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§0 . INTRODUCTION

11 a j n a I and I have publislieci two survey papers on problems inset
theory* and I have publislied several surver papers on problems in graph
theoiy and combinatorial analysis .** I cannot entirely hope to avoid
repetitions belt shall try to do so as much as possible and shall state old
prob+2nis only if significant progress has been made on them, or if they
seem to bave been forgotten by everybody (sometimes including myself)
and may deserve another attack .

*P . E r d ű s - A . 11 a) n a 1 . Unsolved problems in set theory, Proc . Symp. Pure Alath .,
XIII part 1 Amer . Nlath . Soc ., (1971) 17-48, and Solved and unsolved problenis in set theory, To
appear in the Proceedings of the Tarski, Symposium, lield in Berkeley (1971) .

** P . L r d ő s , Problems and results in coinbinatorical analysis, Proc. Sump . Pure Math .,
XIX Amer. Math . Soc ., 77-89, Some unsolved problems, Michigan .4fath . J., 4 (1957), 291-300
and Pubi. Math . Inst. Hung. Acad. Sci,, 6 (1961), 221-254 ; P . Erdős and D. Kleitman, Extremal
prob!rns among subsets of a set, Combinatorial 11ath . and Applications . Proc. Chapel Hill Con-
ference 1970, 146-170 ; Some unsolved problems in grapli theory and combinatorial analysis, Corer
binatoriul 1lath, and its .4pplicaiions, Proc. Conference Oxford, Editor Welsti, Acad . Press 1971,
97-1c_1 .
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I certainly do not claim completeness but simply restrict myself to
problems considered by my collaborators and myself. Nor do I claim that
these are more important than others I neglect, but they have from the
point of view of the reader the advantage that I often know more about
them than the reader .

The concepts will be defined in the text, proofs will usually not be
given and references will be given at the end of each chapter .



§ 1 . A-SYSTEMS AND RELATED PROBLEMS

A family of sets {A, } is said to form a strong A-system if the in-

tersection of any two of the A. 's is the same set. It forms a weak A-

system if the cardinal number of the intersection of any two A a 's is the

same, e .g . (1,2), (1,3) (2,3) form a weak A-system but not a strong one .

R a d o, M i l n e r and I investigated the following question : Let there

be given m sets {A R } of size n . It is true that there are p of them
which form a strong (respectively weak) A system? We completely solved

these questions if m > 80 , but tantalizing questions remain if m is fi-
nite. Denote by fs(k, 1) the smallest integer for which for any choice of

fs (k, 1) sets of size k there are I of them which form a strong A-sys-

tem and .fw (k,1) is the analogous function for weak A-systems . (Here
k and 1 are finite) .

R a d o and I proved

(1)

	

1 k < fs(k, 1) < k!lk

We conjectured (c l , c are absolute constants)

(2)

	

fs (k, 1) <

	

lk

and in fact it seems very likely that

(3)

	

lim f(k, 1)1 1k = c1 <

	

.
k--

I offer 1000 Swiss Francs (or three ounces of gold whichever is worth

more) for a proof or disproof of

(4)

	

fs(k, 3) < ck .

The lower and upper bounds in (1) have been improved by A b b o t t

and H a n s o n and S a u e r but at this moment a proof or disproof of (3)

is nowhere in sight . One would guess that the proof of fw (k, 3) will be

much simpler than (4) but so far we have not even proved

fw (k 3)<k! 1-
E
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for some e > 0 and k > kp (e) .

Abbott and Hanson proved

fg(3, 3) = 20,

	

f,,, (3, 3) = 11, f,, (4, 3) = 25 .

Denote by fs(1) (n) (resp . fµ,l) (n)) the largest integer t for which there
are t subsets of a set S of size n so that no 1 of them form a strong
(respectively weak) A-system. It is not hard to prove that

(1 + Cj)n < f(1)(n) < 0 + Cj )n

but the value of lim (ff(1) (n) 1 In) is not known (it is strictly between (1)
and (2) .

A b b o t t recently observed that f (1) (n) leads to non-trivial questions .
He observed that it is not trivial to show that f (3) (n) > en for every c
if n is sufficiently large . S z e m e r é d í showed by an ingenious construc-
tion that

fN(3)(n) > ncloglogn

but we do not know if f (,3) (n) increases exponentially .

In our paper with M i l n e r and R a d o we observe that if I A k 1= n,
1 < k < c2n}n and the family {A k } forms a weak A-system then it also
forms a strong A-system . The proof is very simple . Recently L o v á s z and
I observed that the same result holds for k if k < (2 - c l ) n . We now
posed the following question: Denote by F(n) the largest k for which
there are k sets of size n which form a weak A-system but not a strong
one. Estimate or determine F(n) . If n = p + I where p is a power of
a prime, then the finite geometry gives p'- + p + 1 = n 2 + n - 1, n-tuples
any two of which have exactly one common element, in other words
F(n) > n 2 - n + 1, perhaps F(n) < n 2 - n + 1 for all n equality if and
only if there is a finite geometry . Unfortunately we could not decide this
pretty conjecture.*

*Added in proof : Recently M . Deza, Solution d'un probleme de Erdős - Lovász, J. Comb .
Theory, 16 (1974), 166-167, settled the problem in the affirmative .
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Before ending this paragraph I would like to mention a rather techni-

cal problem on weak A-systems . M i I n e r, R a d o and I prove in our

paper that assuming G .C.H. there are Ka+ 1 sets of size Ka no three

of which form a weak A-system if and only if Na = I a I . Further if

Ka = I a I our Ka + , sets are all subsets of a set of size K. .

Assume now Ka = I a I and assume first that Ka is inaccessible and

IS I = Ka . By transfinite induction it is not difficult to construct Ka+ 1
almost disjoint subsets AR of S, I A Q 1 = Ka ,

	

< wa+, so that if

01 < 02 < 03 then I

	

A91
n A 93 1 * JA F2 n A03 I thus a fortiorí no three

sets of our family form a weak A-system .

Assume next Ka = I a1 but Ka is not inaccessible . I have not been

able to construct Ka+ 1 sets A., 0 < wa+ , of size Ka , so that for

every 0 1 < 02 < 03

IA . , n A 03 1 # IÁ 02 n AQ3 1

and I doubt if such a family exists .

(1 ] P . E r d ő s- R . R a d o, Intersection theorems for systems of sets

I and II, J. London Math . Soc., 35 (1960), 85-90 and 44 (1969),
467-479 . The paper with Milner and Rado on weak A-systems will

appear in the Australian Journal of Mathematics .



§2. PROPERTY B

A family of sets {A a }, I A a I'' 2 is said to have property B if there
is a set S which meets every Aa and contains none of them . This con-
cept is due to Miller . It is often more convenient to use a different termi-
nology. A family of sets F = {A a } has chromatic number r if U A a

C"can be divided into r sets St (i < r) (r finite or infinite) so that no
A a is contained in any of the Si , but such a division is not possible
into fewer than r sets. We write X(F) = r. F has property B iff
X(F) = 2 . A family F is called uniform if all A , 's have the same power,
it is called simple if IA . n A 9 1 < 1 . A family of infinite sets is called
almost disjoint if I A a n A~ I < min (I A a I, IA a 1) . Miller proved that there
is an almost disjoint family F of infinite subsets of the integers with
X(F) = k o , on the other hand every family satisfying

(1)

	

1 A a I = K o ,

	

Aa
1
n

	

A12
1 < k < 80

	

for al * a2

has property B (i .e. is two chromatic) .

An old problem of H a j n a 1 and myself states : Is it true that for
every infinite cardinal m there is a family F of almost disjoint denumer-
able sets of chromatic number m? Perhaps in fact the family can be con-
tained in a set of power m . This conjecture was proved for m < KD as-
suming 280 = 81 Baumgartner, Devlin, Galvin and Hajnal,
but is open for m > 8 W .

In fact they proved that for an n < w there is a family of countable
almost disjoint sets, in a set of cardinality 8n such that every subset of
cardinality 8 1 contains an element of this family .

Let I Aa I = M > 8 0 . The family {A ,,, } is said to be strongly almost
disjoint if there is an n > m so that for every a 1 and a, I Aa 1

n A ., 1 <3
< n< m H a j n a l and I thought that perhaps every strongly almost

*Added in proof : This problem has been answered affirmatively, see G . Elekes - G.L
Hofmann, On the chromatic number of almost disjoint families of countable sets . This volume.
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disjoint family has property B. We proved this assuming G .C.H. if n = No ,
m = 81 and the family has size < 8 W (i.e . there are at most 8. sets
in our family .) Our proof hopelessly breaks down if the size of the family
is N

W •

H a j n a 1 and I also proved assuming C .H . that there is a family of t 1
countable almost disjoint sets which does not have property B and the
union of any 81 sets of our family has size 8 1 , On the other hand we
could not settle the following closely related question : Is there a family of
81 countable almost disjoint sets which does not have property B and
any countable set "almost contains" at most 8 . sets of our family? (S 1
almost contains S2 if all but a finite number of elements of S 2 are in
SO.

S h e l a h and 1 proved the following conjecture of H e c h l e r : Eve-
ry family of denumerable almost disjoint sets no two of which are disjoint
has property B . On the other hand we showed that there is a family of
almost disjoint denumerable sets which do not have property B and so that
there are no three sets in the family which are pairwise disjoint .

We also asked the following questions: Let {A , ,, } be a family of de-
numerable sets, assume that no A is contained in the union of a finite
number of other Aá 's and A ~ n A

	

0 for a 1 az . Is it then true
1

	

á2
that the family has property B? H a j n a l and S h e l a h (independently)
gave an affirmative answer . The problem could be generalized to higher
cardinals e . g. {A , } is a family of sets of power 81 , no A a is con-
tained in the union of N o other A .'s and A . 1 n A«2 0 for a 1 4- az .

It is then true that the family has property B? As far as I know these
questions are open .

Further we asked : Let {A,, } be a family of denumerable sets, no two
disjoint and no A 4 is contained in the union of k < w or fewer other
A's. Is it then true that {A,, } has property B? I believe this is still open
for k> 1 L o v á s z and She 1 a h disproved it for k= 1 i .e. they con-
structed a three chromatic Sperner* family of countable sets . As far as I

* In a 5perner family of sets no one contains the other .
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know it is not known if there is a three chromatic family of countable
sets no one of which almost contains any other .

There are many interesting finite problems connected with property
B many of them already stated in our paper with H a j n a 1 . Denote by
m(n) the smallest integer for which there is a uniform family of m(n)
sets Ak , of size n, 1 < k < m(n) which does not have property B .
m(2) = 3, m(3) = 7, m(4) is unknown . Toft just showed m(4) < 23 .
W . Schmidt and I proved

2n ( 1 + 2) 1 < in(n) < cn2 2n .

It would be nice to give an asymptotic formula for m(n) . Denote
by m*(n) the smallest integer for which there is a simple uniform family
of m*(n) sets of size n not having property B . J e w í t t and H a l e s,
Abbott, H a j n a l and I proved that m *(n) is finite, in fact H a j n a l
and I showed m*(n)< Iln and Lovász and I proved lim m*(n)IIn =

= 4. Several further questions and results on this subject are stated by
L o v á s z and myself in our paper in this volume .

Before completing this chapter I state one of the unsolved problems
of H e c h I e r which seemed very interesting to me . Let F be a family
of almost disjoint infinite subsets of the integers with the following proper-
ty : Let B be any infinite subset of the integers then either there is an A
in F with A C B, or there are a finite number of sets in F so that B
is contained in their union . H e c h l e r shows that if 2 e= 1 then there
is such a family F of power 2" 0 . Is it true that if we split the k-tuples
of the integers into two classes, there is a set A E F all whose k-tuples
are in the same class? This problem is unsolved even for k = 2 .

[11 P . Erdős --- A . H a j n a 1, On a property of families of sets, Acta
Math. Acad. Sci. Hung. 12 (1961), 87-123 .

[2] P . Erdős - S . She 1 a h , Separability properties of almost dis-
joint families of sets, Isreal Journal of Math ., 12 (1972), 207-214 .
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[3] S . H e c h I e r, Classifying almost disjoint families with applications
to BN-N, Israel Math . Journal, 10 (1971), 413-432 .



C .H . there is a S with I S I = X(``) = x,
K(K0 , 8 0 ) and also contains no triangle .

[11

[3]

§3 . CHROMATIC NUMBER OF GRAPHS AND SET SYSTEMS

First I state some well-known results . The girth of a graph is the length
length of its smallest circuit, C, denotes a circuit of size l and K(n ; m)
denotes the complete bipartite graph of n white and m black vertices .
For every integer k there is a graph 5 with X( ,.r/) _ 80 and girth k .
On the other hand every IN with X('§) > No contains a K(n ; 81 ) for
every integer n . For every cardinal number m and integer k there is a
graph of size m, y('.§) = m and the smallest odd circuit of (S has size

2k + 1 . On the other hand to every S with X(P,) > x1 there is an
integer n so that S contains a Cl for every 1 > n . Finally assuming

These results are contained in the following papers :

- 4 1 2 -

which does not contain a

P . Erdős - R . R a d o , A construction of graphs without triangles
having preassigned order and chormatic number, The Journal of Lon-
don Math. Soc., 35 (1960), 445-448 .

[2] Erdős - A . H a j n a 1 , Chromatic number of graphs and set system
terns, Acta Math. Acad. Sci. Hung., 17 (1966), 61-99 .

P . Erdős - A . Hajnal - S . S h e l a h , On some general proper-
ties of chromatic numbers, Colloqu . Math. Soc . János Bolyai 8 . Top-
ics in Topology, Keszthely (Hungary) (1972), 243-255 .

[4] A . H a j n a 1, A negative partition relation, Proceedings of the Na-
tional Academy, 68 (1971), 142-144 .

The simplest question which H a j n a 1 and I could not solve states :
Is it true that if x(S) _ 8 1 then there is an n0 and an edge e of S
so that for every n > no there is a Cn in '4 containing e . We also
do not know if there is a '!% with X(S) _ 8, not containing CS and
a K(80 1 8 0 ). The really fundamental problem here is due to Taylor : Let



X(s) _ 8 1 be an arbitrary graph . Is it true that for every m there is a
IN' with X(S') = m so that every finite subgraph of S' is contained in

Our old results imply that a finite graph S has to be a subgraph
of a graph of chromatic number > 8 0 if and only if s is bipartite .
Now in trying to settle the problem of Taylor one could try to charac-
terize the families F of finite graphs so that every graph of chromatic
number > 8 0 contains at least one (or infinitely many, or all but a finite
number) of the graphs from F. In a triple paper with H a j n a 1 and
S h e 1 a h we state some plausible conjectures concerning these questions .
Now complications and interesting problems arise if we insist that the car-
dinal number of the vertices of the graph of chromatic number 81 should
be N 1 respectively Nn . ( It is an open problem if we get anything new
by saying that the power of the vertices is < 8 . for a > w .

H a j n a 1, S z e m e r é d i and I proved (unpublished) that to every
cardinal number in and to every e > 0 there is a graph

	

with X(S) _
= m such that every finite subgraph ~' n of IN of n vertices has an
independent set os size 2 - e) n. We do not know if this remains true
if we insist that :' has in vertices .

Also we have the following problem which seems very interesting to
me : Let S be an infinite graph . f,,, (n) is the largest integer so that
has a subgraph s' of n vertices and X(I ') = f,(n) . A well-known the-
orem of d e B r u i j n and myself implies that if has infinite chromatic
number then lim f (n) _ - .

Is it true that there is a function h(n), h(n) -> - so that for every
S of chromatic n amber 8 1 , fj, (n) > h(n) for all n > no (<jl)? We know
that if such an h(n) exists that h(n) = 0(logk n) for every k (logk n) de-
notes the k-fold iterated logarithm) . Observe that such an h(n) does not
exist if we only assume that 'P has infinite chromatic number (since there
is a graph of infinite chromatic number of arbitrarily large girth) .
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Finally I state a few disconnected problems on chromatic graphs . Is
it true that every graph of chromatic number K t has a subgraph which
cannot be disconnected by the omission of a finite set of vertices? This
i s problem of H a j n a 1 and myself . We know that there is a graph of
chromatic number K i every subgraph of which can be disconnected by
the omission of a countable set of vertices .

Another conjecture of H a j n a 1 and myself states : Let s be an tn-

chroma.tic graph (m is an infinite cardinal) . Then it has a subgraph which
contains no triangle and which is also in-chromatic. If in we con-
jectured that it has a subgraph s of girth k and chromatic number K~
(for ever -v Jc) .

Both conjecture; have a finite form . We only state it about triangles :
Is there a function fin) . J(n) - - as n - - so that every 'S of chro-
ruatic ntuzzber rt contains a subgraph which has no triangle and has
cl?roinatlc number > J(n) .

A prob.lbi!istic proof of this last conjecture might be possible if we
could prove the following statcnze .zt : there is a function glut) ->

	

so that
every graph of chromatic number > n contains a subgraph '< ' so that
all but o(-`' ~) subgraphs of S' have a chromatic number > g(n) .
(e( :9) is the number of edges of

	

) . That is, ~rj' is a graph of large
chromatic member almost all subgraphs of which also have a large chronzat-
i: number - e.g. the complete graph has this property . Unfortunately I can
;}-_)t (1 Cid : ]',out the truth of this conjecture .

be a graph. Denote by n t < n, < . . . the integers for which
o.ttain :; ,:i (,i * H aj n a l and I conjectured that if W has chromatic

+ ;nzber

	

then

	

I = ~ . In this form the conjecture seemed wi-

ntbut perhaps the following sharper conjecture will he much easier :
ibor; is a g(k) tending to infinite with k so that for eve! - ;

	

(n, [Ann)

we have

	

1 >g(k) where ,,o (n, 1) is a graph cf tt entices and I
n .t

edges, perhaps g(k) = c lour -';

G a I I a i constructed a four-chroina}tic ',, the smalle,i odd circuit of



which has n 1!2 edges. G a I I a i and I then conjectured shat for every
k and n > n` (k) there is a k-chromatic .fin the smallest octd circuit of

that I proved this for k _ 4 but I was unable recently to reconstruct
my proof. Thus perhaps my proof was not correct .

Finally I would like to call attention especially to two older problems
of H a j n a I and myself which seem fundamental to us : Assume G .C .H .
Does there exist a graph S of power and chromatic number N 2 every
subgraph of which of power 81 has chromatic number X.? Is there .i
graph with , } 1 vertices of chromatic number ~1 so that every 'lub-
graph of power < w has chromatic number 'S . . Clearly both

s
i :e~-

tions can be stated for Yeneral cardinal numbers .

Another problem of II a j n a I and myself states :

Assume G .C.H . Define the vertices of S(8 3 ) as sequence,, E .F t, egsrs
of length cj, . Two vertices are joined if the two sequences agree ooJy i .
S sS1 coordinates. We prove that the chromatic number of this graph is

8 1 . We show that it is consistent that its chromatic number is ? 8' .
We do not know if its chromatic number can be 8 3 .

G a 1 v i n asked : Is it true that X( : ) has the Darboux hrc pC-rty?

if X(P) = in and n < m then ~6 has a spanned subgraph •g ' %víth
X(S') = n? G a I v i n showed that it is consistent that this conjecture is
false, but perhaps it is true if G .C .II. is assumed . The conjecture may fol-
low without G.C.H. if '_' can be any subgraph of 'ex (not necessarily a
spanned subgraph) .

The situation about the chromatic number of set systems is much less
clear . G a I v i n, H a j n a I and I are publishing a long paper about these
questions. First consider r-graphs with r = 3 . In marked contrast to r = 2

if To is a given finite triple system we do not in general know whether

8 1 -chromatic triple system contains T o as a sub-system, though
ave many special results in this direction . For the many unsolved
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which has more than c ilk - 2 edges, and on the other hand if every odd
1

circuit of V,, has more than r2 n k- 2 edges than X(en) < k. I claimed



problems I refer to our paper which appears in this volume and also to the
recent paper of H a j n a 1, R o t s c h i l d and myself . Here I only state one
of our problems which seems very striking to me : Let S be a triple sys-
tem defined on a set of power 1 which does not admit an independent
set of power N 1 . Is it then true that S contains every finite system of
triples no two of which have two elements in common .*

Before closing this chapter I only mention that a triple system of
chromatic number > N o no two triples of which have an edge in common
must have cardinal number '> 2 and using C .H . H a j n a 1, R o t s c h i l d
and I construct such a system . G a 1 v i n, H a j n a l and I construct for
every infinite cardinal m a triple system of chromatic number m so
that every subsystem for which no triples have an edge in common is two-
chromatic (has property B) . On the other hand if § has chromatic num-
ber m > Np and no two triples of S have a pair in common then our
S perhaps has an s-circuitless subsystem of chromatic number m (a trip-
le system is s-circuitless if for every t < s and t triples contain at least
2t + I elements .)

[ll

[2] T . G a 11 a i , Kritische Graphen L, Publ. Math . Inst. Hung. Acad.,
8 (1963), 165-192 .

F . G a l v i n, Chromatic numbers of subgraphs, P.M.H., 4 (1973),
117-119 .

[3l

E r d ő s- A . H a j n a 1, On the chromatic number of graphs and
set-systems, Acta. Math. Acad. Sci. Hung., 17 (1966), 61-99, On
chromatic numbers of infinite graphs, Graph theory Symposium held

in Tihany, Hungary, (1966), Akadémiai Kiadó (Budapest), Academic
Press ., (New York), 83-98 .

* Added in proof: We disproved this . See the Erdős, Galvin, Hajnal paper in this volume,
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[4] P . Erdős - A . Hajnal - B . Rotschild, On chromatic num-
ber of graphs and set-systems . Proceedings of tize Cambridge Summer
School, (1971).

[51 P . Erdős - F . G a l v i n- A . H a j n a 1, On set-systems having
large chromatic number and not containing prescribed subsystems .
This volume.



§4 . MISCELLANEOUS PROBLEMS IN SET THEORY

R . R a d o in a forthcoming paper studies some related questions .

1) E l e k e s, H a j n a l and myself considered the following problem :

Let n be a given cardinal and I SI = m be sufficiently large . Is it
true that if we divide the denumerable subsets of S into n classes, there
always are three sets, A, B, C in the same class so that all the unions
A U B, A U C, B U C are in the same class as the sets? This is the sim-
plest case of several questions, instead of three sets we can ask for more
and the union we can replace by other Boolean operations .

2) H a j n a 1 and I proved the following theorem : Color the edges of
K(8 1 ) by two colors so that neither color contains a K(8 0 , 8 1 ) . Then
for every countable W there is a subgraph of our K(K 1 ) isomorphic to

all whose edges are coloured by I and all edges of the complementary
graph by 11. The following problem seems very hard and is perhaps unde-
cidable: Is it true that if we color the edges of K(N2 ) by two colors so
that neither color contains a K(8 1 , 8 2 ) then to every S of power 5 N 1
there is an isomorphic subgraph of our K(8 2 ) so that all edges of it are
coloured I and all edges of the complementary graph are coloured II . Many
further problems can be asked but I have to refer to our forthcoming paper
with H a j n a 1 . I just state one extremely attractive question which we
raised at least 10 years ago : Color the edges of K(K 1 ) by three colors so that
every complete subgraph of size 81 contains edges of all three colors . Is
it then true that there is a triangle all whose edges have different colors?
I give 100 dollars for a proof or disproof, also for a proof of undecidability .
Here also several generalisations are possible, also various finite forms but
we do not discuss them here .*

3) H i n d m a n recently proved the following conjecture of
R o t s c h i 1 d and Graham : Let I S I= 80 and divide the finite subsets
of S into two classes . Then there are infinitely many disjoint sets A 1
(i G w) so that all finite unions belong to the same class . (added in proof :

Added in proof : Assuming C .H . S . S h c I a h proved that the answer is no for the last prob-
lem and that it is consistent to have a negative answer for the first one .
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Bauitigartner recently found a simple proof)

The following two questions can now be asked :

a) Is there an infinte cardinal m so that if IS I = m and we divide
all subsets A (or all countable subsets) of S into two classes then there
are disjoint sets A k C S for k < w so that all finite or infinite unions
belong to the same class . My opinion is that this conjecture is wrong .

b) Is the following statement true? To every infinite cardinal n
there is an m so that if IS I = m and we divide the subsets (countable
subsets? ) of S into two classes there are n sets so that all finite unions
belong to the same class .

I expect b) to be correct . Both a) and b) could be generalized if we
divide the subsets into p classes but problem 2 shows that even for finite
n new difficulties arise if p _> N o .

4) Problem of D o w k e r . Let S be a set, I is a proper ideal of sub-
sets of S and consider all set mappings T(x) : x E S, T(x) is in 1 .

We define two properties P l and P2 of 1 . Property P, implies
that T(x) can bee chosen so that no two elements of S are independent,
property P 2 implies that T(x) can be chosen so that for every decom-
position S l u s 2 = S, S1 n S2 = 0, and every x E S 1 , y E S2 either
y E T(x) or x (=- T(x) . Clearly P l implies P2 . The problem now is, does
P2 imply Pi ?

5) The theory of set mappings has been extensively studied since
T u r á n raised the problem on infinite independent sets - here I just refer
to the large literature, I only state a problem of H a j n a 1 and myself :
Assume G.C.H. and let I SI = 8k+ 1 . Does there exist a set mapping T(X)
which maps the (k + 2)-tuples of S into elements of S so that there
should be no independent set of size 81 ? We proved this for k = 0,
H a j n a 1 showed that it is consistent for k = 1 . Nothing is known for
k > l . We proved that if I S I '>8k+2 then there always is an indepen-
dent set of size 81 .
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6) It easy to prove by transfinite induction that if I Si = N o or
IS I = 81 (C.H . is assumed) then there is a family

	

= {A « } of count-
able subsets of S so that every B C S, I B I = 8. is the union of two
disjoint A a 's uniquely . Does this still hold if 1 SI = 11 2 ? or in fact for
I SI > 82 ?

7) H a j n a 1 and I considered the following questions : Make corre-
spond to every edge of a K(8 o ) a subset of measure > a of (0, 1). Is
there an infinite path so that the sets corresponding to the edges of the
infinite path have a common point? Another more recent question of ours
states as follows : To every edge of a K(K0 ) make correspond a finite
subset of the integers so that none of these sets contain any other . Is it
true that there always is an infinite path so that the complement of the
union of the sets corresponding to the edges of our infinite path is infinite?

Let I Si = 8 1 . To each triplet of S make correspond a subset of
(0, 1) of measure > a . Prove that there always is a quadruplet so that
the sets corresponding to the four triplets of our quadruplet have a non-
empty intersection .

*Added in proof: proved that the answer is negative.
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Now we discuss some finite problems

§ 5 . EXTREMAL GRAPH PROBLEMS

Many papers have recently appeared on this subject . Here I do not
try to give a systematic treatment but just mention some recent problems
which perhaps have nor yet been stated elsewhere :

1 . Problem of S a u e r and myself . Denote by fr (n) the smallest
integer so that every

	

(n ; fr (n)) contains a subgraph which is regular
and of valence (or degree) r. Trivially f2(n) = n, but already the deter-
mination of f3 (n) seems to present great difficulties . We do not even
have an asymptotic formula for log f3 (n) .

2. Brown, V .T . S ó s and I denote by fr (n ; k,1) the smallest
integer for which every s r(n, fr(n ; k, 1)) contains a 4,e; r(k ; 1) as a sub-
graph. We conjectured

(1)

	

f3 (n ; k, k - 3) = o(.n2 )

for every k > 4 . This is trivial for k = 4 and 5 . The first difficult case
was k= 6 . S z e m e r é d i proved (1) a few weeks ago for k= 6 . His in-
genious proof utilizes his fundamental lemma which he used in proving

rk (n) = o(n)

where rk (n) is the largest integer I for which there are I integers not
exceeding n which do not contain an arithmetic progression of k terms .

We showed f3 (n : 6, 3) > cn 312 and thought that f3 (n ; 6, 3) < n 2- `
but R u z s a showed

f3 (n ; 6, 3) > cnr3 (n) > n2 - E

for every e > 0 . He also observed

f3 (n ; 7, 4) > cnr4 (n) .

Perhaps f3 (n ; k, k - 3) > ck nrk _ 3 (n) . At this moment f3 (n ; 7, 4) _
= o(n2 ) is still open .
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3 . Problem of C z i p s z e r, H a j n a l and myself : Let s be a graph
whose vertices are the integers . Denote by f(n) the number of edges (i,
1 < i < j < n . We conjecture that if for every n > no

z
fCn)> 2 (2

	

2k +e)

then 9 contains an increasing path of length k . We proved this for
k = 2 and k = 3, k > 3 is open. It is easy to see that the result fails if
e is omitted .

4. Is it true that to every e > 0 there is an f(e) so that every
S(n; [n1+E]) contains a non-planar subgraph of fewer than f(e) edges?

5. Finally I state a few extremal problems on bipartite graphs. M .
S i m o n o v i t s and I proved that every (n ; [cn8 rs )) contains a cube .
Is the exponent best possible? We can not even prove that for every c
and n > no (c) there is a IN (n ; [cn3 / 2 ]) which does not contain a cube .

I proved that every S(n ; [c3 n 312 ) contains a 1(7 ; 9) of the fol-
lowing structure : z, x1, x2, x3, y1 , y2 , y'3 are the vertices, z is joined
to x1 , x2 , x 3 and each y t is joined to two x - s (two different y's
to different x's) . Is it true that to every k > 3 there is a ck so that eve-
ry S(n; [ck n312 ]) contains a graph having the vertices z ; x 1 , . . . ,xk ,
Y11 . . . , y(kj ; z is joined to all the x - s and every y is joined to two

l )2
x - s (different y's to different x's)? I can not do this for k 3 4 .

The following generalization just occurred to me : Is it true that every
2- 1

	

k
n; ck r n

	

r J contains a graph of 1 + k + r

	

vertices z ; x, , . . . , x k ;

y 1 , . . . ,y(k) where z - is joined to x 1 , . . . I xk and each y is jointed
r

to r x's; distinct y's to distinct r-tuples? The easiest case seems to be
k = 4, r = 3 but I have not yet done this either .

S i m o n o v i t s, V . T . S ó s and I recently considered the following
question which we could not answer : Is it true that there is a c so that
every S(n ; [cn3/2 ]) contains the following bipartite graph of 10 vertices :
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The white vertices are x 1 , X21 a, x 3 , x4 , the black ones y 1 , y 2 , b, y3 , y4 ,
a is joined to all black vertices except b and b to all white vertices ex-
cept a, (x 1 ,y 1 ,x2 ,y 2 ) and (x3 ,y 3 ,x# , y4 ) form a c4 . It perhaps
seems more likely that the answer is negative . I proved that the result is
affirmative if we only, consider the graph spanned by x1 , x2 , a, y 1 , y2 , b,
i.e . a K(3, 3) minus an edge .

II. MISCELLANEOUS PROBLEMS ON FINITE SETS

1 . Faber, L o v á s z and I conjectured that if

IA k l=n,

	

I < k < n

	

and

	

IAt nA, I<1, 1<i<j<y

n
then we can color the elements of U A k by n colors so that every

k=1
Ak contains elements of all colors . It is surprising that this simple con-
jecture seems to be rather difficult . It clearly fails if we have n + 1 sets .

L o v á s z and G r e e n w e 11 proved it if the number of sets is < n+ 1
2

We arrived at our conjecture from the following conjecture of W .
T a y 1 or : One can color the lattice points of n-dimensional space

(x1 , . . . , x n ),

	

1 < xt < t,

	

t > 2k

by k colors so that every line containing k of these points gets all the
k colors. He proves this for many special cases . The first unsolved case is
n=3, k=9.

2. Problem of L o v á s z and myself . Let fA k }, 1 < k < to be a
family of sets of size n no two of which are disjoint. Assume that if
I UI = n - l there always is a member Ak of our family so that
1 A k n U I = ¢ . Determine or estimate min to .

We proved to < c?z 312 log n, probably to < cn log n holds. In fact
it seems to us that a random choice of en log n lines in a finite projective
plane will be such that no n - 1 points will represent the lines, but we
bane not been able to prove this . Also we can not prove say to > 3n for
n > u. . The sharpest result is
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tn >23n-3 .

3 . Problem of K n e s e r . Let I S I = 2n + k . Define a graph of
(2n+k)
l

	

vertices a s follows : The vertices of our graph are the n-tuplesn
of S. Two vertices are joined if the corresponding sets are disjoint . Prove
that the chromatic number of this graph is k + 2 . Clearly it is < k + 2 .
S z e m e r é d i proved that the chromatic number is > f(k) where f(k)
tends to infinity with k .

Let A i CS, 1<i<t; IAt l=n, IA i nAi l?1 for 1<i<j<t .
A well-known theorem of K o, R a d o and myself states that

[2n +k-1
t < n - 1 ) , equality if all the A t have an element in common .
H a j n a 1 and I (and probably many others) considered the following more
general question : Let

A(ii )

	

1<i< ~. ,

	

I<j<l<k

be distinct subsets of S, where I SI = 2n + k . Assume that for fixed j
t

no two of the A(t ) are disjoint . Determine max Z t . . It would be nicer

	

i= 1 i

if

(1)

	

max

	

2n + k
-i )i= l

	

i= l

	

n - 1

For l = 1 this is our theorem with K o , and R a d o . The general
case would of course imply K n e s e r s conjecture, but (1) has not been
proved even for 1= 2 and we have no real evidence for its truth. (added
in proof) Hilton in fact shoved that (I) fails already for 1= 2 . K n e s e is
conjecture would follow from the weaker inequality

t

	

t+1 n+ ki-
( n-1

(2)

	

max Z . <t
i= 1t

	

i

and there is still some hope that (2) holds . H a j n a I and R o t h s c h i l d
proved (1) for n > no (k,1) .
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