
r(G,H)

If G and H are graphs, define the Ramsey number
to be the least number p such that if the lines of the

complete graph Kp are colored red and blue (say),either the red

subgraph contains a copy of G or the blue subgraph contains H . Also

set r(G) = r(G,G) ; these are called the diagonal Ramsey numbers . These

definitions are taken from Chvátal and Harary [1J ; other terminology

will follow Harary [2] . For a survey of known results concerning

these generalized Ramsey numbers, see [3] .

A natural question about Ramsey numbers is how small, or large,

they can be . We make some definitions . If G is a set of graphs,

define exr(G) by

exr(G) = min r(G) ;
GEG

also if G and H are sets of graphs, set

exr(G,H) = min r(G,TI) .
GEG
HEH

We also define Exr(G) and Exr(G,H) similarly, with min replaced

by max. Note that exr(G,G) <_ exr (G) . This inequality can be strict .

In fact, theorem 4 .1 of [4] shows that exr(G,G)/exr(G) can be made

arbitrarily small, even for sets G containing only two graphs . Likewise,

theorem 2 .5 of [4] shows that Exr(G,G)/Fxr(G) can be made arbitrarily

large .

2 . Two Off-Diagonal Results .

G
n

EXTREMAL RAMSEY THEORY FOR GRAPHS

S . A. Burr and P . Erdős

1 . Introduction .

Define C
n to be the set of connected graphs on n points,

to be the set of graphs on n points with no isolates, and K
n

to
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be the set of graphs with chromatic number x = n .

THEOREM 2 .1 .

	

exr(Cm, Kn) _ (m-1) (n-1) + 1 .

Proof.

	

By lemma 4 of [5J, r(G,H) ? (m-1) (n-1) + 1, where G E Cm
and H E Kn . On the other hand, in [6] it is shown that
r(T, Kn ) _ (m-1) (n-1) + 1, where T is any tree on m points ;
hence the result follows .

THEOREM 2 .2 .

m+n-2

	

if m is even,
exr (Gm , Kn ) _

max(m+n-2, 2n-1) if m is add .

Proof.

	

Consider first a two-colored K
m4-n-3 in which the red graph

consists of just a K,,,_ l , so that the blue graph is Kn-2 + (m-1) K1 .

Clearly the red graph cannot contain a member of Gm . Furthermore the

blue graph has chromatic number n-1 and so cannot contain a member

of Kn . Hence, exr(Gm, Kn) >_ m + n - 2 . Now suppose m to be odd .

Then any member G of Gm has a component which has an odd number

of points, and so at least three points . Hence, by theorem 2 .1,

r(G,H) ? 2n - 1, where H is any member of Kn . From these facts, the

right-hand side of the statement of the theorem is a lower bound for

exr(Gm
, K ) .

n

It remains to exhibit GeG and HEK for which the lowerm

	

n
bound is achieved . Specifically, we take G = (m/2)K2 when m is

even, G = P 3 U ((m-3)/2)K2 when m is odd, and H = Kn in either

case . We could evaluate the desired RamSey numbers by means of a result

of Stahl [7], but we will evaluate them directly .

First, we prove that if m is even, then r((m/2)K 2'Kn ) _

m + n - 2 . We use induction on m . The result is trivial when

m = 2; now suppose it to have been proved for m - 2, m > 4, and

consider a two-colored K -2 . By hypothesis,

r (((m-2)/2) K2 ,Kn = m + n - 4, so we may assume the red graph

contains ((m-2)/2) 2 . If the remaining n points induce any red line,

we have a red(m/2)K2 . If not, we have a red Kn , and in either case
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the proof is complete . It remains to show that if m is odd, then

r~P3 u (m-3)K2 ,KJ = max(m+2, 2n-1) . When m = 3, this fact follows

from the result of [6] given in the proof of theorem 2 .1 . For m > 3,

the desired result follows by induction in the same manner as the above .

This completes the proof .

Connected Graphs with Specified Chromatic Nzmber .

Erdős has conjectured that exr (K n ) = r(K ) .n
Except when n = 2 or 3 this conjecture is unsettled, and we will not

consider it further . Rather we will evaluate exr(Cm n Kn ) and similar

extremal Ramsey numbers when m is large . We begin by giving some

lemmas ; all are sometimes sharp, as wí11 be seen . Recall that if F is

a graph, F+KI is formed by adjoining one point to F and connecting

that point to each point of F by an edge .

LM4A 3 .1 . If F = F l U F2 and G = G 1 a G2I then

r(F+KIIG+K I) 5 max
`
lr(FI+KI ,GI+KI),

p(FI ) + r(F 2I G+K1) + r(F+KI ,G),

p(GI ) + r(G2,F+K1 ) + r(G+KI ,F) / .

Proof . Let n be the right-hand side of the above and consider any

two-colored Kn . Since n ? r(FI+KI ,GI+KI), we have either a red

F 1+K1 or a blue G1+K1 ; without loss of generality we may assume

the former . Consider the distinguished point of the FI+KI and

consider the lines emanating from it that do not meet the given FI . There

are at least r(F2 ,G+K1 ) + r(F+KI ,G) - 1 such lines, so either at least

r(F2,G+K1 ) are red or at least r(F+KII G) are blue . But in either

case we see that we have either a red F+K1 or a blue G+KI . This

completes the proof .

Next we state a simple lemma, which is lemma 3 .1 of [4] .

UwA 3 .2 .

	

If t = r(F,G), then r(F+KII G) < r(KI't ,G) .

3 .



Combining this with a special case of lemma 3.1 yields the

following .

t FIhfA 3 .3 .

	

Under the conditions o f Zenna 3 .1,--,' 1" F2 and G2
consist entirely of isolated points, then

r(F+K,,G+K1) < max /r(F1±K,,G1+K1), p(F) + r(Kl't ,Gl ),

p(G) + r(K1't,F1)1 ,

where t = max !r(F,,G,), p(F), p(G)1 .
I

:roof .

	

By lemma 3 .1, and since the desired result is symmetrical

in F and G, it is clearly sufficient to show that

p(F1) + r(F2 ,G+K1 ) + r(F+K1 ,G) s p(F) + r(K 1,t ,G1 ) . ?:ut

r(F 2,G+K1 ) = p(F 2 ) trivially, and by lemma 3 .2,

r(F+K,,G) <_ r(KI't' G) = r(K 1 t , G 1 ), the final equality holding because

r(K1 t , G1 ) ? t > p(G) . This completes the proof .

The above lemma can be applied in a variety of situations,

but we will be content with the case in which F 1 and G1 are complete .

THEOREM 3 .1 .

	

Let m >_ n? Z? k F1

	

Kk' F2

	

m-k)K1'
G1 = K Z , G, _ (n-Z)K1 , F = F1 u F2 , and G = G1 u G2' If also

n

	

r(K, ,KZ ) and mZ + 1 ? r(Kk+,,K2+,), then

r(F+K l ,G+K.1 ) = mZ+1 .

Proof . That r(F+K,,G+K1) > mZ+l follows from theorem 2 .1, since

p(F+K 1 ) = m+l and X(G+I: 1 ) = Z+1 . Now we show the inequality in the

other direction by applying lemma 3 .3 . We have t = max(r(K k ,KZ ),m,n) _l

Moreover, p(F) + r(KI't' GI ) = m + (Z-1)m+l = mZ+l, and

p(G) + r(K 1't ,F1 ) = n + (k-1)m + 1 <_ mZ+l . Therefore,

r(F+K,,G+K1) <_ mZ+1 and the proof is complete .

From this the next theorem follows immediately .
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THEOREM 3 .2 .

	

If m ? n ? Q ? k, n-1 ? r(
-1,KQ-1

), and

(m-1)(Q-1) + 1 > r(Kk ,KZ ), then

Of course, in the case m = n, k = R, we have under the above

conditions that exr(Cm n Kk) = exr(Cm n Kk ,Cm n Kk)

(m-1) (k-1) + 1 . Using the facts that r(K 2' Kn ) = n, r(K3 ) = 6,

r(K 4 ) = 18, and r('_: 3' K 4 ) = 9, we have the following three results ;

THEOREM 3 .3 .

	

If m >_ n >_ 3 and, m ? 4, then

exr(Cm n K3 ,Cn n K3 ) = 2m-1 .

THEOREM 3 .4 .

	

If m - n ? 7, then

exr(Cm n K4 ,Cn n K4 ) = 3m-2 .

THEOREM 3 .5 .

	

If m >_ n ? 4, then

exr(CIn n K3 ,Cn n K4) = 3m-2 .

The extremal graphs in the three above results can, of course,

be taken to be of the form of those in theorem 3 .1, namely, a complete

graph with a sufficiently large star emanating from some point . U?hern

the star is small the situation is different . It is interesting to

consider the case in which the star consists of a single line, so that

the graphs have the form Yn K2 . We conjecture that

r(Ka • K2 ) = r(Kn) when n ? 4 . It is not hard to see that this

would follow if r(Km,Kn) ? r(K n,Kn-1 ) + m for all m >_ n ? 3 ;

this question in classical Ramsey theory does not seem to have

been investigated . Tantalizingly, it is easy to prove that

r(Km,Kn) ? r( m,I:n-1 ) + m-1 if m ? n ? 3, but the stronger

result has resisted our efforts .

4 . Connected Graphs .

In this section we consider ext(C n,Cn) which, as will

exr(Cm n Kk ,Cn n KQ ) _ (m-1)(2-1) + 1 .



be seen, also equals exr(Cn ) . Since every connected graph has a

spanning subtree, the extremal graphs may be taken to be trees, and

hence bipartite graphs . With this in mind, define Bk k to be the

set of connected bipartite graphs with maximal independent sets

of k and k points . For the following lemma, for each k,k ? 2

define Sk k to be the following tree : take a copy of P 4 (a path

of length three) and append a star Kl,k-2 to one end and a star

K19k-2 to the other end . Note that Skfk C Bk, k'

LEMMA 4 .1 . If k ? k ? 2, then

r(Sk k) = max(2k-1, k+2k-1)

Proof .

	

That r(Sk,k) = max(2k-1, k+2k-1) follows from lemma 1

of [3] . To prove the reverse inequality consider a two-colored complete

graph on max(2k-1, k+2k-1) points . By a result of Rosta (personal

communication ; see [3]), r(K1 k-1 u K1'k ) = max(2k-1, k+2k-1), so that

without loss of generality we may assume that we have a red

K1 k-1 u K101 . Let U denote the set of endpoints of the K1 k-1
in question and let u denote the center of this star . Similarly,

let V and v denote respectively the set of endpoints and the center

of the K11,2 in question. Let W denote all points not in the

hl k-1 u K1 k , and note that W has at least t-2 points .
s

	

~

If any line joining U and V is red, we have a red

Sk k , so we may assume all such lines are blue . Now if any line

joining V and W u {ul is blue, we have a blue S k k , so we may

assume that all lines joining V and W u ful u (vl are red . But

now the red graph contains a copy of Sk k and the proof is complete .

THEOREM 4 .1 . Let k >_ k ? 1 .

	

If t = 1 and k is odd, then
exr(B

k,k
) = 2k • otherwise exr(Bk,k) = max(2k-1 ' k+2k-1) . In

aZZ eases, exr(Bk
a k' Bk,R) = exr(Bk ' k ) '



Proof .

	

If 2 = 1, Bk t = {Kl k} and the theorem follows in this

case from the evaluation of r(K 1 k) in [8] . If k >_ 2., that

mas(2k-1, k+2,-1) is a lower bound for exr(Bk Y.) and exr(Bk Q , Bf Q )

follows again from lemma 1 of [3] . That it is an upper bound for

exr(Bkit ), and hence for exr(Bkit , Bk Q), follows from lemma 4 .1 .

We may now apply this to C n .

THEOREM 4 .2 .

	

If n >_ 3, then

exr(C ) = exr(C C ) = 4n-1
n

	

n' n

	

3

Proof.

	

In view of theorem 4 .1, it suffices (except in the trivial

case a = 2) to show that for integral k,

min

	

max(2k-1, 2n-k-1) _
1_ksn-1

If k is permitted to assume rational values, the minimum occurs

at k = 2n/3 . Hence to find the desired minimum one need only consider

k= [2n/3] and k = [(2n+2)/3] .

	

If n is of the form 3m, k = 2m

is either case, and max(2k-1, 2n-k-1) = 4m-1

	

4n-1= ~ 3

	

If n = 3m+1,

k= 2m or 2m+1 and in either case (2k-1, 2n-k-1) = 4m+1 = 4n-1 1
3

Finally, if n = 3m+2, k = 2?n+l or 2m+2 . In the former case

max(2k-1, 2n-k-1) = 4m+2 ; in the latter, max(2k-1, 2n-k-1) = 4m+3 .

Thus the desired minimum is 4m+2 = [4311 again .

This completes the proof .

;, Arbitrary Graphs Without Isolates .

In this section we consider exr(G n ,Gn ) ; as will be seen,

it has not been possible to obtain an exact result . It is clear that

re may restrict our attention to forests of stars, since every member

of Gn has a spanning forest of nontrivial stars . We begin with

results leading to an upper bound .

1R MA 5 .1 .

	

If kin > 1, then r(kKl n) <- kn+2k+2n .



Proof.

	

We use induction on k . As was mentioned in the proof

of theorem 4 .1, r(K1 n ) _< 2n, so the theorem holds for k = 1 .
>

Now assume the theorem to have been proved for k-1, and consider

a two-colored complete graph on kn+2k+2n points . Suppose the
graph contains a red and a blue ?'1 m with all their endpoints in

>
common . (In the terminolo .;,r of [9], this would be called a "bootie" .)
Then if these n+2 points are removed, (k-1)n+2(k-1)+2n points
remain, and by the induction hypothesis these points induce a mono-

chromatic (k-1)Kl n. Combining this with the R l n of the

appropriate color from the bootie, we have the desired k` :1 n . ?ience

the theorem holds for k if the graph contains a bootie .

Tde now show that if the graph does not contain a bootie it
contains a monochromatic k.a n . Consider any point p of the graph .
From this point emanate red lines leading to a set X of points and
blue lines leading to a set

	

If both X and Y have at least 2n

points, note that at least half of the lines between X and Y are one

color, say red . Hence, some point of X has at least n points
leading to Y, yielding a bootie ; so we may assume that Y (say) has

<_ 2n-1 points, leaving ? kn+2k points in X . If X induces a blue

Kl,n we again have a bowtíe . But it is easily seen, either directly

or by lemma 1 of [91, that r (k-1)K1 n' K1'. ` kn+k . Hence, if
>

X does not induce a blue Kl,n , it induces a red (k-1)Kl,n . Add

to this one more red K1,n induced by n of the remaining points

of X and the point p, yielding a red kK l n . This completes the proof .

THE9RFM 5 .1 .

	

For some constant c,

exr(Gn , Gn) s exr(Gd <_ n+cola .

Proof.

	

By lemma 5 .1, r(LKl k) 5 k2 + 4k .

	

Pence, when n = k2 + k
>

the theorem holds (with c = 4, say) and since exr(Gn) is a monotone
function of n, it is clear that the theorem holds in general with some

larger value of c .

Now we consider lower bounds .



THEOREM 5 .2 .

	

There Is a c0 > 0 such that for all-Z n ? 3,

n + lo g 2n-c0 kn kn 3n < exr(6n,Gn) < exr(Cin)'

?roo;.

	

The constant c0 will be chosen during the course of the proof .
Let F and G be two members of Gn ; we may assume that

F = K1,k u . . . u K1,k '
1

	

s

G = K1,Z1 u . . . u
K1,kt

.

Note that kl + . . . + ks = n-s, kl + . . . + kt = n-t .

	

Set
q =[109 2n-c0 In In 3n] and consider the two-colored complete
graph on n+q points in which the blue graph is Kn-1 . The blue graph
cannot contain G . Furthermore the red graph can contain F only if
s < q + 1 since at least one point of each star must be in the
complement of the Kn-1 . Hence, r(F,G) ? log2n-c0 In In 3n unless
s < q + 1, so we may assume this inequality holds, and similarly for t .

Let X be the set of all numbers of the form

where íl < i2
the form

where it < í2 < • ' < iv'

The number j of elements of X u Y is no more than

2s + 2t < 2 2q+1

<_ n/(log2n + 2) ,

provided c 0 has been chosen appropriately .

k . + k,

	

+ ki + u ,
1 1

	

12

	

u

< í , and letu

k, + k, + . . . + k, + t - v ,
1 1

	

12

	

lv

be the set of all numbers of



Consequently, if we arrange the elements of X u Y in

increasing order

then zr - zr-1
4
log2n + 2 >- q + 2 for some r .

	

Now form a two-

colored complete graph on n+q points in which the red graph is

0 = zl < z2 < . . . < z . = n ,

Kz -1 u Kn+q-z +1 'r

	

r

The red graph cannot contain G, since at most zr-1 points of the

Kz _1 can be used to help form G, so that the total number of points
r

that could be used is no more than

zr-1 +n+q - zr + 1 <_ n - 1 .

Likewise, the blue graph cannot contain F, since again at most zr-1
points of the K z -1 can be used . This completes the proof .

r

We conjecture that theorem 5 .2 gives the true behavior of

exr(G ), and that the extremal graphs are roughly of the formn

K1,[n/2] U K1,[n/4] U K1,[n/8J U . . .

Therefore, it would be highly desirable to extend Rosta's result,

mentioned in the proof of lemma 4 .1, to forests of more than

two stars .

6 .

	

Problems and Conjectures .

Various questions have already been raised in the course

of this paper. We call particular attention to the problem of

determining, or at least improving the estimates of, exr(G n) .

We have not given any results here concerning Exr(G) or

Exr(G,H) . One very interesting problem is that of determining Exr( U
and Exr(Tn,Tn), where Tn is the class of trees on n points .
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We conjecture that Exr(Tn) = Exr(n , n) = 2n - 2 when n is even and

2n - 3 when n is odd, with the extremal graphs being stars . The best
that is presently known is Exr(Tn) <_ 4n + 1 ; see [10] .

Another interesting set of graphs is Ln , the set of graphs

with n lines . Presumably, when n = (21 , k ? 4, Exr(Ln) = r(Kk),

but this seems hard . Perhaps even more

l

difficult lt to treat is exr(L n) .

Here we do not even have a reasonable conjecture .

Finally, we call attention to [4] which both raises and

partially solves a number of problems which may be considered

extremal in nature .
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