ON THE NUMBER OF DISTINCT PRIME DIVISORS OF (:)

P. Erdts, H. Gupta and 5. P. Khare

Denote by V(n,k) the number of distinct prime divisors of (:).
It is well known and easy to see that for n > nn(‘k). V(n,k) 2 k and
it is very likely that V(n,k) = k for infinitely many n. Denote
by = the least positive integer n for which V(n,k) =k, by n,
the least one for which V(n,k) 2 k and by Hk the smallest integer
so that for every n 2 Nk' Vin,k) 2 k.

We have tabulated the complete factorizations of (:) for
n = 551, k £ 25. We have thus obtained values of 'k for k < 25. We
cannot, however, prove that m exists for all k. It is interesting
tc note that =, is not alwvays less than LWL Thus for example

By > g T Mgs 8180 My, > ny W Mg > Wy > Myy. On the basis

of our table one would guess that n < kz always holds. In fact,
we shall prove that this conjecture completely fails. We have

THEOREM 1. n_ > k° for k > 4939. Further, for every ¢ > 0 there
is a ko{c) sc that for all k > kO(:).nk > (1-e) Ir.zlng k-

With somewhat longer computation we could determine all the

integers k with L H kz. It seems certain that

m "k

k== 2108 k

is true and perhaps its proof is not too difficult, though we have

succeeded in proving it.

log o log lk
THEOREM 2. li:wsup T;E.T < e, lt:’inf Ton & ze.

It seems very difficult to get a good upper bound for "k'

Here we prove
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THEOREM 3. For every e > 0, k > kO(:), “k < {e-l-s)k.

P. ErdSs has stated this without proof in [1]. P. Erdbs and
E. Szemeredi (unpublished) proved in fact a slightly stronger result:

there is an o < e such that Nk < uk for k > ko.

1B o

lim Nk

k=e

certainly holds but we can not prove it.

Proof of Theorem 1. Let 2 = P <Py < ... be the sequence of

consecutive primes. A theorem of Rosser [2] states that for every j,

pj > j log j. Thus by Stirling's formula, we obtain
k k k k

(1) (:k)z Tp > 1 tlogt=k! Hlogt>kke_kﬂlogt.
i=] t=2 t=2 t=2

On the other hand, if o, < kz, we evidently have

k
o T I S
(2) G )< P T =k
k
Now (1) and (2) imply that
k
I logt < ezk )
t=2

or what is the same thing

k
Y. log log t < 2k .
t=2

This is false for k > 4939, thus for k > &939.n.k ¥ kz. Further,
for k > ko(s) we obtain by a simple computation

k
E log log t > 2k + (l-¢) k log log k. Thus from (1) and {(2) we
t=2

easily obtain that for k > ko(e).nk > (1-g) -kz log k, which
completes the proof of Theorem 1.
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Proof of Theorem 2. First we prove that for every a > 1 and k + =

k(!

1+a
(3) Vin,k) = (1+o(1))k log a .
Z

To prove (3) observe that if p 1s any prime greater than k
then pi(:) if and only if pl(n-j) for some j, 0 £ 3 < k. Thus we
evidently have

kﬂ

k.a a a
(6) Vin,k) = k—+ 0(kn(k)) + O(kn(k ™)) .
r?;x kf?sr‘“ ¥

The first error term in (4) is contributed by the primes not exceeding
k and the second by the primes k < p < k°. From (4) we obtain (3)
from w(k) = o(k) and the well known theorem of Mertens

a 3= log a+o() .

k<p<k

From (3) we obtain that for k > ko(e} .

7 1‘[e+g
(5) T n);k Vin,k) > 1
and
1 ke—&
(6) T nz=:k V(n,k} < 1-n, n = n(e) .
(5) implies that, for some n < k“+t, V(n,k) > k or n < kE+€, and
(6) implies that, for some n > ke+:’ Vi{n,k) < k or Nk > ke—Zs which

proves theorem 2.

One is tempted to conjecture

log L " log Nk X i

n lim log k T log k

k=

-



but if (7) is true it must be very deep. As a modest step towards the

procf of (7) we conjecture

a

k
(8) > Va2 = @+ o(1)) K (log )7 .
p2

(8) would imply that for all but o(ku) integers n < ka,

Vin,k) = (1 + o{1)) k log a.

Proof of Theorem 3. We say the prime ©» belongs to

(n-1), 0 <4 <k, if p* J(m-1), p® > k holds. It is easy to

see that if p belongs to (n-i), then p|(§). Observe further that
a prime p can belong to at most one integer (n-i), 0 = i < k.
Clearly if for every i, 0 £ i < k, at least one prime belengs to n-i,

we obtain V{n,k} 2 k. The theorem now follows from the

LEMMA. To every e > 0, there is a kqyle) so that for every
k> ko(eJ ad n > (ac)k at least ome prime belongs to n-1i  for

every 1, 0 =1 < k.
Assume that no prime belongs to some n-i, 0 = 1 < k.
3 & " :
Let n=-i=1 Py be the canonical decomposition of (n-i) as a

product of primes. Then since each of the factors in the expressicn

is less than or equal to k, we must have

n—4isx kw(k) - E'ﬂ(k) log k _ (1 + of{l1))k

]

an evident contradiction. Thug our lemma and the theorem are proved.

On the basis of our tables, we can now state that

N, =4, N, =9, N =15, N. 233, N. =63,

> B8, N, 2170, N

8 z 133;

9

and with a little more computation we could easily determine Nk
for small valués of k.

By the way, it seems certain that for 2 < k < n/2, {E) is the
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product of consecutive primes only for a finite number of values

of n and k, but we can not even prove that

Q= " Py
i=1

has only a finite number of solutions; mn = 21 is probably the
largest such 6.

It seems certain that for every k there are infinitely many
integers n for which (T?, 1 <4i=2k is the product of i distinct

primes,
In the tables that follow, we list some interesting facts of
n
. y k
this tvne besides piving the commlete factorizations of (k )} for

: i ; ey 4 EYE-! : .
k € 25. Within the limits of ocur table ( 22) is the only one

of the first 13 primes.

+ 3 F. Erdbs, :ier 7z Anzghl der Primfaktoren von (:), Atchiv der

2 B. Rosser and L. Schoenfeld, Arproximate formulas for some

“wrrione of prime wumbers, Illineis J. Math £ (1962), 69-94.

Hungarian Academy of Sciences
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10
22
26
40
50
54
55
78
115
123
154
155
209
288
220
221
292
301

494

494

551

Table 1
nk

Complete factorizationm of (k Y5 L s ko285,

G
2
2.3
22.3.7
2.3.5.7
2.3%.7.11.19
2.5.7.11.13.23

23.3.5.13.17.19.37

2.3.52.7.11.23-43.4?

22.3.5.?.13.1?.23.ﬁ7.53

2.3.5.7.11.13.17.23.47.53

22.3.5.?-13.17.19.23.3?.?1.?3
22.3.5.?.13.19.23.3?.53.10?.199.113
22.3.?.11.1?.19.23.29.3?.&1.59.61.113
22.32.5.?.11.1?.19.29.3?.&?.?1.?3.1&9.151
22.3.5.?.11.1?.19.29.31.3?.4?.?1.?3.1&9.151
3.5.7.11.13.17.19.23.29.41.67.97.101.103.197.199
25.32.5.7.11.13.19.23.31.&1.4?.?1.13?.139-2??.281.253
2.3.5.7.11.19.23.29,31.41.43.53.71.73.103.107,109.211
2.3.5.7.11.13.17.23.29.31.41.43.53.71.73.103.107.109.211
2.3.5.7.11.13.17.23.29.31.41.47.71.73.97.137.139.277,281.283
2.3.5.7.11.13.17.23.29,37.41.43.47,59.71.73.97.149.281.283.293
2[33.52.?.11.13.1?.19.23.29.31.3?.41.&?.53.61.?3.1?9.181.359
.367.373
2&.33.5.?.11.13.1?.19.29.37.41.ﬁ3.53.59.61.?9.9?.163.239.2&1
L479.487.491
2.33.5.?.11.13.17.19.29.3?.&1.43.53.59.61.?9.9?.15?.163.239
L241.479.487.491
22,32.?.11.13.1?.19.23.29.31.41-53.59.61.6?.89.10?.109.13?.1?9

.181.269.271.541.547
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Table 2

Factorization of (25) where the factors are distinct primes.

26
43
61
62
125
223
233
286
287
314

377

475

538

2.13

2.3.7.13.19.29.31.37.41.43

3.7.13.19.29,.37.41.43.47.53.59.61
2.3.7.13.15.29.31.41.43.47.53.59.61
3.5.11.13.17.29.31.37.41.53.59.61.101.103.107.109.113
3.13.17.29.31.37.461.63.53.67.71.73.101.103.107.109.195.211.223
2.3.7.11.19.29.31.37.43,53.71.73.107.109.113.211,223,227,229, 233
2.3.11.13.19.31.47.53.67.71.89.131.137.139.263.269.271.277,28]1.283
3.7.11.13.19.31.41.47.53.67.71.89.137.139.263.269.271.277.281.283
2.3.7.13.29.31.37,43.59.61.73,97.101.103,149.151.157.293,307.311.313

5.11.13,17.19.29.31.37.41.47.53.59.61.71.73.89.179.181. 352, 359. 367
.373

2.11.13.17.37.41.43.47,.53,59.61.71.83.103,107.137.139.211,409.419
L421.431

3.11.13.19.29.31.41.43.47.59.67,79.113.151.157.227.229.233.457
461,463,467

2.13.23.29.31.37.41.43.47.53.59.67.89.103.107.131.173.179.257
,263.269.521.523

]
i
-
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Table 3

47

Factorization of (iS)’ 1<ks=11 and (k 3 B

1 £ k £ 20 which are all products of distinct primes.

n=23

13-23

7-11.23
£.7.11.23
7.11.19.23
3.7.11.19.23
3AT37 159443
2.3:11.17,19,23
2.5.11.17.19.23
2.7.11.17.19.23

2.7.13,17.159.23

n =47
&7
23.47
3.5.23.47
3.5.11.23.47
3.11.23.43.47
3.7.11.23.43.47

3.11.23,41.43.47

11.13.19.23.41.43.47
13.19.23,37.41.43.47

3.13.1%.23.37.41.43.47

3.11.17.39.353.37.£1.43.67
2.9.11.17.19.25.37.4 £
Z.3.31. 09093 30, 37,481,437
b s 0 2 W 5 (7 ' S AT
2.5, 3.9 7




Table 4

Solutions of (:) = product of consecutive primes.

3 =2 ¢h = 7.1113

) =35 % =357

(;) = 5.7 (és) = 5,7.11.13

(2% = 2.3.5. &Y = 2.3.5.7
Table 5

Values of V{n,k), where they are consecutive intepgers.

k n 4 9 11 27 99 420 468 503

1 1 1 1 1 2 4 3 1
2 2 2 2 2 3 5 4 2
3 3 3 3 4 & 5 3
4 4 4 5 7 5 4
5 5 6 8 7 5
£ 6 7 9 8 &
7 8 10 9 7
8 9 19
9 11

10 12
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APPENDIX

Values of k for which n, = kz.

While we were searching for k's for which 0 < kz, by

sheer brute force, Ernst 5. Selmer, working on the UNIVAC 1110 at the
University of Bergen, completed his nroject of computing n for
k = 200. His table shows that (within its limits)

. = kz only for k = 2,3,...,30,32,36,37.

It is almost certain that this list is complete. Our thanks are due to
Selmer for his making a copy of his work available to us, His table also

brought to light a small slip we had made in computing Maq-

The only note-worthy facts that our calculations have brought

out are:
(i) my = 3446 > ng, = 3445;
{ii) (100?) is square-free.
30
The relevant fac:o;izaﬁions are:
3446 N .

( 51 ) = 1723.53.313.1721.181.191.491.859.229.101.3433.
73.7,127.857.149.571.137.107.163.59.311.263.1709.
67.61.683.569.3413.853.379.487.71.3407.131.227.
33.33.1T9.103.1699.?9.283.22. 1.13.19.31,37,
41.43;

(3;15) = 53.313.l?Zl.lSl.lgl.ﬁgl.859.229.131.3&33.73.?2.

127.857.149.571.137.107.163.59.311,263.1709.
67.61,683.569,3413,853.379.487.71.3407.131.227.
33.33.1?9,103‘1699.?9.233.9?.2.5.11.13.19.31.

37.41.43;

1007

("3p") = 53.503.67.251.59.167.5.37.499.997.83.199.71.
331.2.31.991.43.47.197.41,983.491.109.7.89,

163.11.17.19.

Feceived August 25, 1875,
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