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This paper isin some sense a sequel to our earlier paper I (Acta. Arith;
28 (1976), 405-412) with the same title although the present paper
is self contained.

Let {b;} be an increasing sequence of integers with 3 < b, < b, < b,. ..

and > Z:_, < oo, Our principal object is to prove, under an assumption
j

on the size of B(x) = > 1, that for any fixed position integer n, the
by<x

number of solutions of the equation n=p 4 ¢ where ¢t is a positive

integer not divisible by any b; and pis a prime exceeds wnflogn -+

o (nflogn), where « is a positive constant, and in particular 2> 1 for all

log xlog log x )"
It will be clear from our proof that this can be weakened to

sufficiently large n. (Theassumptionon B (x)is B(x) =o (——x—)

B(x)=o0 (’ o ) if a certain unproved hypothesis on the distribution of

primes in arithmatic progressions is true. We prefer to state this
hypothesis at the end of our proof).

Before starting the proof proper we make some reductions. Consider

those b; with —— > 100. For these b; we have ( ) >2 (p is the

(b;)

Euler’s totient function and o is the sum of the divisors) and so such b; are

abundant numbers (m is said to be abundant if af;n) >2). Itis easy

to see that every multiple of an abundant number is also abundant.
Defining an adundant number N to be primitive if N is the only
abundant number which divides N we have the following:
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THEOREM (due to P. Erdés, On the density of abundant numbers,
Jour. London Math. Soc. IX (1934), pp. 278-282, see theorem on page
281). The number of primitive abundant numbers not exceeding x is

* (w7

From {b;} construct a new sequence by retaining as they are numbers

b; with —— < 100 and replacing every other number by its maximum

bj

9(b)
primitive abundant divisor. From the resulting set form a sequence
in the increasing order by taking only the distinct ones. Suppose this

sequence is {7} where 3 < b < b, <bj.... (This sequencc consists of

un-replaced and replaced numbers of {b;}). Note that >~ — is conver-

(b')

gent. Because 3 ) (this sum is over all ] satisfying X < b, < 2X

1
X, 2X {b'
and we adopt a similar notation elsewhere) = > 4 > where > is part

of the original E
x2x ¢

without replacements and > the rest. In
2 1

1
()
bj ( " log log b

1 p— i
Ty <10 andso ¥ =0( ¥ bj)and =0 % __)

’
X, 2X X, 2X b

where E denotes the restriction to the altered numbers and so 2.
X.2X 2

(log log X

(og X)‘) and this gives us the convergence of the required

series.

Not let {d;} be the sequence 1=4d, <d,<d,... of integers not
divisible by any b; and {d;} the sequence which corresponds to {b:,} isa
similar fashion. The sequence {d,} includes {¢]} and so the number of
solutions of n = p -+ d; is at least the number of solutions of n=p + d].

We prove for the latter number a lower bound > valid for all

n
log n
large enough n. It follows that the number of solutions of n = p + d;

is also >I::%z for all large enough n. This is in fact the principal

result we are looking for. (We however assume only at one place of
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our proof that B(x) = o( ) and at this point of our proof

X
log x log log x

even the weaker assumption B(x):o( ) would suffice if we

x
log x
assume the truth of an unproved conjecture concerning the distribution
of primes in arithmetic progressions). Note that > 1= 4+ >

b; < x 3 4
where > counts the unreplaced b; and ¥ counts the replaced ones
3 4
x
and so = 0 (B(x)) and = 0(7,,). We may also note
R bl R TiT y

1 - L1 log log X
3 — =3 -+ % where =0 —)and =o(4"~)
xax? ) 3 o ls' x.zzx b; % (log X)*
are obvious portions of the sum. From now on we write a; to mean
b and write A(x)= > 1. Throughout the paper we assume
a=<x

B(x)=o0 (] % ) which certainly gives 4 (x) =0 (

). We now start
0g X |

logx
the proof proper. We find it convenient to split it into several parts.

Part 1. Estimation of Y > Jor a suitable X,.
X1<%<n p=n(mod )
1<p<n

Denote the inner sum by m(n, @;) and consider > 7 (n, a;)
nj2ktigapgnrak
for a given k=0,1, 2,.... We wish to estimate this uniformly in all

parametersincluding k. For any given k the sum is > O(Q2%) (= O (A (n))
%

for bounded k). Because trivially w(n, a;) = O(2%¥). Thus fixing up
any arbitrarily large constant k,, we have,
> > = (n, aﬂ:o(lonn)'
0<kky  nf2kigaignyok &
We now introduce the points 2%" (k=0, 1,2,...) and split up the
range X; < a; <n accordingly with proper modification at the end

points. We have now to estimate S;,= >  =(n, a).
xX1€9<nj2ko

The contribution to this sum from those @; (We now fix up till the
end of the proof small positive constants ¢, 8, 8, which are arbitrary but
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independent of each other) satisfying,

n
a; (log n/a;y) (log log nfa;)t+e

2k n n
? ( > (k(logk bEe T 2% 103(”/2"))) = (m)

Kkes nizk =)y
n>X,>=n-%

(”: ai) “-<-..

Consider the remaining portion S, of the sum S,. We are led to
estimate
5 w (n, a)
ikl a;<nak
where * denotes the restriction to those a; which satisfy.
2k

" 4> g ke

First consider the contribution to S, from those k for which the
3, n
2k klogn’
bution from such an integer k is by Brun-Titchmarsh Theorem

number of ¢; does not exceed We observe that the contri-

n . »
(0] —7) where the sum over @; is over an appropriate
(? ¢ (@) log (n/a) . BPECR

range depending on k. We split this last sum into two parts according
as g; is unchanged or changed and we sez that it is
0 n o n . 2k log log (n/2%)
a; log (nfa;) 2k (log (nf2%))* log (2%)

. nlog log (n/2%) )
' "( K (log (n/29)*

10 3, n ‘ 2k
2k [clogn ~ log(2%)

=0 (kzii{.?g_n)_i_('“)

It is easy to see that the last expressions when summed over from k =k,

to [28logn]is O (—b:‘—n—-) +- o( £ )

logn log 7

So far we imposed on X, the only condition »n> X, >n'-3, We now
show that if X; is properly chosen there do not exist any other values
of k& which make a further contribution to S,.

So we have now to consider only those & for which the number of
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b 3,1 ; 2k
as is > 5% Togn and each a; satisfies = (n, i) 2 a For such

a fixed & let s be the number of @;. Let us enumerate these a; (with a
change of notation to avoid too many symbols) as

n
,k+l<a1<as< <a,<2k
where
3, n 2k
S2 Fllogn fc logn and Zj =, ) 3 k (log k)<
Write

n—pi =1Da where 1< 10 < 2K+,

For any fixed i the number of pairs (p{i , p{?), (ju # J) lS}( )

—-i-— and there are s> i—n—
4k* (log k)= ke 2*klogn

number of pairs is

values of i. Hence the total

z 3, n 2k
> ; (2‘ ) = 4k (log k)*+*¢ logn
Let 1,, 1, be integers satisfying #; # £, 1 < 1, < 2% and 1< ¢, < 2%,

It follows that if N(#,, tz) denotes the total number of triplets (7, j;, j2)
with £ = 1,, 1) =¢, then

— 3, n2k
>l ) > giog ke log

(15 F3) 11719,

The total number of pairs (f, 1,) does not exceed 22%+) and hence
there exists a pair (f, t;) (of course #;#1¢, and 1<t <25,
1 <1, < 2% such that the simultaneous equations »n—p, =#a,
n— p, =t,a(where a is a positive integer) have

3 n
>3 logn (log k)*++e (=Qsay)

solutions in triplets (p;, p,, @). That is, there are > Q values of a
(1 K a< nj2k, 2t n®) for which n —at; and n — at, are both primes.
. . . n(log logn)? )
By the double sieve, the number of such integers a is O (W
(see page 45, Satz 4.2 of Prachar’s book). This gives
3, logn

i log kb= — O ((loglogn)2)
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o G ooy : logn 173
This gives a contradiction for large n if £ < Toglog )™ )

So we can choose X; to be
e
P [108 ms3 log tog my ™ 73 ]
This completes the proof that
wZam =05 ) o (w)
where X, is chosen as stated just now (actually since the left side is
independent of 3, the first term on the right can be dropped).

PART 1I.  Estimation of
Z W(ﬂ, ﬂi)
iZLajgnl ™8
where 8 > o is fixed and L is a large constant.

Applying Brun-Titchmarsh theorem the estimate for the required sum

n n
. (;%Lmi)= 0 (m "i(L))

where M (L) tends to zero as L tends to infinity because of the conver-
gence of Z (¢ (@)L

Part III. Estimation of

=

n(n, ai).
'8 < a; < n Exp (—(log n)} (log log n)~2)

We split up the range into minimum number intervals of the type
X < a4 < 2X with modification at the end points and write it in the

) 2)
form 3° > .. Each 3", canbe written 3°, + >, where (1) is over those
X

a; with
108 n
n (1, a;) é—@(ag)ﬁgir_
and (2) is over the remaining @;. By the convergence of Z (¢ (g;))~! we
have easily
&)
S n
= 5y =o(oes )

s log n
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(2
>y is by Brun-Titchmarsh theorem

) - @1 (@2
of2 N =o(F+%)
o (a) log(—) X x
ai ),
where (2, 1) is over unchanged a; and (2, 2) is over the replaced ones.
Trivially

bl log log X n
58 gt =o(——).
X X X ( (log X)* log (%) log n

Let A9 (X) be the number of unchanged a; lying between X and 2X for
which
108 n

=) 2 oy Tog

Then
AN (X) n

e o
%‘ % B 0(§ ] log(;l{))-

By using a bound of the type A"V (X)= O(4 (X)) we can easily prove
v e no\. X

that the last quantity is o (m) if we assume 4 (X)=o0 (1m,?)'

On the other hand we can also majorise A®M(X) by A® (X) the number

8
of all integers g satisfying X <¢ <2X and =(n,q) > ® ((l;)) I:g p And

make the

1/3
HYPOTHESIS. Uniformly in n'* € X <2X <n Exp(— _(%g{:; 7 )

there holds A® (X) = O (X (Jog X)~53-%) for some constant 8, > 0.

We see on replacing log%, by (log X) (log log X)~%, that

PART IV. Lower bound for the number of solutions of n = p + d;.

Write Ay for the finite sequence (a;, @,, ..., ar) and for any positive
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integer n write (In this section t will stand for a positive integer)

f(n, AL) = A

n-p+r,t5é0(modaj} forj=1toL

We use a similar notation for any other finite or infinite sequence of
positive integers in place of 4;. We choose L to be a large but fixed
integer and another fixed positive integer & < L then certain odd primes
gi(1 €i<h), in the following way. Since a; is never less than 3, it is
divisible either by 4 or by an odd prime g¢; (in the latter case we fix ¢;
to be the least odd prime which divides a;). If in this process 4 occurs
we designate it by g, and if it does not occur we just ignore the symbol
do- Of course g; (j =1 to h) need not be distinct. Let 4* denote the
finite sequence (qo, ¢4, Gas - - -5 @iy ht1> ptgy - - -5 a2). Before proceeding
further it may be helpful to remark that f(n, AL) > f(n, A¥). For
simplicity we write A** for the sequence obtained from A* by retaining
only the distinct ¢; (1 <j<<h). Next in A** retain only those
q; (1 <j < h) which do not divide n and afterwards only those a;(j > h)
with (a5, II ¢q) =1. Call the resulting set
1<igh

A =(Gs @iy oo 2sp Cppg Tpgrov0985)

where the notation is sufficiently self-explanatory. Let S* and S** be
two finite sets of distinct integers and 1 be an element of S**. We
observe that the set

S* n (S*eaz —_ 1)

has at least as many elements as — 1 plus the number of clements in
S* M S**. Using this remark repeatedly one can verify that

f(nl AL) >f’(ﬂ, A+) 2f(”,q.f1ql’q2! . --:As a;+1’a.’1+2’ AL "a;") —”J‘

We now make the convention that ¢;(1 <j<J) are in the increasing
order. We next replace all a;(j > J) which are even but not multiples
of 4 by 1a; and designate the set resulting from a; (J<j< T) in the
increasing order by a; (J <j < T). Our last lower bound forf(n, Ar) is
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.>.f(n! 4! Gisqrs oo 0y a.’;}-ls a.::-l-ﬁy ey a;) —

>f(”)49€1igﬁﬁ . -:q.f)_J
T

- X, 2 L

v=JU+1 n=ptttz£omodg;forall)in(o<j< J)t =0 (mod u\,l

Here (and from now on) we put g,=4. Note that the present ¢,
always denotes 4 whether the old ¢, already introduced may or may
not exist. This will not cause any confusion since the purpose of
introducing the old ¢, is over and we do not need it any more. By
using the prime number theorem for arithmetic progressions and a simple
argument of Eratosthanes it is not hard to verify the following steps
(the notations are obvious and we do not explain them)

S godqu ...,q)=nm) — 3 ©(#,q,n+ X = (n,qq;,n) —
i 1j1>1J

n 1 n
i (15 o
0gNogigy @ (qn) O (log n)?
In the sum over v the v-th term is
== (n, a: ,H) — Z = (n, [G:: s qil, 1)

+ X n(nlay, gl n) —
1#/,i>7

n 1 -
= b H ]_ o —) O % ar:( )
fp(av)logno-cxm( g@n ) T 9% \Tog np
Thus f(n, AL) exceeds

n 1 1 n
s 1—-—J(1
Iognocl}m( optq))( +O(\.>JZ+1<9(a\, ))+ "((logm’)'

From our definition of a:,' and the convergence of Z - it follows

¢ (ay)

that the last expression exceeds

Cn n

logn + 0. ((log fi‘)ﬁ)
where C (> o) is independent of L and n but depends only on i, Now
if we fix first a large & and then a larger L, we have
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S, A= f(m, AL) — > % 1
v2L4+1n=p+1
t=o0(moday )

S Gn
log n

provided n 2> iy, by the results of parts I, II and IIL

(C, > 0 independent of n)

PART V. Statement of the main theorem. Collecting together we
state

THEOREM. Let {bj}j=1,2, ... be a finite or an infinite sequence of

of integers satisfying 3< by <b,<by.... and Z;T < co. Let
i

l=d, <dy<dy...bethesequence of allintegersd; (i =1,2,3, ...) which

cdivisible by any by, LetB (%)= 1 and B(x)= (_i__)
ARTRTIRRSIA oy v TR ) b,é:x and B(x)=o log x log logx |*

Then the number solutions for any fixed n > n, (a large constant depending
on the constants implied by the sequence and the nature of o(..)) of the
equation

n=p+d;(p — prime)

, n ; ;
is > T and in particular > 1.

REMARK. The conclusion of the theorem is valid even with the milder

X . i x 2
m) if the following hypothesis regarding the

distribution of primes in arithmetic progressions is true.

assumption B(x) =o (

HyPoTHESIS. Let 8 > o be any small constant and
n'-? < X <2X < n Exp (—(logn)'/? (log log n)=2).

Then the number of integers q satisfying X < q < 2X rnd
1082 . X
“(”,q, ”)>tp(q,'lfagn SO&(UOgX'};\)
where A > § is a constant.

The following hypothesis is also sufficient and is perhaps simpler to
prove than the one stated above.
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HyroOTHESIS. Let

n-2 < X < 2X < n Exp (—(logn)V3).  Then
munber of integers q satisfying X < q < 2X for which

291

the

w (n, q,n) 2 n (log log n)* (q logn)™ is o (X (log X log log X)™).
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