
Problems and Results on Finite and Infinite Graphs

Paul Erdös

In this short note I discuss some of the problems which occupied
my collaborators and myself for a very long time . I tried to
select those problems which are striking and which are not too
well known . I will also give a few proofs which I hope are new .
I published many papers on problems in graph theory, e .g . [1,
21 ; see also [3] .

I . Let oc be an ordinal number which has no immediate prede-
cessor . G(cx) denotes a graph whose vertices have order type or .
Hajnal, Milner and I conjectured [4] that every G(cx) either con-
tains an infinite path or an independent set of type cc . We proved
our conjecture for c c< w, m +2 and our method breaks down completely
for or m i n+2 . Hajnal, Milner and I proved that every G(oc) either
contains a c4 or an independent set of type cc . In fact we proved
that G(oc) either contains a K(n ;K 0 ) (i .e . a bipartite graph of n
white and N O black vertices) or an independent set of type cx . Our
proof was never published since Laver [5] proved our conjecture : Let

be an order type without fixed points . Then G(J) either contains
C 4 or an independent set of type t .

Hajnal and I proved that every graph which contains no infinite
path has chromatic number < X 0 . Before closing I mention one more
of our conjectures . Is it true that every G(w, 4+1 ) either contains
a pentagon or an independent set of type w, (J+1 7

II . The following beautiful conjecture is due to Walter Taylor :
Let K(G) = !t 1 (K(G)) is the chromatic number of G) . Then to every
cardinal number m there is a graph G' with K(G') = m and every
finite subgraph of G' also occurs in G .
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It would be very desirable to characterise the families F of

finite graphs with the property that there are graphs of arbitrarily

large chromatic number whose all finite subgraphs are in F .

Many generalisations and modifications are possible ; e .g . "fini-
te" can be replaced by "power < m") . Hajnal, Shelah and I [6] pro-

in a recent paper that
n0 all Cn with n

simplest unsolved problem
K(G) > 9, there is an n0
G contains a Cn passing

ve
me

every G with K(G) >_ K, contains for so-
> n0 (Cn is a circuit of n edges) . Our
states : Is it true that to every G with
and an edge e so that for every n > n0
through e ?

Galvin [7] posed the following startling question :

Is it true that the function K(G) has the Darboux property in
the following sense : Let m < n, K(G) = n . Is it true that G has a
spanned subgraph G, with K(G 1 ) = m ? Galvin [7) showed that if
g .c .h . (generalised hypothesis of the continuum) is not assumed it is
consistent to assume that the answer is negative . The answer is per-
haps positive if g .c .h . is assumed, and it very well may be positive

even without g .c .h . if we consider all subgraphs of G (not only
spanned subgraphs) .

Hajnal and I [8] proved (assuming C .H .) that there is a graph G
of K 1 vertices with K(G) = K 1 not containing a K(K O) K 0 ) (i .e .
a complete bipartite graph of K 0 white and K 0 black vertices) .
Hajnal [9] later proved that there is such graph which further does
not contain a triangle . Is there such a graph the smallest odd cir-
cuit of which has size 21+ 1? (By a result of Hajnal and myself [8]
K(G) = K 1 implies that G contains a K(n ; K 1 ) for every finite n .)

In a forthcoming paper with Galvin and Hajnal [10] we systemati-
cally study set systems of large chromatic number not containing pre-
scribed subsystems .

III . Hajnal and I conjectured that for every k and X ? 3 the-
re is a Gk 1 which contains no K(l +1 ) but if one colors the ed
ges of Gk,A# by k colors in an-arbitrary way there always is a mo-
nochromatic K(d) . Folkman [11] proved our conjecture for k = 2 .
Recently our general conjecture was proved by Nesetril and Rödl . In
fact they proved a much more general theorem . Nevertheless many fini-

184



to and infinite problems remain . First of all some numerical problems .

Let f(k,tj) l2 ) be the smallest integer n for which there is a

graph G(n) not containing KU 2 ) but if we color the edges of

G(n) by k colors there always is a monochromatic K(11) . Gra-

ham (12] proved f(2,3,ó) = 8 and Inving [13] proved f(2,3,5)<_ 18 .

On the other hand Folkman's upper bound for f(2,á,4) is enor-

mousmous (it is much bigger than 10 10 1 , the same holds for the

bound of Nesetril and Rödl . I offer max (100 dollars, 300 Swiss

francs) for a proof or disproof of f(2,á,4) < 10 10 .

I now state some old problems of Hajnal and myself [14] . Is it

true that .for every infinite cardinal m there is a graph G((2 m ) + )

which does not contain a K(4) but if one colors its edges by m co-
lors there always is a monochromatic triangle ? The problem is open

for all m >KK 0 .

Is there a graph G which does not contain a K( 9 1 ) but if one
colors the edges of G by K 0 colors there always is a monochroma-
tic K(K 0 ) ? On the other hand there is a G which contains no
K(K 2 ) but if we color its edges by %t 0 colors there always is a
monochromatic K( K 1 ) .

Is it true that the class of bipartite graphs not containing C 4
does not have the Galvin-Ramsey property ? In other words, is there a
bipartite graph G, not containing C 4 such that if G 2 is any graph
not containing C 4 we can color the edges of G 2 by two colors so
that there is no monochromatic subgraph isomorphic to G, ?

G 1 - (G,G) denotes the fact that if we color the edges of G 1
by two colors at least one color contains a monochromatic G . Moreo-
ver, G, H (G,G) denotes the fact that G can be faithfully imbed-
ded into one of the colors, i .e . G is monochromatic and there are no
other edges in either color in the graph spanning G . The fact that to
every finite G there is a finite G 1 satisfying G1 • (G,G) was
raised by Hansen and proved by Deuber, Rödl and Hajnal, Pósa and my-
self . Recently much work has been done in determining or estimating
the size of the smallest n for which K(n) -b(G,G) (see the survey
paper of Burr [15]) . Clearly if the number of vertices o£ G is fi-
xed n is T ..-~aximal if G is complete .
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As far as I know no work has been done on finding the "smallest"
G, for which G1 •*--•(G,G) . Denote by f(G) the smallest integer
for which there is a graph G, of f(G) vertices satisfying
G1 - (G,G) . Determine or estimate f(G) . Further determine or es-
timate max f(G) where the maximum is to be extended over all graphs
having m vertices . It is not at all clear that the maximum is rea-
ched if G is K(m) . The same questions can be put for the smallest
integer

	

F(G)

	

for which there is a

	

G,

	

of

	

F(G)

	

edges with
C, t---+ (G, G) .

Let G be any graph . Let G2 be a graph with the smallest num-
ber of edges for which G2 ->(G,G) . It is not at all clear to me
that G2 must be the complete graph (in fact I would expect this to
be false) .

The following beautiful question is due to Ne6etril and Rödl :
A graph satisfying G, •--• (G,G) is said to be irreducible if
G2 •+>(G,G) for every proper subgraph (or alternatively for every
proper spanned subgraph) of G1 . Is it true that for a large class
of graphs G (e .g . for all K(n), n > 2) the class of irreducible
graphs with respect to G is infinite ? This is not even known if G
is a triangle .

It is easy to see that if G contains no C 4 then G lo(C31 C3 )
since any two triangles of G can have at most one vertex in common .
Is there an r for which there is a G which does not contain a C 4
and for which G -i(C2r+1, C2r+1 ) ? In fact is there such a G with
G- (C5 ,C 5 ) ?

Ne6etril, Rödl and I formulated the following problem which seems
very interesting to me . Let G be a graph with G - W n),K(n)) .
Must G contain two K(n)'s which have at least three (or perhaps
even n -1) vertices in common ? The first interesting case is n =4 .

IV . A graph G is said to have property P(c) if any subgraph
of G of n vertices contains an independent set of (2 -c)n ver-
tices . Hajnal and I [16] proved that for every k there is a graph

G with property P(c) and chromatic number >_ k .
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Our proof in fact gives a graph G(n) with K(G(n))> Cc log n
and property P(c) . Is it true that K(G(n))< C, log n where C, , O

as c-•0 ?

G is said to have property P'(c) if any subgraph of n ver-

tices contains a spanned bipartite subgraph of (1 - c )n vertices .
Hajnal, Szemerédi and I proved that for every k there is a graph G
with K(G) > k having property P'(c) - further we proved that for e-
very infinite cardinal m there is a graph having property P'(c)
and chromatic number m . For the many further problems and results in
this direction I refer to our forthcoming paper with Hajnal and Sze-
merédi which I hope will be written soon .

V . A problem of Shelah states as follows : Let g(k) be the
smallest integer with the property that if we color the edges of a

K(g(k)) by k colors there always is a monochromatic C 4 the two
diagonals of which use at most one different color . Shelah conjectu-
res that g(k) tends to infinity exponentially, he has an analogous
conjecture for r-graphs .

Last December when we discussed this problem we stated the fol-
lowing new problem : Denote by fr (k,,l,t) - the smallest integer m so
that if the edges of a Kr (m) are colored by k colors there always
is a

	

K(t)

	

whose edges are colored by at most t colors .

	

(Kr(m)
is the complete r-graph of m vertices, an edge of an r-graph is one
of its r-tuples .)

Let r and t be fixed as

	

l decreases from

	

( 2t ) to 1
fr (k,t,t)

	

increases with decreasing 1 . Perhaps there are integers

(2) >_ 1( r) > 1( r) > . . .>1rr) _> 1 so that fr (k, .l,t) is linear in k

for 1 > 1( r ', for 1 0(r) > 2 > ,(r) fr (k,l,t) is of polynomial

growth in k,

	

for Ii r)>- 1 > 1ir)' 1 < i_r -1 (l (r) =1) fr (k,t,t+1

	

r )

grows like an i-fold iterated exponential in k . At the moment ve-
ry little is known about the validity of this conjecture .

VI . Many papers have recently been written on extremal problems
in graph theory . Here I only mention an old conjecture of V .T .Sós and
myself ([17] p .30) and a recent conjecture of Sauer and myself .
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Is it true that every G(n ; [ 2 (k - 1 )n] + 1 ) contains all trees
having k edges ? (G(n ;t) is a graph of n vertices and t edges .)
Our conjecture has been proved for many special trees,but no progress
has been made in the general case .

Denote by £n (k) the smallest integer so that every G(n ;fn (k))
contains a regular subgraph of valency k . Trivially fn (1) = 1 and
fn (2) = n but we know nothing (literally nothing) non-trivial a-
bout fn (k) for k > 2!

For much of the recent literature on extremal problems see [18] .

VII . The systematic study of random graphs was (as far as I
know) started by Rényi and myself [19],[20],[21) . One of our outstan-
ding conjectures stated that there is an absolute constant C so that
almost all graphs G(n ; [C n log n]) are Hamiltonian . Pisa recently
proved this conjecture . Komlós and Szemerédi later proved by his me-
thod that the result holds for C = 2 +c

Let £(n)-- as slowly as we please . Rényi and I proved that
with probability tending to 1 (as n - .-) every vertex o£ a

G(n ; [ 2 n log n + n loglog n + nf(n)])

	

(1)

has valency ? 2 . Perhaps with probability tending to 1 the graphs
(1) are Hamíltonian . Perhaps this is too good to be true but I have
not been able to disprove it . But an even stronger conjecture is pos-
sible : Consider the graphs

G(n ;( 2 n log n + n log n + Cn]) .

	

(2)

With probability tending to 1 if a graph (2) •has all its vertices of
valency _> 2 then it is Hamiltonian .

I expect that for large C and n -- almost all graphs
G(n ; Cn) have a circuit of size > (1 -c)n . I think the strongest
conjecture which could be true states as follows : There is a function
f(C) so that with probability tending to 1 the longest circuit of
G(n ;Cn) has size (1 + 0(1 )) f(C)n, £(C)--• 1 ap C---goo . The fact
that f(2) =0 follows from our results with Rényi, but perhaps f(C)
is a continuous strictly increasing function for C 2!-i . £(C)< 1
again follows from our results with Rényi .
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VIII . Edwards [22] and I proved that every graph of m edges
i

contains a bipartite subgraph of 2,1 + C 1 m2

	

edges but that in gene-
1

ral it does not contain a bipartite graph with ' + C2m2 edges . Ed-

wards in fact proved a sharper result .

Is it true that every graph of m edges which contains no tri-

angleangle contains a bipartite subgraph of 2 + [ m 2 J edges for a cer-

tain absolute constant cc > 0 ? I proved by probabilistic methods that
the result certainly fails if ac is close enough to 2 . On the other
hand I can not even prove that our graph contains a bipartite graph

1

of 2 + [ f(m)in2 J

	

edges where f(m) tends to infinity as slowly as
we please .

IX . E .Koch asked me the following question : Let

	

G(n)

	

be a

graph of

	

n vertices x1 , . . ., xn .

	

A subsystem xi , . . ., xi

	

is
1

	

r
called dominating if every other vertex x is joined to at least one
of the xi , 1 < j < r . Determine or estimate

J

already have found

not joined to any

(1< j< r) which
x •

	

= x .

	

If no
1r+1

xi , .
1

r
max min ( E v(x i )) = f(n),
G(n)

	

j=1

	

J

where the minimum is to be taken over all dominating systems
maximum over all graphs G(n) of n vertices (v(x) is the valency
or degree of x) .

We now prove

	

3

	

3
C1 n2 < f(n) < n 2 .

	

(1)

Let xi
1

be one of the vertices of maximal valency . Suppose we

and the

xi1 ,

	

., xir . Let y1

	

Ym be the vertices

of the

	

x i ~s .

	

If there is a vertex

	

x / xi
J

	

J
is joined to at least [ 2 ,r] of the y 's we put
such vertex exists our dominating set simply is

x ; , y1 , . . . , y,rl .

	

We now show

r
víx i ) <_ 7 i ,

	

i
Z ", (Y . ) < <n2 ,

=1

	

=1
(2)
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which of course will imply the upper bound in (1) .

By our assumption each vertex of G is joined to at most
1
2 fin)

	

1 y e s . Thus by a simple argument
M

v(yi ) < n([2 Fn]

	

(3)
i=1

3
2

A simple argument shows that r<_ v(x ) (this follows since x,
1

eliminates 1 + v(x 1 ) vertices and every further vertex x i

	

elimi-
i

hates at least 1

190

+[2 Fn_ ] vertices) . Thus we obtain

r

	

3
v(xi ) _< 2r. 2 .

	

(4)
j=1

(3) and (4) proves (2) and thus the upper bound in (1)

Spencer and I obtained the lower bound in (1) as follows : For
simplicity assume

	

n = 4m .

	

Our graph

	

G(n)

	

will be bipartite,
x1' . . ., xn'

	

Y1 , . . .' Yn

	

are the white,

	

z1 , . . ., z 2n the black
vertices . Every x is joined to every z . Every z is joined to

[5n] y 's and every y is joined to 2 [[-n] z 's . A dominating
set must contain at least

	

[Fn ] z's thus since every z is joined
3

to every x we obtain f(4n) > n 2 . The lower bound in (1) could ea-
sily be improved but I do not see at the moment a proof for

lim f (3) = C .
n~

	

2
n

It would be interesting to determine

	

f(n)

	

explicitly or if
this is too difficult at least one should prove

3
f(n) _ (C +1 ) n2

for a certain C . I have not been able to prove this .

E .Koch also wanted to determine f(n ;m) where

f(n ;m) = max (min E v(xi )) .
G(n ;m)

The same proof gives

	

1

	

1

C1 n m2 < f(n ;m) < C 2n m 22

is proved .



X . Finally I state a very attractive

vász and myself :

	

Let 1 < k _< n, be n sets satist)ring JA k' = n,
n

J A i n A • 1_< 1, 1 :< i < j < n .

	

Is is true that elements of

	

U Ai
J

	

i=1

can be colored by n colors so that every set Ak gets all the n

colors ?

It is easy to see that the theorem fails if the number of sets

can be n +1 . Greenwell and Lovász proved the conjecture i£ the num-

ber of sets is at most

	

n +[	1
2

I thought of this generalisation : Let

	

JAk 1 = n, 1 < k < m,

JA i n Ai1< 1 , 1 < i < j < m .

	

Determine (or estimate) the smallest
m

f(n,m) so that we can color the elements of U A k by f(n,m) co-
k=1

lors so that no Ak contains two elements of the same color . Many

further generalisations are possible . I only state one which I for-

mulated during our excursion and which was nearly completely solved

on the soot by R .C .Bose and L .Lovász . Denote by

	

Ai , JAi l = n + 1,

1 _< i < n2 + n + 1 the lines of a finite geometry . I want to color

the

	

n2 + n + 1 elements by

	

n + 1 colors in such a way that each
of the sets get as many colors as possible .

First of all Bose observed that if n = m2 = p2cx then it fol-

lows from the results of J .Freeman [23] that one can color the ele-
ments by n + 1 colors so that every line gets m2 - m colors and

then Lovász proved that one of the lines always gets at most m 2 -m +

+ o(m) colors . New problems arise if we insist that every line has
at most two points of the same color .
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