5/32

Problems and Results on Finite and Infinite Graphs

Paul Erdos

In this short note I discuss some of the problems which occupied
my collaborators and myself for a very long time. I tried to
select those problems which are striking and which are not too
well known. I will also give a few proofs which I hope are new.
I published many papers on problems in graph theory, e.g. [1,
2); see also [3].

I. Let o be an ordinal number which has no immediate prede-
cessor. G(o) denotes a graph whose vertices have order type o .
Hajnal, Milner and I conjectured [4] that every G(a) either con-
tains an infinite path or an independent set of type o . We proved
our conjecture for o< w, w2 and our method breaks down completely
for o« = u1”+2. Hajnal, Milner and I proved that every G(«) either
contains a C4 or an independent set of type oo . In fact we proved
that G(x) either contains a K(n;R<3) (i.e. a bipartite graph of n
white and R, black vertices) or an independent set of type o . Our
proof was never published since Laver [5] proved our conjecture: Let

g be an order type without fixed points. Then G(f} either contains
C4 or an independent set of type f .

Hajnal and I proved that every graph which contains no infinite
path has chromatic number < R(). Before closing I mention one more
of our conjectures. Is it true that every G(u1“+1) either contains

a pentagon or an independent set of type “1u+1 7

IT. The following beautiful conjecture is due to Walter Taylor:
Let K(G) = R, (K(G). is the chromatic number of G). Then to every
cardinal numter m there is a graph G’ with K(G’) = m and every
finite subgraph of G’ also oceurs in G.
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It would be very desirable to characterise the families F of
finite graphs with the property that there are graphs of arbitrarily
large chromatic number whose all finite subgraphs are in F.

Many generalisations and modifications are possible; e.g. "fini-
te" can be replaced by "power < m"). Hajnal, Shelah and I [6] pro-
ve in a recent paper that every G with K(G) 2 N, contains for so-
me ny, all C  with n>n, (C, 1is a circuit of n edges). Our
simplest unsolved problem states: Is it true that to every G with
K(G) > N, there is an n, and an edge e so that for every n > n,
G contains a Cp passing through e 7

Galvin [7] posed the following startling question:

Is it true that the function K(G) has the Darboux property in
the following sense: Let m <n, K(G) =n. Is it true that G has =
spanned subgraph Gy with K(G4y) =m ? Galvin [7] showed that if
g.c.h. (generalised hypothesis of the continuum) is not assumed it is
consistent to assume that the answer- is negative. The answer is per-
haps positive if g.c.h. is assumed, and it very well may be positive
even without g.c.h. if we consider all subgraphs of G (not only
spanned subgraphs).

Hajnal and I [8] proved (assuming C.H.) that there is a graph G
of R, vertices with K(G) = R, not containing a K(N(),N()) (i.e.
a complete bipartite graph of N, white and N, black vertices).
Hajnal [9] later proved that there is such & graph which further does
not contain a triangle. Is there such a graph the smallest odd cir-
cuit of which has size 24+17? (By a result of Hajnal and myself [8]
K(G) = Ry implies that G contains a XK(n;R;) for every finite n.)

In & forthecoming paper with Galvin snd Hajnal [10] we systemati-
cally study set systems of large chromatic number not containing pre-

scribed subsystems.

IITI. Hajnal and I conjectured that for every k and 423 the-
re is a Gk,I which contains no K(4 +1 ) but if one colors the ed
ges of Gk,! by k coleors in an.arbitrary way there always is a mo-
nochromatic  K(4). Folkman [11] proved our conjecture for k = 2.
Recently our general conjecture was proved by NeBet?il and Rodl. In
fact they proved a much more general theorem. Nevertheless many fini-
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te and infinite problems remain. First of all some numerical problems.
Let r(k,z“zz) be the smallest integer n for which there is a
graph  G(n) not containing K(Z,) but if we color the edges of
G(n) by Xk colors there always is a monochromatic K(44). Gra-
ham [12] proved f(2,3,6) .= 8 and Inving [13] proved f£(2,3,5) < 18.

On the other hand Folkmen s upper bound for f(2,3,4) is enor-

mous (it is much bigger than 10 , the same holds for the
bound of NeSet$il end Rodl. I offer max (100 dollars, 300 Swiss
francs) for a proof or disproof of f£(2,3,4) < 1010,

T now state some old problems of Hajnal and myself [14]. 1Is it
true that for every infinite cardinal m there is a graph G((2™")
which does not contain a K(4) but if one colors its edges by m co-
lors there always is a monochromatic triangle ? The problem is open
for all mZRO.

Is there a graph G which does not oontain a K(R1) but if one
colors the edges of G by R 0 colors there always is a monochroma-
tic K(R()) ? On the other hand there is a G which contains no
K(Rz) but if we color its edges by W o colors there always is a
monochromatic K(R,).

Is it true thet the class of bipartite graphs not containing C4
does not have the Galvin-Ramsey property ? In other words, is there a
bipartite graph G4 not containing C4 such that if G, 1is any graph
not containing 04 we can color the edges of G2 by two colors so
that there is no monochromatic subgraph isomorphic to Gy ?

Gy— (G,6) denotes the fact that if we color the edges of G
by two colors at least one color contains a monochromatic G. Moreo-
ver, G,e— (G,G) denotes the fact that G can be faithfully imbed-
ded into one of the colors, i.e. G is monochromatic and there are no
other edges in either color in the graph spanning G. The fact that to
every finite G there is a finite Gy, satisfying qu——a(G,G) was
raised by Hansen and proved by Deuber, Rodl and Hajnal, Pdsa and my-
self. Recently much work has been done in determining or estimating
the size of the smsllest n for which K(n)—(G,G) (see the survey
paper of Burr [15]). Clearly if the number of vertices of G is fi-
xed n is maximal if G is complete.



As far as I know no work has been done on finding the "smallest"
Gy for which G1ﬁ—a(G,G). Denote by f(G) the smallest integer
for which there is s graph Gy of f(G) vertices satisfying
Gy +— (G,G). Determine or estimate f£(G). Further determine or es-
timate max f(G) where the maximum is to be extended over all graphs
having m vertices. It is not at all clear that the maximum is rea-
ched if - G is K(m). The same questions can be put for the smallest
integer F(G) for which there isa Gy of F(G) edges with
Gy+— (G,G).

Let G be any graph. Let 02 be a graph with the smallest num-
ber of edges <for which G2——+(G,G). It is not at all cledar to me
that G2 must be the complete graph (in fact I would expect this to
be false).

The following beautiful Qquestion is due to NeSetfil and Rodl:
A graph satisfying G «— (G,G) is said to be irreducible if
Gzﬁ—h*(G,G) for every proper subgraph (or alternatively for every
proper spanned subgraph) of Gy« Is it true that for a large class
of graphs G (e.g. for all K(n), n >2) the class of irreducible
graphs with respect to G is infinite 7 This is not even known if G
is a triangle.

It is easy to see that if G contains no C, then G—++(03,C3)
since any two triangles of G can have at most one vertex in common.
Is there an r for which there is a G which does not contain a 04
end for which G—(C,.,4, Cpnpq) 7 In fact is there such a G with
G—(C5,C5) 7

Nedetril, Rodl and I formulated the following problem which seems
very interesting to me. Let G be a graph with G—(K(n),K(n)).
Must G contain two K(n)’s which have at least three (or perhaps
even n-1) vertices in common ? The first interesting case is n =4.

IV. A graph G 1is said to have property P(e) if any subgraph
of G of n vertices conteins an independent set of (% -¢)n ver-
tices. Hajnal and I [16] proved that for every k there is a grsph
G with property P(c) and chromatic number 2 k.
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Our proof in fact gives & graph G(n) with K(G(n))>C, logn
and property P(e). Is it true that K(G(n))<C; log n where C/—0
as ¢—0 7

G is said to have property P’(¢) if any subgraph of n ver-
tices contains a spanned bipartite subgraph of (1 -¢ )n vertices.
Hajnal, Szemerédi and I proved that for every k there is a graph G
with K(G) > k having property P’(¢) - further we proved that for e-
very infinite cardinal m there is a graph having property P (c)
and chromatic number m. For the many further problems and results in
this direction I refer to our forthcoming paper with Hajnal and Sze-
merédi which I hope will be written soon.

V. A problem of Shelah states as follows: Let g(k) be the
smallest integer with the property that if we color the edges of a
K(g(k)) by k colors there always is a monochromatic C, ‘the two
diagonals of which use at most one different color. Shelsh conjectu-
res that g(k) tends to infinity exponentially, he has an analogous
conjecture for r-graphs.

Last December when we discussed this problem we stated the fol-
lowing new problem: Denote by fr(k,I,t) ‘the smallest integer m so
that if the edges of a Kr{m) are colored by k colors there always
is a K(t) whose edges are colored by at most 4 colors. (Kr(m)
ie the complete r-graph of m vertices, an edge of an r-graph is one
of its r-tuples.)

Let r and t ©be fixed as A4 decreases from (;) to 1,
f.(k,4,t) increases with decreasing {4 . Perhaps there are integers

(2) 2Jér) > lﬁr]> >1_-{(-£2 2 1 so that f (k,4,t) is linear in k

for 2 > zé‘"', for zé")a 2 >z§” £.(k,2,t) is of polynomial
: r r . (

growth in k, for 47225 2{7), 1gisr-1 WP =1) £ (k4,0)

grows like an i-fold iterated exponential in k. At the moment ve-

ry little is known about the validity of this conjecture.

VI. Many papers have recently been written on extremal problems
in graph theory. Here I only mention an 0ld conjecture of V.T.Sds and
myself ([17] p.30) and a recent conjecture of Sauer and myself.
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Is it true that every G(n; {%(k -1)n] +1) contains all trees
having k edges ? (G(n;t) is a graph of n vertices and t edges.)
Cur conjecture has been proved for many special trees,but no progress
has been made in the general case.

Denote by fn(k) the smallest integer so that every G(n;fn(k))
contains a regular subgraph of valency k. Trivially fn(1) =1 and
fn(2} = n but we know nothing (literally nothing) non-trivial a-
bout fn(k) for k > 2!

For much of the recent literature on extremal problems see [18].

VII. The systematic study of random graphs was (as far as I
know) started by Rényi and myself [19],(20],[21]. One of our outstan-
ding conjectures stated that there is an absolute constant C so that
almost all graphs G(n; [C n log n]) are Hamiltonian. Pdsa recently
proved this conjecture. Komlds and Szemerédi later proved by his me-
thod that the result holds for C = % +i.

Let f(n)—> oo as slowly =2s we please. Rényi and I proved that
with probability tending to 1 (as n-—see) every vertex of a

Gin; [ % n log n + n loglog n + nf(n)]) (1)

has valency 2 2. Perhaps with probability tending to 1 the graphs
(1) are Hamiltonian. Perhaps this is too good to be true but I have
not been able to disprove it. But an even stironger conjecture is pos-
sible: Consider the graphs

G(n; [ % nlogn+n logn+ Cnl). (2)

With probability tending to 1 if a graph (2) has all its vertices of
valency 2 2 then it is Hamiltonian.

I expect that for large € &and n-— oo almost all graphs
G(n; Cn) have a circuit of size > (1 -¢)n. I think the strongest
conjecture which could be true states as follows: There is a function
f(C) 8o that with probability tending to 1 the longest circuit of
G{n;Cn) has size (1+ o(1)) £(C)n, F£(C)— 1 88 C—oce. The fact
that f(%) =0 follows from our results with Rényi, but perhaps £f(C)
is a continuous strictly increasing function for C 2 %. f(c)<1
again follows from our results with Rényi.
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VITI. Edwards [22) and I proved that every graph of m edges

3

contains a bipartite subgraph of % + Cm edges but that in gene-
1

ral it does not contain a bipartite graph with %-+ czm2 edges. Ed-

wards in fact proved a sharper result.

Is it true that every graph of m edges which contains no tri-

-
angle contains a bipartite subgraph of -% E [n@ ] edges for a cer-
tain absolute constant o« > 0 ? I proved by probabilistic methods that
the result certainly fails if o is close enough to %. On the other

hand I can not even prove that our graph contains a bipartite graph
1

of % + [f(m)mE] edges where f(m) tends to infinity as slowly as
we please.

IX. E.Koch asked me the following question: Let G(n) be a

graph of n vertices Ryy e+ey X, A subsystem X, , ..., X; is
1 r

called dominating if every other vertex x is Jjoined to at least one
of the X, 1 £ j£ r. Determine or estimate
J
r

mex min ( ¥ v(x; )) = f(n),

G(n) j=1 J
where the minimum is to be taken over all dominating systems and the
maximum over all graphs G(n) of n vertices (v(x) is the valency

or degree of x).

We now prove % 3
g n° < f(n) < n°. (1)
Let x. be one of the vertices of maximal valency. Suppose we

4

already have found x. , «.., X:

¥ i ® Let Vyo seen ¥y be the vertices

r
not joined to any of the x; ‘s. If there is a vertex x # x5
' J
(1< j<£r) which is joined to at least {% Jﬁ] of the y’s we put
X3 = X. If no such vertex exists our dominating set simply is
r+1
xi1, aaay xir, Vyo oees Iy QWe now show )
5 ) 7 - 4 2
il \ j ‘ 1 -
f§1Jin_; < 30, X viys) < sn®, (2)
3= J i=1
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which of course will imply the upper bound in (1).

By our assumption each vertex of G is joined to at most
[% IHJ -4 y’s. Thus by a simple argument
= 1
I vy <n(3 m] - 1), (3)
1=
3

2
A simple argument shows that r < v;; ) (this follows since Xy
1

eliminates 1 + v(x1) vertices and every further vertex X5 elimi-

J

nates at least 1 + [% fﬁ] vertices). Thus we obtain

-

2

2 i
T vix; )< 4n®.. (4)

=t

J

(3) and (4) proves (2) and thus the upper bound in (1) is proved.

Spencer and I obtained the lower bound in (1) as follows: For
simplicity assume n = 4m. Qur graph G(n) will be bipartite,
Xy g eeey X, Yy =2y ¥, are the white, Zyy eeny Zop the black
vertices. Every x 1is Jjoined to every z. Every =z 1is Jjoined to

(W] y's and every ¥y is joined to 2 [{m] z’s. A dominating
set must contain at least [fn] 32'3 thus since every =z is Jjoined

to every x we obtain f(4n) > n°. The lower bound in (1) could ea-

8ily be improved but I do not see at the moment a proof for

£(n) _ ¢,

1lim
TN—=oco

noli

n .
It would be interesting to determine f(n) explieitly or if
this is too difficult at least one should prove
3
f£n) = (C +1) n?

for a certain C. I have not been able to prove this.
E.Koch also wanted to determine f(n;m) where

f(n;m) = max (min £ vix,)).
G(njm) *

The same proof gives 1 4
Cyn ﬁ? < f(n;m) < Cyn me.
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X. Finally I state a very attractive conjecture of Faber, lo-
vész and myself: Let 1< k< n, be n sets satistying IAkJ = T,

n

|A. N A, |1 1S 4< J 5D Is is true that elements of U A,

i J ’ J i=q *
1:

can be colored by n colors so that every set Ak gets all the n
colors T

It is easy to see that the theorem fails if the number of sets
can be n +1. Greenwell and Lovédsz proved the conjecture if the num-
ber of sets is at most [EL%—l].

I thought of this generalisation: Let IAKI =Ny 1 £ EEmg
[A; N Ajis 1, 1<i< j<m. Determine (or estimate) the smallest

m
f(n,m) so that we can color the elements of U A, by f(n,m) co-
k=1

lors so that no Ak contains two elements of the same color. Many
further generalisations are possible. I only state one which I for-
mulated during our excursion and which was nearly completely solved
on the spot by R.C.Bose and L.Lovész. Denote by A,, iAiI =+
121 & n®+n+1 the lines of a finite geometry. I want Lo color

the n2 + n+ 1 elements by n + 1 colors in such & way that each
of the sets get as many colors as possible.

First of all Bose observed that if n = m® = p°* then it fol-
lows from the results of J.Freeman [23] that one can color the ele-
ments by n + 1 colors so that every line gets m2 - m colors and
then Lovész proved that one of the lines always gets at most m2 -m +
+ o(m) colors. New problems arise if we insist that every line has
at most two points of the same color.
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