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PROBABILISTIC METHODS IN GROUF THEORY 1I
P. Erdos and R. R Hall
Dedicated to the memory of A. Renyi.

Introduction, Let (G,+) be a finite Abelian group of order n, and suppose we
choose k arbitrary elements g).g5,....8; of G. Let us consider the 2% sums €18 +
€283 * ... + e gy where each ¢; = 0 or 1. Two interesting questions present themselves:
can every g € G be represented in the form g=€g; +... + €8, and if so, does each g
have about the same number of representations?

Clearly for a particular set of elements g|.,g5,....8, to answer these questions we
should have to know about the structure of G: for example the elements By Byinsliy
may all belong to a subgroup of G. So we ask instead, what can we expect to happen if
we choose gy.84,...,g, at random, or, put another way, what can be said about these
questions for almost all (that is, all but n(nk}} of the possible choices of gy,25,....8;"

These probahilistic qu;srinns were raised by Erdos and Rényi [2]. Surprisingly,
their answers depend very little on the structure of G; the fine detail does depend on
the group structure as was pointed out by R. I. Miech [5] - If every element of G is of
order 2, ;g + €387 +... + €8, always generates a subgroup of G, and each element
_ receives the same number of representations. This can be seen by viewing G as an
appropriate vector space.

The only obviously necessary condition for an affirmative answer to the first
question, whether every g can be represented, is 2K = n. Erdas and Rényi proved that
provided

Klog2 = logn + 2|ug-§+ 1ug(:—g§%}+ 5log2,
then for all but at most 6n¥ choices nl‘gl,gz,.,,,gk every g © G may be represented in
the required form. This is nearly best possible, indeed it may be that without any
conditions on the structure of G, it cannot be substantially improved. We hope to
study this question in-a later paper.

In tliljs. paper we consider the second question, concerning the number of
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representations. Our resull is as follows.

THEOREM. Ler Rig) denore the number of representations of g in the form g =
€8+ €382+ .. * €48y, where each €;= 0 or 1. Let n be a fixed positive number,
Then for almost all choices af the elefents g ]-82..8) we have

(1-n2%/n < Rig) < (1 +7)2%/n

logn 1 1
k> o83 (1 + O(OFRLO,)),

The constant implied by the O-notation depends only on 5. Moreover, the result holds
if ;= 0 as n = =, provided log 1/n = 0flogn/logiogn).

This result is sharp except for the O-terms, and these could be improved if the
estimate for max Rig) in Lemma 3 were reduced. We hope to return 1o this question
in the future.

Erdos and Rényi [2], Miech [5], Hall [3] and Hall and Sudbery [4) have proved
partial results in this direction, also Bogndr [1] and Wild [6] obtained results when €

Jor every g € G, provided

may be chosen from some fixed set of integers other than (0,1}, Erdas and Rényi
proved that it is sufficient that klog2 = 2logn + 2log I/n + ¢(n) where g(n) = =
arbitrarily slowly as n -+ =, and the subsequent work aimed at reducing the factor 2
mulitplying logn on the righl. These improvements all depended on conditions on the
group structure, and Erdds and Rényi conjectured that without such conditions, the
factor 2 could not be reduced. :

We should like to acknowledge the kind help of Professor G. L. Watson, who
provided the important Lemma | below.

NOTATION. The language of probability i appropriate in our arguments. We
write probi...) for the probability of the event in brackets; as usual prob{ A|B) means
the probability of the event A, given that the event B occurs. E(...) denotes the
expectation of the random variable in brackets. EQE | E4... means the joint occurrence
of the events Eg.E; .Es....

LEMMA L. Let & be a finite Abelian group of order n, and suppose we are given
N distinet eguations

€ 1B eyt tengn=0 (I<t<N)

where every €,;= 0 or I, N< J’".jﬂrm the number of choices of the elements

TH-5

BBy to satisfy all the equations simultaneously does not exceed n'"7, where
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5= (logN)flog2),

PROOF. Let r be the unique integer such that 2MT < N < 2M T4 Seject any r
integers ki, | =< kf_i‘: k: L kr{ m. Since there are only 2™ choices of the
coeflicients {epp 1 i< m, inot equal to any k; }, and N equations, we can find two
equations, say the i-th and u-th such that ; i Eui for every | other than the kl:
Subtracting, we obtain an equation

(1) v]gkl +\r1gkz o \r!_pkr-ﬂ.
where each v; =0 or £1, not all zero, Now let p be the largest number for which there
exist distinet numbers ki'kl""'kp for which no relation like (1) can be found. We
have p = r- |, moreaver, givén any other number kg I < kp < m we can deduce,
from the original N equations, an equation

vogka+v]gkl * +1rp5kp -'ﬂ,ﬁu' xl.
Therefore once the group elements gkl_gkl,._..gkp have been chosen, the other g's
may be determined. Hence the equations have al most nP solutions, where p<r-1=
[m - (logN)/(log2)] =m-s, .

LEMMA 2. Let §= [flogn)(log2)!, and suppose elerments £.&2.....8p are chosen
randomiy, and independenily, from G. For each g € G, ler R(g) denote the number of
representations of g in the form g = € 8; + €283 +... + egRg, where each ¢;= 0 or 1.
Let m be a positive integer, Then

Bk X R™(E) < 22",

PROOF. Let x denote a group character on G, so that x{a + b) = x(a)x(b) lor

every a,b € G. Then
R(g) =& £ X 111+ x(g))
where the product runs over | < j < £, Hence

Ly pMigy=—1_3%' =" [0 061 + x:(e),
ki n™ X} xmifﬁ %5

where i runs over 1 < i< m, and ¥’ denotes summation restricted by the relation
X|X2 - X = Xg. the principal character. Therefore
By pmgn =Lz .= itz oo+ x o,
i A LR i

the inner sum being over every group element h. But
1 % 11 #1xi(h0) = NOxy XX
where N(x | X7,Xqp) denotes the number of distinct relations
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(2) xltl};-;? xm'm'xu (g=00r 1)

existing between these characters. The characters form a group {E,XI isomorphic (if
. we change the grolp operation) to (G.+). Let us denote by umfﬁ.m the number of
choices of m characters x; from E to satisly any set of exactly N relations (2). Then

(3 EGLE R™(@) <L % My G0N,
summation being over the range | < N < 2™ since any set of x’s satisly at least one
relation, the empty one. We have dropped the condition x;x3 ... X = Xg Which
actually implics N2 2, N even. For each N, there are at most {%Im} sets of N relations,
and, given such a set of relations, the number of choices of x,X7,...Xy to satisfy
them does not exceed n™%, by Lemma 1, where s = (logN)/(log2). Hence

(@) Mep(GN) < G0 = nm 2™ n-Clogn)/(log2)

Since N 2 | and € < (logn)/(log2), we obtain the result stated from (3) and (4).

LEMMA 3. Suppose  elements g;.€5..8¢ are chosen randomly and
independently from G R and Rig) are as defined in the previous lemma. Then for any
fixed 4 > 2,

Prob(max R(g) > Alogn/loglogn) < o o)y8(A)
where 8(A ) and cf A) are [N'Eﬁﬁﬂ' numbers depending on A only.

PROOF. By Lemma 2, and Markoff's inequality, the probability in question
does nol exceed

ne22™, o -mlogn/loglogn_
Since A> 2, we can find a constant a such that 2* < e< A%, and we set m =
[aloglogn]. The above expression tends to zero as fast as n"s. where &= §(A)=
Vilog( A% fe).

LEMMA 4. Suppose k elements, g1.85,....8) are chosen from G randomly and
independently, and Rig) denores the number of representations of g in the form g=
€+ eyt tegpy. cach eg= O or I Then

Ergmum";nﬁn 2%(1 - 1/n).
This is equation 1.3 of Erdos and Rényi [2].

LEMMA 5. Ler H be an arbimrary but fixed subsel of G af cardinality Hl
Suppose that the clements g 182 "'FS are chosen randomiy and independently from G,
and that N(g) denotes the number of choices of €j.€5,....€; such that g- € gy - €283 -
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ey EH, where each ;=0 or I, Then
Etzﬂzm -N(@) =t H2 48 - 29,
PROOF. Plainly EN[gI =25 H|, Next,

N(g) = iz X(EPOH) 11I (1 +x(sl}]

where
P{x.H) = E{x{h): h€ H}.
Therelore
ENz{l] =iE|P{x1H]I2 11+ g,
and
E(%Nz{s]] = ﬁg PO £ il + X&) s
But

B2 1 +x@P =2ifx#xg,4if x =X,
where xq is the principal character. Moreover
7 2 IPOGH)IZ = HI
Therefore,
E[§N11g1;|=-13|ﬂ|+n" H|2(45 - 29),
Subtracting the expectation of ZN(g), we obtain our result.

PROOF OF THE THEOREM. Let n(n > 0) be given, and fixed. We also fix an
arbitrary A > 12,

We begin by choosing just €= [{logn)/(log2)] elements of G. Here and in what
follows we mean thal the elements are chosen independently, so that repetitions can
occur, and randomly; every element has an equﬁl probability of being chosen. Let
Ryle) denote the number of representations of any group element g in terms of these
elements, and denote by Ep the event

max Ro(s) < Alogn/loglogn,
We now choose a further 6t + | elements from G, where t is the smallest integer such
that
2t = alogn/loglogn
We have k; = €+ 61+ 1 elements so far, and we denote by R;(g) the number of
representations of g in terms of all of these. We call g l-exceptional if one of the
inequalities \

K Xy
(172 <Ry < (1 +714—



178 P. ERDOS and R, R. HALL
fails to hold, where
(5) i’ = n/2logloglogn,
Let N denote the number of 1-exceptional elements. Plainly
3Ry (®)- 212 > 2451, fn?
and we deduce from Lemma 4, and Markoff’s inequality, that
prob(N; >n/25% < 1/n22t,
Let EI denote the event NI = rt,-"ESl. From the above, and Lemma 3,
prob{EgE; ) > 1 - c(An8(A) . 1 pr2at,
Assume that Eq and E; occur. Let HI denote the set of l—cxceptiun{ﬂ elements, so
that |H|i - NI. Moreover, if g £ HI , we have

(6) 0= Ry(e) < 26t+1 4 logn/loglogn
We now choose a further s elements from G at random, giving a total of £ + 6t + | +3,
and we denote by Rq(g) the number of representations of g in terms of all of these.
Here s is the smallest integer such that

(7) 2+1 > ralogn/logiopn,

We call g 2-exceptional if one of the inequalities

( =ﬂ'}:3,? <Ry(@) < (1 +7')? 3?
fails to hold, where ko= 2+ 6L+ | + 5. N, denotes the number of 2-exceptional
elements,

Suppose that the s clements just chosen are B{:87.-E, and that g has the
property that for at most one choice of the numbers €, €20iEg (BaCh €, =0 or 1) we
have g- €| - €987 - ... - €8, € Hy. Then

Ry(8)> (25 1)1 - )2 n > (1 - 19222
by (7). Also

R, () < 25(1 + 11251 n + 26t+1 slogn/loglogn
by (6). We have Eh‘j‘n > 26t by definition of kj and £, Now using the definition of
given by (73, we deduce that

Ry() < (1 47222 n.

Let Ny(g) denote the number of choices of the numbers E]4€2,...Eg AbOVE such that g -
£18] - E-_I;_gz - - Bl € Hy. We have shown that if g is 2-exceptional, we must have
Ny(g) = 2. Hence
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Ny < E{Nfu} - Ny(g).
Applying Lemma 5, and Markof's inequality, we have that

prob(N, > n.fz'”"|EoE,)<:—'E§-:_°—;_}f’—1 < q'_ll'zm
using the definitions of s and t. If E?_ denotes the event "2 lﬁm‘l“‘", we have
prob(EgE | E9) > 1 - (A d(A) . (1 + yyg'22t,
Let Hy denote the set of I-exceptional elements. We have [Hy| = N,, moreover, if g €
Hy then
0<Ry(p) < 26t +14s 4 logn/loglogn
We now choose the same number, s, random elements of G, so that we have k5 = 0+6t
+ 1 + 2s. R3(g) denotes the number of representations of g in terms of all these, and
we call g 3-exceptional if one of the inequalities
(1 -7 < Ry < (1 +7P2* I

fails to hold. Name the new elements By 87.-iBy 35 before, and let Nz'l&" denote the
number of choices of €1,63,....65 for which g-€g) - €387 - ... - €8, € Hy. Assume that
Eq.E|.E4 oceur. Then we may check that g is 3-exceptional implies No(g) = 2. Let Ny
denote the number of 3-exceptional elements. Applying Lemma 5 and Markofls
inequality as before, we have that

prob(Ny > n/2 1F131EE By < 17922142,
We continie in this way, adding s elements at a time, and assuming that the events
Eg,E| ,Ez,... have all occurred. We call g r-exceptional if one of the inequalities

(1- n'lrlkrfn <Rg)<(1+ q'}“zk’;n

fails to hold, where k. = 0+ 6t + | + {r- 1) Nr denotes the number of r-exceptional
elements, and we prove successively that

prob(N, > n.*:’ft'h'mgﬁl wE )< 1 /g2t
where a_ and b are determined from the recurrence formulae:-

Ay =2 -3 =5 b =2b +r+3,b; =0.
Plainly

n=2 43, b, =527 r- 4

We denote by Ep the event

N/ r
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and we have that

P(EQE| .. E)> 1 -c(A (A 5y -E];}Iﬂ'zi‘-
We set

rg = [2logloglogn]
and calculation shows that if n = 1000, the event Erﬂ implies Nru{ 1, that is, N’ﬂ=
0. Hence we have i

® (-7 On <R @< +0Y%2 On
for every g € G, where krﬂ=-E +6t+ 1+ (rg- 15 Letk = kru. We may certainly
choose k elements from G randomly and independently by choosing the first k‘ﬂ of
them in the manner described, and then choosing the rest, and we deduce from (8),
inserting the values of rj and n' (given by (5)), that for every g, we have
(1-m)2%/n < Rg) < (1 +m2K/n
with probability at least
1- (A BA) 2ot

This tends to 1 as n =+ oo for any fixed 5 > 0, indeed if

% < glogn/loglogn

for any fixed B: for we may suppose A> Bz, and this makes 2 tend to infinity

sufficiently rapidly. We require that

K>k _logn

mn o 1053‘-1 +0t

where the constant implied by the O-notation depends on A and B only. This

completes the proof. P!

REFERENCES

1. K. Bognir, On g probiem of statistical group theary, Studia Seci, Math, Hungartea, 5{1970), 29-36.

2. P, Erdos and A, Rényi, Probabilistic methods in group theory, Journal d'Analyse Math.,
14{1965), 127-138,

3. B.R. Hall, On a theorem of Erdis and Rényi concerning Abelian groups, J. London Math. Soc.,
(2), 5(1972), 143-153,

4, R. R. Hall and A, Sudbery, On & conjecture of Erdds and Rfﬂya’ cancerning Abelian groups, 1,
London Math, Soc., (2), 6(1972), 177-189,

5. R. I Miech, Ona confecture of Erdios and Rg"rly.f, Illinois J. Math., 11(1967), 114-127,

6, K. Wild, A rhearem concerning products of elements of Abelizn groups, Proc. London Math. Soc.,
(33, 27(1973), 600616,

Impenal College of Science and Technology | University of York

London, England York, England Received December 1, 1975




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

