EXTREMAL RAMSEY THEORY FOR GRAPHS

S. A. Burr and P. Erdis

1. Introductionm.

If G and W are graphs, define the Ramsey number
r(G,H) to be the least number p such that if the lines of the
complete graph Kp are colored red and blue (say),either the red
subgraph contains a copy of G or the blue subgraph contains H. Also
set r(G) = r(G,G); these are called the diagonal Ramsey numbers. These
definitions are taken from Chvdtal and Harary [1]; other terminology
will follow Harary [2]. For a survey of known results concerning

these generalized Ramsey numbers, see [3].

A natural question about Ramsey numbers is how small, or large,
they can be. We make some definitions. If G is a set of graphs,
define exr(G) by

exr(G) = min r(G) ;
ceG

also if G and H are sets of graphs, set

exr(G,H) = min r(G,H).
GelG
HeH

We also define Exr(G) and Exr(G,H) similarly, with min replaced

by max. Note that exr(G,G) < exr (G). This inequality can be strict.

In fact, theorem 4.1 of [4]) shows that exr(G,G)/exr(G) can be made
arbitrarily small, even for sets G containing only two graphs. Likewise,
theorem 2.5 of |4] shows that Exr(G,G)/Exr(G) can be made arbitrarily

large.

2. Two Off-Diagonal Results.

Define C“ to be the set of connected graphs on n points,

Gn to be the set of graphs on n points with no isolates, and Kn to
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be the set of graphs with chromatic number x = n.
THEOREM 2.1. exr(Cm, Kn) = (m-1) (n-1) + 1.

Proof. By lemma 4 of [5], r(G,H) 2 (m-1) (n-1) + 1, where G ¢ Cm
and H ¢ Kn. On the other hand, in [6] it is shown that

b 0y 3 Kn) = (m-1) (n-1) + 1, where T is any tree on m points;
hence the result follows.

THEOREM 2.2.
min-2 if m <8 even,

exr(G , K) =
L max(mtn-2, 2n-1) <f m <s odd.

Proof. Consider first a two-colored Km+n_3

so that the blue graph is K, + (m-1) K.

in which the red graph
consists of just a Khhl’
Clearly the red graph cannot contain a member of Gm' Furthermore the
blue graph has chromatic number n-1 and so cannot contain a member

of Kn' Hence, exr(Gm, Kn) >m+n- 2. Now suppose m to be odd.
Then any member G of Gm has a component which has an odd number

of points, and so at least three points. Hence, by theorem 2.1,

r(G,H) 2 2n - 1, where H is any member of Kn. From these facts, the
right-hand side of the statement of the theorem is a lower bound for

exr(Gm, Kn).

It remains to exhibit GEGm and HeKu for which the lower
bound is achieved. Specifically, we take G = (mfZ)Kz when m is
even, G = P3 u ((m|-3)/2)K2 when m is odd, and H=K in either
case. We could evaluate the desired Ramsey numbers by means of a result
of Stahl [7], but we will evaluate them directly.

First, we prove that if m is even, then r((mlz)Kz,Kn) e
m+n - 2. We use induction on m. The result is trivial when
m = 2; now suppose it to have been proved for m - 2, m = 4, and
consider a two-colored Km+n_2.
T ((n-z)iz) Kz,Knl =m+n - 4, so we may assume the red graph
contains ((m-2)/2) 2"

we have a red(m{Z)Kz. If not, we have a red Kn, and in either case

By hypothesis,

If the remaining n points induce any red line,
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the proof is complete. It remains to show that if m is odd, then

:lP3 u (m-3)K2,Kn) = max(m+2, 2n-1). When m = 3, this fact follows
from the result of [6] given in the proof of theorem 2.1. For m > 3,
the desired result follows by induction in the same manner as the above.

This completes the proof.

3. Connected Graphs with Specified Chromatic Number.

Erdds has conjectured that exr (Kn) = r(Kn}.
Except when n = 2 or 3 this conjecture is unsettled, and we will not
consider it further. Rather we will evaluate em:(cm n Kn) and similar
extremal Ramsey numbers when m is large. We begin by giving some
lemas; all are sometimes sharp, as will be seen. Recall that if F is
g graph, F+K, is formed by adjoining one point to F and connecting

1
that point to each point of F by an edge.

eMA 3.1, If 1’=F1IJF2 and G=G1UGZ, then

r (F+I(l .G+K1) < max (r( F1+Kl, Gl+K1) 5

P(Fl) + r(FZ)G"'Kl) + r(F"'Kl:G)’
PG + (G,,FHK,) + r(G+K1,F)) .

Proof. Let n be the right-hand side of the above and consider any
two-colored Kn. Since n 2 r(F1+Kl,Gl+Kl), we have either a red

pl-l-xl or a blue Glﬂ(l; without loss of generality we may assume

the former. Consider the distinguished point of the F1+K1 and

consider the lines emanating from it that do not meet the given Fl. There
are at least r(Fz,G-I-Kl) + r(F+K1,G) - 1 such lines, so either at least
r(_rz,cﬂtl) are red or at least r(F+K1,G) are blue. But in either

case we see that we have either a red F+K, or a blue G+K1. This

1
completes the proof.

Next we state a simple lemma, which is lemma 3.1 of [4] .

LEMMA 3.2. If t = r(F,G), then r(F-H?j,G) < r(Kl t,G).
£ ]
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Combining this with a special case of lemma 3.1 yields the
following.

LFMMA 3.3. Under the conditions of lemma 3.1,if F2 and 6,

congist entirely of isolated points, then

r(F+K G+K1) < max (r(F +K Gl+Kl), p(F) + r(Kl,t’G

1 1’ ),

: B 1

PE) + Ty D)

where t = max (t(Fi,Gl), p(F), P(G)} .

Proof, By lemma 3.1, and since the desired result is symmetrical
in F and G, it is clearly sufficient to show that

p(Fl) + r(Fz.GH{l) + r(F-H(l,G) < p(F) + r(l{l,t,r}l). But

r(Fz,G+K1) = p(FZ) trivially, and by lemma 3.2,

r(F+K1,G) < r(K1 t,G) - r(Kl t’Gl)’ the final equality holding because
? ¥

r(l(l t'Gl) 2t = p(G). This completes the proof.
3

The above lemma can be applied in a variety of situations,
but we will be content with the case in which Pl and Gl are complete.
THEOREM 3.1. Let m2nz21t 2k, Fl = Kk’ F2 = (m—k)Kl,

G1 = Kl’ G2 = (n—i)Kl. F = Fl u Pz, and G = G1 U Gz. If also

B r(!(.k,l(l) and mi + 1 2 r(Kk+l,K ), then

2+l

r(PH ,GH ) = meHl .

Proof. That r(F+K1,G+K1) 2z mi+l follows from theorem 2.1, since
p(F+K1) = m+l and x(G+K1) = 2+l. Yow we show the inequality in the
other direction by applying lemma 3.3. We have ¢t = max(r(Kk,Kz),m,n}'l
Moreover, p(F) + r(Kl,t’Gl) =m+ (2-1)mtl = mi+l, and

p(G) + r(Kl,t’Fl) =n+ (k-1)m + 1 < m¢+l. Therefore,

r(F+K1,G+Kl) < mi+l and the proof is complete.

From this the next theorem follows immediately.
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THEOREM 3.2. If m=2n =z & = k, n-1 = r(Kk-l’Kr,—l)’ and
(m-1)(-1) + 1 = r(Kk’KIL)’ then

exr = (m- =
(Cm n Kk’cn n KF.) (m-1)(2-1) + 1 .
0f course, in the case m = n, k = £, we have under the above

conditions that (-\.-m-(C111 fn Kk) = exr(f.‘m n Kk,Cm n Kk) -

(z-1) (k-1) + 1. Using the facts that r(KZ’Kn) = n, r(!{3) =6,

I(K&) = 18, and (X ’Kz.) = 9, we have the following three results:

THEOREM 3.3. If m2n23 and m = &, then
Exr(Cm n K3’Cn n K3) = 2m-1.

THEOREM 3.4. If m=z2n 2 7, then
exr(Cm n KZ.,Cn n !(4) = 3m-2.

THEOREM 3.5. If m=2n = &4, then
exr(Cm n K3,Cn n K!.) = 3m-2.

The extremal graphs in the three above results can, of course,
be taken to be of the form of those in thecrem 3.1, namely, a complete
graph with a sufficiently large star emanating from some point. Vhen
the star is small the situation is different. It is interesting to
consider the case in which the star consists of a single line, so that
the graphs have the form I’.“ . K2' We conjecture that
r{K]1 . KZ) = r(Kn) when h = 4. It is not hard to see that this
would follow if r(Km,Kn) = r(Km,Kn_l) +m for all m=z2n = 3;
this question in classical Ramsey theory does not seem to have
been investigated. Tantalizingly, it is easy to prove that
r(Km,Kn} > r(Km,Kn_l) +m-1 if mzn = 3, but the stronger

result has resisted our efforts.

4. Comnected Graphs.

In this section we consider exf(C’n,Cn) which, as will
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be seen, also equals exr(Cn}. Since every connected graph has a
spanning subtree, the extremal graphs may be taken to be trees, and

hence bipartite graphs. With this in mind, define to be the

B
kyd
set of connected bipartite graphs with maximal independent sets

of k and 2 points. For the following lemma, for each k,% = 2

define Sk ¢ to be the following tree: take a copy of Pd (a path
3
of length three) and append a star Kl k-2 tO ome end and a star
Jk=
4 to the other end. Mote that

X4,8-2 Sk,0 € By o
LEMMA 4.1. If k=4 =22, then
r(S, ) = max(2k-1, k+22-1) .
k, 2

Proof. That r(Sk,i) = max{(2k-1, k+22-1) follows from lemma 1

of [3]. To prove the reverse inequality consider a two-colored complete
graph on max(2k-1, k+22-1) points. By a result of Rosta (personal
communication; see [3]), r(Kl,k-l u Kl,E) = max(2k-1, k+22-1), so that
without loss of generality we may assume that we have a red

I8
K ge=1 Y ¥y g e K k1
in question and let u denote the center of this star. Similarly,

Let U denote the set of endpoints of the

let V and v denote respectively the set of endpoints and the center
of the Kl in question. Let W denote all points not in the
t ]

2
K 8 4

1. k-1 1.2° and note that W has at least -2 points.
3 :

If any line joining U and V is red, we have a red

Sk 2 so we may assume all such lines are blue. Now if any line
$ ]

joining V and W u {u} is blue, we have a blue Sk 4> SO we may
t
assume that all lines joining V and W u {u}l u {v} are red. But
now the red graph contains a copy of Sk 2 and the proof is complete.
Ll

THEOREM 4.1. Let k22 21. If & =1 and k <s odd, then
exr(B ) = 2k; otherwise exr(Bk i} = max (2k-1, k+22-1). In
3

all cases, exr(ak » By 2) = exr (8, 1)-
> » >
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Proof. If & =1, Bk,l = {Kl,k} and the theorem follows in this

case from the evaluation of r(X, .) in [8]. TIf & = 2, that

1,k
pex(2k-1, k+22-1) 1is a lower bound for exr(Bk,fv) and exr(Bk’R, Bk,it.)
follows again from lemma 1 of [3]. That it is an upper bound for

W(Ek,,%)' and hence for exr(Bk’g, Bk,?.)' follows from lemma 4.1.

We may now apply this to Cn.

THEOREM 4.2. If n = 3, then

exr(C) = exr(f_,C ) = [%i]

Proof. In view of theorem 4.1, it suffices (except in the trivial
mse n = 2) to show that for integral k,

min max(2k-1, 2n-k-1) = [’”3‘—'1]
1<ksn-1

If k is permitted to assume rational wvalues, the minimum occurs
st k = 2n/3., Hence to find the desired minimum one need only consider
k= [2n/3] and k = [(2n+2)/3]. If n is of the form 3m, k = 2m

in either case, and max(2k-1, 2n-k-1) = 4m-1 = ﬁ%:]_- . If n = 3ml,

t=2m or 2mtl and in either case (2k-1, 2n-k-1) = 4mtl = (41;—_1] .

finally, if n = 3m+2, k = 2w+l or 2mt2. In the former case
1x{2k-1, 2n-k-1) = 4m+2; in the latter, max{2k-1, 2n-k-1) = 4mt+3.

tus the desired minimum is 4mk2 = [42_1] again.

mis completes the proof.

i, Arbitrary Graphs Without Isolates.

In this section we consider exr(Gn,Gn); as will be seen,
it has not been possible to obtain an exact result. It is clear that
e may restrict our attention to forests of stars, since every member
of Gn has a spanning forest of nontrivial stars. We begin with

results leading to an upper bound.

BMA 5.1.  If k,n 21, then r(kK; ) s kn+2k+2n,
»

- 253 -



Proof, We use induction on k. As was mentioned in the proof

of theorem 4.1, r(Kl,n) € 2n, so the theorem holds for k = 1.

Now assume the theorem to have been proved for k-1, and consider

a two-colored complete graph on kn+2k+2n points. Suppose the

graph contains a red and a blue Hl,m with all their endpoints in
common. (In the terminolowv of [9], this would be called a "howtie".)
Then if these n+2 points are removed, (k-1)n+2(k-1)+2n points
remain, and by the induction hypothesis these points induce a mono-
chromatic (R-I)Kl,n' Combining this with the Kl,n of the

appropriate color from the bowtie, we have the desired kﬂl e ence
1]

the theorem holds for k if the graph contains a bowtie.

e now show that if the graph does not contain a bowtie it
containg a monochromatic kﬂl'n. Consider any point p of the graph.
From this point emanate red lines leading to a set X of points and
blue lines leading to a set Y. If both X and Y have at least 2n
points, note that at least half of the lines between X and Y are one
color, say red. Hence, some point of X has at least n nvoints
leading to Y, yielding a bowtie; so we may assume that Y (say) has
< 2n-1 points, leaving 2 kn+2k ovoints in X. If X induces a blue
Kl.n we again have a bowtie. But it is easily seen, either directly
or by lemma 1 of [9], that r (k_l)KI,n‘ Kl,n < kntk. Hence, if
X does not induce a blue Kl.n‘ it induces a red (k_l)Kl,n' Add

to this one more red K induced by n of the remaining points

1;n

L]
of X and the point p, yielding a red kK . This completes the proof

1,n

THEJREM 5.1. For some eonstant c,

exr(G“, Gn) < exr(Gn) s n+cv4; ‘

) 2 k2 + 4k, Hence, when n = kz + k

Proof. B8y lemma 5.1, r(kKl K
the theorem holds (with ¢ = 4, say) and since exr(Gn) is a monotone
function of n, it is clear that the theorem holds in general with some

larger value of c.

Mow we consider lower bounds.
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THEOREM 5.2. There i8 a ¢y > 0 such that for all n 2 3,

n + logzn-co fn fn 3n < ext(Gn'Gn) < e.xr(f?u).

Proot. The constant g will be chosen during the course of the proof.

Let F and G be two members of Gn; we may assume that

Note that kl+"'+ks.n_s’ 11+...+£t-n-t. Set
q= [].ogzn—co In 1In 3n] and consider the two-colored complete

graph on ntq points in which the blue graph is Kn—l' The blue graph
cannot contain G. Furthermore the red graph can contain F only if
s<q+ 1 since at least one point of each star must be in the
complement of the K _y- Hence, r(F,5) = logzn-—co In In 3n unless

s<q+ 1, so we may assume this inequality holds, and similarlv for t.

Let X be the set of all numbers of the form

ke +k, + itk 4+,
il j'2 in

vhere i, < i < ... < 1.u. and let Y be the set of all numbers of

vhere il < 12 P iv'

The number j of elements of X v Y is no more than
2% 4+ 2F < 2.2
< u!(logzn + 2) ;

provided ¢_ has been chosen appropriately.

0
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Consequently, if we arrange the elements of X u Y in

increasing order

then z . -Z., z logzn +22q+ 2 for some r. Now form a two-

colored complete graph on ntq points in which the red graph is

K u K .
- -z 4+
z, 1 g z, 1

The red graph cannot contain G, since at most zZ__q points of the

K, _y can be used to help form G, so that the total number of points
T

that could be used is no more than

z +n+q - z_ +1l<n~-1.

r-1
Likewise, the blue graph cannot contain F, since again at most z_

points of the Kz _q can be used. This completes the proof.

T

We conjecture that theorem 5.2 gives the true behavior of

exr(Gn), and that the extremal graphs are roughly of the form

R /21 Y 5o mze) Y B msB Ve

Therefore, it would be highly desirable to extend Rosta's result,
mentioned in the proof of lemma 4.1, to forests of more than

two stars.

6. Problems and Conjectures.

Various questions have already been raised in the course
of this paper. We call particular attention to the problem of

determining, or at least improving the estimates of, exr(Gn).

We have not given any results here concerning Exr(G) or
Exr(G,H). One very interesting problem is that of determining Exr(TJ

and Exr(Tn,Tn), where Tn is the class of trees on n points.
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We conjecture that Exr(Tn) = Exr(Tn,Tn) =2n -2 when n 1is even and
Zn-3 when n is odd, with the extremal graphs being stars. The best
that is presently known is E:cr(Tn) < 4n + 1; see [10].

Another interesting set of graphs is Ln’ the set of graphs
with n lines. Presumably, when n = (1;) , k=4, Exr(l.n) = r(l{k),
but this seems hard. Perhaps even more difficult to treat is exr(l.n).

Here we do not even have a reasonable conjecture.

Finally, we call attention to [4] which both raises and
partially solves a number of problems which may be considered

extremal in nature.

- 257 -



[11

[2]

£3]

[4]

[5]

(6]

£71

(8]l

L9l

[10]

REFERENCES

V. Chv&tal and F. Harary, Generalized Ramsey theory for graphs,
Bull. Amer. Math. Soe. 78 (1972), 423-426.

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

S. A. Burr, Generalized Ramsey theory for graphs - a survey, in
Graphs and Combinatorics (R. Bari and F. Harary, Eds.), Springer-
Verlag, Berlin, 1974, pp. 52-75.

S. A. Burr and P. Erdds, On the magnitude of generalized Ramsey
numbers for graphs in Colloq. Math. Soc. Jdnos Bolyai 10.

Infinite and Finite Sets, Keszthely (Hungary), 1973, v.1, 215-240.
V. Chvdtal and F. Harary, Generalized Ramsey theory for graphs, I,
small off-diagonal nwmbers, Pac. J. Math. 41 (1972), 335-345.

V. Chvital, The tree-complete graph Ramsey nwmbers, J. Graph Theory
1 (1976), to appear.

S. Stahl, On the Ramsey number r(F,Kn), where T 18 a forest,
Can. J. Math. 27 (1975), 585-589.

V. Chvdtal and F. Harary, Generalized Ramsey theory for graphs II,
small diagonal nwmbers, Proc. Amer. Math. Soc. 32 (1972), 389-394.
S. A. Burr, P. Erdds, and J. H. Spencer, Ramsey theorems for
multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975), 87-9.
P. Erdds and R. L. Graham, On partition theorems for finite
graphs, in Colloq. Math. Soc. Jénos Bolyai 10. Tnfinite and Finite
Sets, Keszthely (Hungary), 1973, v.1, 515-527.

Bell Laboratories
Madison
New Jersey 07940

Present address:
A.T.& T. Long Lines

110 Belmont Drive
Somerset, N.J. 08873

Hungarian Academy of Sciences

Recetved November 5, 1374.

- 258 -



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

