As usual we use throughout our work |« I| to mean the maximum modulus within
the sel of points under consideration,

Leéntmis
Levsa | [BY Ler p(x) be a polynomial af degree at most 0 having only real zeros

and suppose that p(x) = Don [a, b). Then [p(x))'" is concave on [a, b].

Lemmia 2 [1: po 10]. Ler fix) be a function which is (n+ 1) times conrinueusiy
differentiable on [a, b] and satisfles the further assumption that |f"*Y(x)) = M =0
for all xe [a,b]. Then for any polvnomial p(x) of degree ar most n,

Hb—a)'' M

£ Cxd=plx) g, i1 = 4o ¢

Lemma 3. Led Plx) be any polynomial of degree at inosi 2n satisfying the assumpiion
that' | P(k)| ix bounded by 1, for k=0, 12, .., mn+1, 0,20 Then

mux | P{x)| < nd", (1
[0, 2wl

Praaf, Itis well known that P(x) can be written as

‘@u Plx) 100, (2)
where
(x) = (x—=xXp) (X=2p). X =20 ) (X = X35 1) fX—205) ) 3)
(%= Xp) {3 =%y} (X=X ) (6= X ) (55— X2,)
and x, = k.
From (3), we obtam for 0 € v < 2n, n = 1,
L) < (2n) (2n—1) (20—2)... (20—} (0— (n+ 1)) (0—(n +2))...(0—2n)
‘ 2n—=D (D) (=1 (i=2). (1) (= 1) (=2)...0i—2n)
b (n1) ™ a{2m)! (201 n(2m)! 2 4
3 (20—0) (0! (20—=0)!  W2n=1) ( n ) i
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Hence we get from (2) and (4,

PEI< $ Max Pt < 1) 8 2 _ g
{Jr}]ﬂr_gn E.Xl {xilli{xfﬂ( H‘)Igﬂ {Eﬂ—ijﬂ by i

Lemua 4, Let plx) be a polynomial of degree at most n. 1f this polynomial is bounded
by M on an imterval [a,b) = [e, d], then throughout [e, d] we have '{he relation
2(d—c) I )
(b—a) i

1P| < Mt'ﬂ( )

Wihere
2T(x) = (x-+/ (P = 1)) + (3= (* = 1))
Proof. The inequality (5) follows easily from [11; (9), p. 68].

Lemsa 5. If Q(x) be a polynomial and A denotes the difference operator with
increment 1, then

A a® 0(x)) = a*(aA+a—1)""" Q(x). (6)

Proof. Tt is well known [6; (10), p. 97] that
Mg il
A™(a* Q(x)) = E{, ( ; ) AL Q) A" E (7)
I=
where E= 1+ A. A little computation based on (7), along with the well-known
fact that
m i
a(re) = £ rr( ) ) reerh,
k=0 k
will give us the required result,

Lena 6 [6; p. 13). Iff (x)is a palynomial of degree at most n+ 1, thea

nt+l ..|.'
(=8 fx) =5 ("il)afﬂxm (®)

Henceforth we let N denote the set of non-negative integers.

T hearems

TreoreMm 1. Let pix) and g(x) be any polymomials of degree at most (n— 1) having only
non-negative coefficients. Then

|- 2()

i i @

L)

Proof. Let us assume that (9) is false. Let f(x) = &%; then thereexist polynomials
p(x) and g(x) such that at the origin and each positive integer

SR 7] S
7@~ a@ | amett

(10)
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Mow at x = n,
fix)=f(n)=¢" (1)
At this point
i +1
lala | ‘ a) | (" ) " (12)
Lo | | pm) n
11 (12) were not valid, then (10) would be contradicted.
Aty =n+1,
fl)=fln+1)=e"" (13)
From (12), and the assumption that p(x) and g({x) have non-negative coefficients, we
have that
1 u—1 1ym
gin+1) | {n-l: Y g : (n—l— ) " (14)
pln+1) | | n* 1 pla1) n

From (13) and (14), we get easily for x = n+ 1, that

L ()i L

dpett 5 n+ 1 g(x) fx)’ (15)

The relation (15) clearly contradicts (10) at x = a+1, and hence the result is
established,

Taeorem 2, The rational function

o

f t"r—xe " dt
1]

J. Mt x™ e dt
satisfies o

Fim, alX) =

"
(m-+m™t (m )

||'e_"-rml,,fx]|| Lofor] =

(16)

Proof, Ttis easy tocheck thatfor0 € x < 1

L m L]

j f"{f—'x}mf‘_'rﬂ‘ L] j!"{r—_‘c]"'t'_'ﬁff—-'- i‘“l:f-i-.r}"'t’_[”*}dt
0 e e ] o
= —g 5 = =

J- £t +x) e dt J. Mt +x)" e dt

4] 0
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o0 o

" !"{I—x}’"e":ff- !.n U_'_x}m#'rdl,
ey

a
'

J o rm) e e
0

X

f 1"(x—1) e (= 1)"dt

1

J. ™) e e

]

x x

I-r"{l—:}“'e"d; J Pl =" e~ dr

o 1

07
= = 5 (i}l ol
Jlm+“f‘_rd|!
o

It is easy to verify that ¢"(1 —¢)" attains ils maximum on [0, 1] for

n
t = = (18)
m4n
From (17) and (18), we get the relation
_[ (L= )" e~ dt
o 2 w" "
(m4n)! (m+n)™ " (m )
Henece the result (16) is proved.
THEOREM 3,
I |
I [
e — ———— £33 (19)
|| 2|
i o () |, o

Remark, This theorem is already known (¢f. [2]). But the proof presented below
is very simple.

Praof, 1t is known that
E
.-

noo 1 oo
Si= B f e (14 x)" dr.
g=o &1 n! .
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Therefore

=tyrdy— =1 LF
__Ell‘effl;l.r:rt
5,(x) i iy
’- et +x)dt
o

itdi i R e
= I"fe < ”{ "? -2,
‘w e t+x)de I e "2y dt
i 1]

Hence (19) is proved.

TuroreMm 4. Let pl(x) be any pelynomial of degree at most n having only real
negative zeros. Then

g — X

l plx) || i) ¥ dne® (20

Proof. Let us assume that p(x) = 0 on [0, 2]. Then according to our Lemma 1,

[p(x)]*™ is coneave on [0, 2).

Therefore
2[p(D1Y" = [P+ [p(2)]"™ (21)
Let us write for p{x)atx =0, 1 and 2,
lle*=p(x)| = e. (22)
Then
pi) = 1=,
@
pi)gsetesg Wi (23)

p(2) =z et —ez et —ete = e(1—p)

From (21) and (23}, we have

zei,'il
m = (1=g)V"+e* 1 —g)'", (24)
From (24), we get
1 g MRy glin 1
G- = Tz St g s

From (25), we obtain

nf2 1 4n4-1 , h
) = (I+—) = Jthatis, e = (1440~ (26)

. o B

i1—&) # (l+ 2t
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Let us assume that [p,,{x}]" deviates least from e”* at x = 0, 1., 2, and let

IR s X 47
I Pu(x)|

(27)

Then we get from (27), for x = 0, 1. 2, by noting the fact that p,{x) has non-negative
coefficientsand § < (en) ™! (¢f. [9; Theorem 1]),
le*—pa(x)l < 8¢? p,(2) < de*(1—e*8)~". (28)
But from (22} and (26), we have for every p,(x). at x =0, 1, 2,
le*—pa(x)ll = (1 +4m)™". (29)
Hence 1/(1+4n) < de*(1—e®6)™ ", which implies that § = e 3(4n) " L.

ThororeMm 5. Let f{z) = f a " ay =0, a. = 0(k = 1) be an entire function,
k=0
T hen there is a polynomial p(x) of degree at most nt for which, for alln = 2,

\f (—‘»‘J px) vy J" (m
Proof. Let
=2 () A @lenor (31)
Then, clearly,
Jix) = p.(x), el 152 caig (32)
Therefore, for x =0,1,2, ..., 1
I o
- | (33)
‘lr (x) Palx) |
Forx=n+1,
nofx
p) = £ (7) A Wlen > S0
k=0 V&
Therefore for x =n+ 1, n42, n4+3, .oy 20, 2041, 00,
| 1 1“€1+1_1 %
@ @ fm T fw T s

The relation (30} follows from (33) and (34).

THEOREM 6. LetO =g, <o, <a, < ... <a, < #,., = ... b2 any given sequence
af real numbers. Let f{x) be any contintous, non-vanishing and monotonic increasing
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frnction af x. Then there exists g sequence of polynomials ps (x) for which at x = ay,
Qs B ooy s By 1y - for.all s

l 1 2
" - ” < 2 (35)
1@~ paule)  flay)
Proaf. Set
Paalx) = lzﬂ () f (), (36)
where
(x—ag) (x—ay). (x—tpo ) (x—aya i) (x—a,)
’t{ﬂ e . "
{(x—ag) (—ay)... (xt —dpy) (xe—apy 1)e{xe—ay)
Therefore, for x = ag, @y, G50 oo By vovy Oy
F(x) = paa(x). (37)
For x =, q, @43, @43+ .. a0d 50 on, it is easy to check that
Paalx) = f(x). (38)

MNow we get from (37)and (38) at x = {g;} 72, that

I P i W 4
7 | 7w T Fd fe

Hence the result (35) is established,

Tueowem 7. Let plx) be any polynomial of degree at most n having only non-
negative coefficients and q(x) be any polynomial of degree mast n.  Then we have,

forallnz=1,
I - pix) || -1 .2 -1
llgm¥ — =] = le+27 e A+ DN (39)
I G(x) |Lato, 1

Proaf. Let us assume that p/g deviates least from e~ in the interval [0, 1]; then

set
e PR (40)
q(x) |

We assume without loss of generality that g(x) > 0, on [0, 1]. From (40), it follows
that, on [0, 1],

aely| &g |
Ipl lpl

qix)
p(x)

e

(41)

It is well known that ¢* can be approximated by its ath partial sum on [0, 1] with an
error (r!)~'. Hence, clearly,

4
g =ty (42)
n'



326 P, ERDOS, DL 1. NEWMAN AND A, R REDDY

From (40),

Ip| 1 i | =ge
——— —_— '}_...... = » 4‘3
al > Feigt.. = e z (43)

- —-—1'“”} b "
[‘ pix) | 1=oe 49
Set p(x) =1£u ayx*, @, 2 0 (k = 0); then, from (44) on [0, 1],
. e*p(l)
PO -0l < T p) < 49
Now by applying Lemma 2 to &*p(x), we obtain on [0, 1]
ve? Min |(D+1)"*! (p(x))]
)y e - : 46
p(1) o = le'p(x)—q(x)] = T (46)
where as usual D = djdx.
It is not hard to check that
)
Min [(D41)"*! p(x)| = Eu ay = p(l). (47)
From (46) and (47),
e’ 2
(48)

Tmae = S+
From (48), it follows easily that
= {e+27 1 A4+ 1070
Henee the result (39) is established.

Tueonem 8. Let p(x) and r,-[x} be any polynomials of degrees at most n—1 where
u = 2. Then we have
—1pe=4n2-T
. o R = i -
i q(x) [Lam n(3+2/2)0

Proof. Let us denote for any given p(x) and g(x)at x =0, 1, 2,3, ...mn+1, ...,
(| P"
e — -, 50
4l e
Normalize g(x), such that, fork=10,1, 2, ... m ..., 2m,
Max|[g(k)| = 1. (51)
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From (51) and Lemma 3, we obtain,

Max |g(x)| = nd®, (52)

[0, 2u]

From (52}, we get by applying Lemma 4 that

Max |g(x)| < nd*" (34220, (53)
[0, &n
From (50) and (33), we have, forallx = 0, 1, 2, ..., 4n,
e~ q(x)—p(x)| < end™(3+342)" . (54)

Sel
Rix) = e “g(x)— p{_'x}.
Then we get by using Lemmnia 5 that

A1 —

A"R(x) = Ae™*g(0—p(x)) = A'eq(x) = (—f—) 9. (59

©On the other hand it is well known that

N R@) = 3 (=) Rk, (36)

From (34jand (56), weget forx =0, 1, 2, ..., ..., 300,

n

|A"Rix)l = & ( ‘:} [Rix+0)| < 2" end"(342./2)" L. (57

Now we have from (55) and (57), for x =0, 1, 2, ..., mon+ 1, ..., 3,

[(A41—a"q(x)] < " 2" (34 22" < ee™ 2"a(342J/2"'.  (58)
Set
S{x) = (A+1—eYg(x).

Then forx=0,1,2...., 8,041, ..., 2n, we get by using Lemma 6, that

A -
lg(x)l = [(A+1—e) " Six)] = ‘“ =" (f = __1—) 5(x)

"a.-.

sl & (")

=0 i

= )fsm

e—1

n+i

< (e—1)7" éﬂ( : )aﬁsm

< (e—1)"" e 25 (34221 ¥ (":”)
=i

< (e=1) e 2 p(3 4202 . (59)
From (59), wegetforx =0,1,2,3, ..., 2n,
Max |g(x)| < se® 27" (3422 e—=1)"" (60)
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From (51) and (60) we get
e (e—1Ye 2=~ (34227,
Hence (49) is established.

We would like to thank the referee for his suggestions,
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