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1. Introduction. Let 0 < p < 1 be fixed and denote by G a random graph with point
set N, the set of natural numbers, such that each edge occurs with probability p,
independently of all other edges. In other words the random variables ei5 , 1 < i < j,
defined by

_ 1 if (i, j) is an edge of G,
et ' - 0 if (i, j) is not an edge of G,

are independent r .v.'s with P(e i, = 1) = p, P(eij = 0) = 1-p . Denote by G .n the sub-
graph of G spanned by the points 1, 2, . . ., n. These random graphs G, Gn will be investi-
gated throughout the note . As in (1), denote by Kr a complete graph with r points and

denote by k,(H) the number of K,'s in a graph H. A maximal complete subgraph is
called a clique . In (1) one of us estimated the minimum of k,(H) provided H has as points
and m edges . In this note we shall look at the random variables

Yr = Y(n, r) = k,(G,,) ,

the number of Kr's in Gn,, and

Xn = max {r : k,(G,,) > 0},

the maximal size of a clique in Gn .
Random graphs of a slightly different kind were investigated in detail by Erdös and

Rényi(2) . In (4) Matula showed numerical evidence that X,,, has a strong peak around
2 log n/log (1/p) . Grimmett and McDiarmid(3) proved that as n -~- oo

X./log n -,- 2/log (1/p)

with probability one. Independently and earlier Matula(5) proved a considerably finer
result about the peak of Xn . In particular he proved that, as n -* 00, Xn takes one of
at most two values depending on n with probability tending to 1 .

The main aim of this note is to prove various results about the distribution of X n .
We shall also investigate the existence of infinite complete graphs in G . Finally we
prove how many colours are likely to be used by a certain colouring algorithm .

2 . Cliques infinite graphs . To simplify the notations we shall put b = 1/p . Note first
that the probability that a given set of r points spans a complete subgraph of G is
p('). Consequently the expectation of Yr = Y(n, r) is

Er = E(1;) = E(n, r) = (')p .(,

	

(1)
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Let d = d(n) be the positive real number for which

It is easily checked that

d(n) = 2log, n-2log b logb n+2log b (1e) + 1+0(1)

= 2 log, n + 0(logb logo n) = llog	 o b + 0009b logo n) .

Choose an e, 0 < e < 2. Given a natural number r > 2 let nr be the maximal natural
number for which

E(nr, r) < r-(1+E)

and let n;, be the minimal natural number for which

It is easily checked that

n,'.-nr < 3logrbir

	

(2)
r

and

	

nr = bir+o(bir) .

	

(3)

Thus, with at most finitely many exceptions, one has

nr < n r < nr+h

(nr-nr)Í(nr+i-n;,) < 4(bi-1) -lr -1 logr

and

	

lim (nr+2 - nr+1)/(nr+l - nr) = bi

n

	

cd)

(d)p,
= i .

r-

THEOREM 1 . For a .e . graph G there is a constant c = c(G) such that if

n 'r < n g nr+1 for some r > c

then

	

X.(G) = r.

Proof. Let 0 < q < 1 be an arbitrary constant . We shall consider the random
variables Yr = Y(n, r) for

log n < r

	

log n
(i+r1)logb

	

< 3 logb

and large values of n . Note first that the second moment of I ;, is the sum of the
probabilities of ordered pairs of K,'s . The probability of two Kr's with l points in
common is

p2(p-c;)

since G must contain 2
`2)

-
12)

given edges . As one can choose

('-
n
) (t) (r- 1)
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ordered pairs of sets of r points with l points in common (since n > 2r), the second
moment of Y,, is

(ef. Matula(4» . As

E(Y,)

	

(n-r~
a=Q rJ ll r-l

(4)

= ZI
(n
r) 111 lr - ~lpz(g

the variance of YT is

4y, _ 0'z(Yr) = 2Y
(
r
n)

	

r)
ll

)
l
r _ l p2(' (b(< ) - 1)

(r) n-r

and so

	

,2/E2 =

	

l r-l
(b'')-1) -

	

F

	

(5}

r=z

	

lnj

	

a=2l Jr

Routine calculations show that, if n is sufficiently large and 3 5 l - r-1, then

F < F3 + Fr- 1 .
Consequently

Since

U,/E2 < F2 +Fr +r(F3 +Fr-I)

< 2n2 (b-1)+Er
+r 16n(b

3 -1)+ rÉr-i~ .

br > ni+n and r < l3b log n,
g

this gives

	

yr/E; < ( J(b-1) r4n-2 +Er1 ) { 1 +r])
< (b-1)r4n-z+2Er 1. (6)

Inequality (6) gives, in fact, the right order of magnitude of o-T/ET since (5) implies
immediately

G,' /E 2 > T2 + F, = ~(b- i) r4n-2 +Er1(1-p~' ) •

We shall use inequality (6) only to conclude

P(Yr = 0) < /E; < br 4n-z+2Er 1 .

	

(7)

In particular, by the choice of n ;,

P(Y(n', r) = 0) < br4(n;.)-2+ 2E(n,., r) -1

< 3r-~l+e)
On the other hand,

P(Y(nr+l,r+1) > 0) < E(n,.+l,r+1) < r-<l+E),

Consequently, for a fixed r

P(3n, n, < n - nr+1 , Xn + r) < 4r-(1 }e) . (8)
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As E r-( 1 +e) < oo, the Borel-Cantelli lemma implies that for a.e. graph G with the
i

exception of finitely many is one has

X.(G) = r for all n, nr' < n < nr+i •
This completes the proof of the theorem .

Let e = 3 . Then the choice of the numbers nr,nr and the definition of d(n) imply easily
(cf. inequalities (2) and (3)) that

d(nr ) < r < d(nr )

and if r is sufficiently large then

max {r - d(nr), d(nr ) - r} <
7 log r < 2 loglog nr+i

2 log b r

	

logb log nr+i

Thus inequality (8) implies the following extension of the result of Matula(s) .

COROLLARY 1 . (i) For a .e . graph G there is a constant c = c(G) such that if n > c(G)
then

~d(n)-2
loglogn

\ Xn < [d(n) +2
loglogn

L

	

log n log b

	

log n log b

(ü) If r is sufficiently large and nr < n < nr+l then

P { d(n) - 2lolog
log

71g n log b] < X n < [ d(n) + 2.1109log b]' d n, n,. < n < n,,+,)
L

	

> 1-1 Or-4 .

09 n log

Remark. Note that the upper and lower bounds on X„ in Corollary 1 differ by at
most 1 if n is large and for most values of n they simply coincide .

Let us estimate now how steep a peak X n has got near d(n) . More precisely, we shall
estimate

P(X,n < r(n)) and P(X, > r'(n))

for certain functions r(n), r'(n) with r(n) < d(n) < r'(n) . The expectation gives a
trivial but fairly good bound for the second probability. As for r > d(n) one has
E(n, r) < nd(n)-r

P(Xn > r'(n)) < nd(n)-r(n)

whenever r' (n) > d(n) . Furthermore, if 0 < d(n) - r(n) is bounded, K > 0 is a constant
and n is sufficiently large, then E(n, r) > Knd~n>-r(n>. Consequently it follows from (7)
that if 0 < 8 < 2, 0 < c and n is sufficiently large (depending on p, 8 and c) then

P(X. < d(n) -S) < an-8 .

	

(9)

Our next result extends this inequality .

THEOREM 2 . (i) Let 0 < e, 0 < r(n) < d(n), r(n) oo and put

t = t(n) _ [d(n)-a-r(n)] -1 .

Then

	

P(Xn < r(n)) < n-[bigl

if n is sufficiently large .
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(ü)Let0<e<8<1.Then

P(X, - (1-4)d(n)) < n-2
if n is sufficiently large .

Proof. (i) Put s = [bit] and choose subsets V	V of{i, . . ., n} such that I V n V

	

i
and I V I -> n/s (i < i, j -< n, i + j). Then

d(lVl) > d(n) - le-
2oloogs > d(n)-2e-t -> r(n)+i-2e .

Thus for large n the probability that the subgraph spanned by li does not contain a
K, with l > r(n) is less than n_1 . As these subgraphs are independent of each other,

P(X. < r(n)) < n-8
if n is sufficiently large .

(ü) Put r = [(1-8)d(n)+ 1] and let q be a prime between ne and 2ne . Put

Q = q2 +q+ 1, m = [nlQ] .

Divide {l, 2, . . ., n) into Q classes, Cl , . . ., CQ , each having m or m+ 1 elements. Consider
the sets Cl, . . ., CQ as the points of a finite projective geometry . If e is a line of this
projective geometry, let Ge be the subgraph of G with point set V = U Ci and with all

C,ee

those edges of G that join points belonging to different classes . It is clear that almost
every r-tuple of V is such that no two points belong to the same class, since

Furthermore,
r < d(IVJ)-2 .

Consequently inequality (7) implies that the probability of G e not containing a K,
is less than n-1 . As e runs over the set of lines of the projective geometry the subgraphs
Ge are independent since they have been chosen independently of the existence of
edges. Therefore

P(G,,, does not contain a K,) < n-Q < n-"
as claimed .

Remark . Up to now we have investigated the maximal order of a clique . Let us see
now which natural numbers are likely to occur as orders of cliques (maximal complete
subgraphs). We know that cliques of order essentially greater than d(n) are unlikely
to occur. It turns out that cliques of order roughly less than 2d(n) are also unlikely to
occur but every other value is likely to be the order of a clique . The probability that
r given points span a clique of G n is clearly

(1-pr )n-r
p (

%~ .

Thus if z, = Z,(G,,,) denotes the number of cliques of order r in G,, then the expectation
of Z, is

\g r 1 /
mr-

( , VrI ,) .

E (Z r) _ 0 (1-p'r- p(') .
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Denote by J(n) the minimal value of r > 2 for which the right hand side is 1 . One can
prove rather sharp results analogous to Theorem 1 stating that the orders of cliques
occurring are almost exactly the numbers between J(n) - Jd(n) and d(n), but we shall
formulate only the following very weak form of the possible results .

Given e > 0 a .e . graph G is such that whenever n is sufficiently large and

(1+e)logb < r < (2-E) log 'g

	

gb
Gn contains a clique of order r, but G n does not contain a clique of order less than

log n(1-e} log b'
or greater than

(2+e) log nlogb'

3 . Infinite complete subgraphs . We denote by K(x,, x2 , . . .) ( resp . K(x1 , . . . . x,)) the
infinite (resp . finite) complete graph with vertex set {x1 , x2 , . . .} ( resp . {x1 , . . ., x,,}). We
shall always suppose that 1 < x 1 < x 2 < . . . . We would like to determine the infimum
c o of those positive constants c for which a .e . G contains a K(xl, x,_ .) such that

xn < ell for every n , n(G) .

Corollary 1 implies that c o -> bl . At the first sight c o = z does not seem to be impossible
since a .e . G is such that for every sufficiently large n it contains a K(xl , . . ., xn ) satisfying
xn < b(1+e)n. However, it turns out that a sequence cannot be continued with such a
density and, in fact, c a = b. We have the following more precise result .

THEOREM 3 . (i) Given e > 0 a .e . graph G is such that for every K(x1 , . . .) C G

x > ón(1-e)

holds for infinitely many n .
(ü) Given e > 0 a .e . G contains a K(x,, . . .) such that

xn < bn(l+e)

for every sufficiently large n .

Proof. (i) Let 1 < xl < x 2 < . . . < xn < bn( 1-c) . Then the probability that there is a
point xn+, < b(n+1)u-e) joined to every xi , 1 < i < n, is less than

b(n+1) (1-e)pn = bl-(n+1) e

Thus the probability that G contains a K(xl, . . ., xN ) satisfying

xk < bk(1- e) (k = n

	

N)
is less than

bn N
Pn,1V =

	

rj b 1-ke(n n+1
n

(There are at most `n
1
sequences 1 < x1 < . . . < xn < bn( 1-e) . Clearly Pn,N -> 0 as

N -+ oo, so the assertion follows .
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(ü) Let Pn be the probability that G contains a K(xl , . . ., xn) with xn < bna+E). We

know that Pn 1 . Given 1 < x1 < . . . < xn < bn( 1 ) let us estimate the probability
Qn+1 that there is a point xn+l, xn < xn+l < b(n}1)(1-(x), which is joined to every xi,
1 < i S n. There are

[b(n+l)(1+e)-x.] > [b(n+1)(1+0-bn(l+e)] > b(n+1)(1+0 =
Bn+1

independent choices for xn+1, where 0 < y < e and n is sufficiently large . The
probability that a point is not joined to each of {x1 , . . ., xn} is 1-pn . Consequently

1 -Qn+1 < (1- pn )B,, < e--b-) .

Therefore the probability that G contains a K(x	xn ), xn < bn(l+E), which can be
extended to a K(xl , x2, . . .) by choosing first xn+1 < b(n+l) (l+e), then xn+2 < b(n+2) (1+E)

etc ., is at least

	

T7
Rn =Pn 11Qk •

n+1

As Rn -> 1 (n --> oo), the proof is complete .

4. Colouring by the greedy algorithm . Given a graph G with points 1, 2, . . ., the greedy
algorithm (see (3)) colours G with colours c 1 , c 2 , . . . as follows. Suppose the points
1, . . ., n have already been coloured . Then the algorithm colours n+ 1 with colour c,
where j is the maximal integer such that for each i < j the point n+ 1 is joined to a
point xi S n with colour c i . In other words the algorithm colours the point n+ 1 with
the colour having the minimal possible index . Denote by ~n = .1 (G) = x(Gn) the
number of colours used by this algorithm to colour G n . Out next result extends a
theorem of Grimmer and McDiarmid(3) stating that n[(Iogn)Jn] -+ log i1q in mean,
where q = 1-p. An immediate corollary of our result is that xJ(log n)/n] log 11q in
any mean (with a given rate of convergence) and almost surely. As usual, {x} denotes
the least integer not less than x .

TnEOaEnz 4 . (i) Let 0 < y < z befixed and let u(n) 3 y-i be an arbitrary function . If
n is sufficiently large then

P log n
J
~nn <logs/q(1+u(n) (log ifq)l(log n)- 1) -11 < n-Yu 2 (n)+ l

(ü) Let 3 -< v(n) < log n(log log n)-1 and put
t(n) = 1- v(n) log log n(log n) -1,

c(n) _
nlog 1Jq
~t(n) log n)'

Phenfor every sufficiently large n we have
p(~n > c(n)) <

Proof. (i) LetMj be the probability that Gn has at least

k = k(n) = lóáIq +u(n ) (log n)I (log ifq)- 1 = kl(n)+k2(n) = k 1 +k2

Points of colour cf . It suffices to show that if n is sufficiently large then
117 < n-Y112 '
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since then the probability that there is a colour class with at least k(n) points is at most

nnyu2 = n-yu'+1
Grimmett and McDiarmid showed ((3), p. 321), that

[k(n)1-1
-A1I < rl (1-(1-qi)n) .

i--1
Since k2 oo as n oo we may suppose that k2-5k2+6 > 2yk2 . Then taking into
account that qk' = n-1, qk, = n uz

[k-11
.i 1j -< ri nqi _< nkx-2q' (ka-2X2k1+kz 3)

i=[k,+11
= gi(ká-bk$+6) < qyk' = n-yul(n)

as required .
(ü) Let us estimate the probability that the greedy algorithm has to use more than

c(n) colours to colour the first n points . The probability that this happens when ki
points have colour i, i < c(n), is exactly

c(n)
{1-qki)

	

(1-gnle(n))c(n)i=1
C(n)

since

	

ki -< n- 1 .
1

Thus the probability that more than c(n) colours have to be used to colour the points
1, . . ., n is less than

Sn = n(1-gnlc(n))c(n)

Now

	

(1 - gnlo(n))c(n) < e--c(n) (1(q)-n1 c n)
and

	

log (c(n)(1fq)-c(n)) > (v(n)-2) log logn
if n is sufficiently large. Consequently

S < e109n-{109n)v(10-1 < e-(10971)ví1)-2n
for n sufficiently large, completing the proof .

5 . Final remarks . (i) Colouring random graphs . It is very likely that the greedy

algorithm uses twice as many colours as necessary and, in fact, x(G,) log n z log 11q

for a .e . graph G . (x(Gn) denotes the chromatic number of Gn .) One would have a good
chance of proving this if the bound n-n" in Theorem 2 (ü) could be replaced by e~, n for
some positive constant cE, depending on e .

(ü) Hypergraphs. Let k > 2 be a natural number and consider random k-hypergraphs
(k-graphs) on N such that the probability of a given set of k points forming a k-tuple
of the graph is p, independently of the existence of other k-tuples . The proofs of our
edge graph results can easily be modified to give corresponding results about random
k-graphs . Let us mention one or two of these results . As before, denote by X" the
maximal order of a complete subgraph of Gn .
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The expectation of the number of complete graphs of order r is clearly

(n) p( ,P
r

Let dk.(n) > 1 be the minimal value for which this is equal to 1 . It is easily seen that

k ! log n 11(k-1)

d1jn)
(log lip

Then, corresponding to Corollary 1, we have the following result .
For every e > 0

lim P([dk(n) -e] -< Xn -< [d,(n)+e]) = 1 .
n-

Denote by, ,,,(G) the number of colours used by the greedy algorithm to colour G.n .
Then

1k
(logn)11(k-1)

((k-1) 1 loo,
W,

	

n

in any mean . It is expected that in general the greedy algorithm uses kil(k-1 ) times as
many colours as necessary .
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