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PROBLEMS AND RESULTS ON FINITE AND INFINITE
COMBINATORIAL ANALYSIS

P. ERDOS

§0. INTRODUCTION

Hajnal and 1 have published two survey papers on problems in set
theorv™ and 1 have published several surver papers on problems in graph
theory and combinatorial analysis.** [ cannot entirely hope to avoid
repetitions but shall try to do so as much as possible and shall state old
problems only if significant progress has been made on them, or if they
seem to buave been forgotten by everybody (sometimes including myself)
and may deserve another attack.

*P. Erdds - A. Hajnal, Unselved problems in set theory, Proc. Svmp. Pure Math.,
X1 part 1 Amer, Math. Soc.. (1971) 17-48, and Solved and unsolved problems in set theory, To
appear in the Proceedings of the Tarski, Symposium, held in Berkeley (1971),

**p. Lrdds, Problems and results in combinatorical analysis, Proc.. Symp. Pure Math.,
XIX Amer. Math. Soc.. 77-89, Some unsolved problems, Michigan Math. J., 4 (1957), 291-300
and  Publ Marth, Inst. Hung. Acad. Sei., 6 (1961). 221-254; P, Erdds and D, Kleitman, Extremal
problems among subsets of a set. Combinatorial Math. and Applications, Proc. Chapel Hill Con-
Sference 1970, 146-170; Some unsolved problems in graph theory and combinatorial analysis, Com-
binaroricl Math. and its Applications, Froc. Conference Oxford, Editor Welsh, Acad. Press 1971,
97164,
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I certainly do not claim completeness but simply restrict myself to
problems considered by my collaborators and myself. Nor do I claim that
these are more important than others I neglect, but they have from the
point of view of the reader the advantage that I often know more about
them than the reader.

The concepts will be defined in the text, proofs will usually not be
given and references will be given at the end of each chapter.

~ 404 -



§1. A-SYSTEMS AND RELATED PROBLEMS

A family of sets {A,} is said to form a strong A-system if the in-
tersection of any two of the Aa’s is the same set. It forms a weak A-
system if the cardinal number of the intersection of any two Au’s is the
same, e.g. (1,2), (1,3) (2,3) form a weak A-system but not a strong one,

Rado, Milner and I investigated the following question: Let there
be given m sets {AB} of size n. It is true that there are p of them
which form a strong (respectively weak) A system? We completely solved
these questions if m > N, but tantalizing questions remain if m is fi-
nite. Denote by fs(k, /) the smallest integer for which for any choice of
J(k, 1) sets of size k there are ! of them which form a strong A-sys-
tem and fw (k, 1) is the analogous function for weak A-systems. (Here
k and [ are finite).

Rado and I proved
(1) < flk, < KN
We conjectured (c,,c are absolute constants)
(2) [k, ) < &< IX
and in fact it seems very likely that
(3) Jim £k, DHE = g es,

1 offer 1000 Swiss Francs (or three ounces of gold whichever is worth
more) for a proof or disproof of
(4) J;(k,3)<c"" .

The lower and upper bounds in (1) have been improved by Abbott
and Hanson and Sauer but at this moment a proof or disproof of (3)
is nowhere in sight. One would guess that the proof of f (k,3) will be
much simpler than (4) but so far we have not even proved

1.0k B) s it~
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for some €> 0 and k> k,(e).
Abbott and Hanson proved
£3,3)=20, f,3,3)=11, f (4,3)=25.

Denote by f(n) (resp. f{7(n)) the largest integer ¢ for which there
are t subsets of a set S of size #» so that no !/ of them form a strong
(respectively weak) A-system. It is not hard to prove that

f4gP<fMm<u+ogf

but the value of lim (f{”(n)!") is not known (it is strictly between (1)
and (2).

Abbott recently observed that fg )(n) leads to non-trivial questions.
He observed that it is not trivial to show that f&,s)(n) >cn for every ¢
if n is sufficiently large. Szemerédi showed by an ingenious construc-
tion that

f(S)(n} > ncloglogn
w
but we do not know if f}f}”(n) increases exponentially.

In our paper with Milner and Rado we observe thatif |A, | = n,
1< k<e2'Vn and the family {A,} forms a weak A-system then it also
forms a strong A-system. The proof is very simple. Recently Lovasz and
I observed that the same result holds for & if k< (2 — ¢y )'. We now
posed the following question: Denote by £(#n) the largest & for which
there are k sets of size n which form a weak A-system but not a strong
one. Estimate or determine F(n). If n=p+ 1 where p is a power of
a prime, then the finite geometry gives p? + p + 1 = n? + n — 1, n-tuples
any two of which have exactly one common element, in other words
Fm)y=n* —n+1, perhaps F(n)<n? —n+ 1 for all n equality if and
only if there is a finite geometry. Unfortunately we could not decide this
pretty conjecture.*

* Added in proof: Recently M. Deza, Solution d’un probleme de Erdés — Lovisz, J. Comb.
Theory, 16 (1974), 166-167, settled the problem in the affirmative.
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Before ending this paragraph I would like to mention a rather techni-
cal problem on weak A-systems. Milner, Rado and I prove in our
paper that assuming G.C.H. there are N__ , sets of size N no three
of which form a weak A-system if and only if N = l«|. Further if
Ra =|al our X __, setsare all subsets of a set of size N

Assume now H& = |a| and assume first that N“ is inaccessible and
| S| = Ha. By transfinite induction it is not difficult to construct Na“
almost disjoint subsets Aﬁ of S, |AB| =R, f<w,,, so thatif
B, <B, <pB,; then IA,.31 r'\A‘i3 | # |A‘32 N Aﬂal thus a fortiori no three

sets of our family form a weak A-system.

Assume next Na = |«| but Na is not inaccessible. I have not been
able to construct N, , sets AB’ B<w,,, ofsize N , so that for

every , <pB, <f4
|Ag N Ay | # 1A, O Ay |

and I doubt if such a family exists.

(11 P. Erdés — R. Rado, Intersection theorems for systems of sets
Iand 11, J. London Math. Soc., 35 (1960), 85-90 and 44 (1969),
467-479. The paper with Milner and Rado on weak A-systems will
appear in the Australian Journal of Mathematics.
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§2. PROPERTY B

A family of sets {4_}, IA‘,(I"’2=2 is said to have property B if there
is a set S which meets every A, and contains none of them. This con-
cept is due to Miller. It is often more convenient to use a different termi-
nology. A family of sets F = {4,} has chromatic number r if U A,

&
can be divided into r sets Si (i<r) (r finite or infinite) so that no

A, is contained in any of the S;, but such a division is not possible
into fewer than r sets. We write x(F)=r. F has property B iff
x(F)= 2. A family F is called uniform if all Aa’s have the same power,
it is called simple if |4 N ABI < 1. A family of infinite sets is called
almost disjoint if |4 N Agl<min(l14_], [4,1). Miller proved that there
is an almost disjoint family F of infinite subsets of the integers with
Xx(F) = X,, on the other hand every family satisfying

+ o,

(1) 14, 1=N,, IAalﬁAa2l<k<No for o

has property B (i.e. is two chromatic).

An old problem of Hajnal and myself states: Is it true that for
every infinite cardinal m there is a family F of almost disjoint denumer-
able sets of chromatic number m? Perhaps in fact the family can be con-
tained in a set of power m. This conjecture was proved for m < R, as-
1 Baumgartner, Devlin, Galvin and Hajnal,
but is open for m > 3,

suming 280 — n

In fact they proved that for an n < w there is a family of countable
almost disjoint sets, in a set of cardinality R, such that every subset of
cardinality N, contains an element of this family.*

Let |A | =M= X,. The family {A_} issaid to be strongly almost
disjoint if there is an n > m so that for every o, and a, |Aa‘1 N A053 | <

<n<m Hajnal and I thought that perhaps every strongly almost

* Added in proof: This problem has been answered affirmatively, see G. Elekes — G.I.
Hofmann, On the chromatic number of almost disjoint families of countable sets. This volume.
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disjoint family has property B. We proved this assuming G.C.H. if n= Ry»
m= Rl and the family has size < Bw (i.e. there are at most Nu sets
in our family.) Our proof hopelessly breaks down if the size of the family
is N .

w

Hajnal and I also proved assuming C.H. that there is a family of ¥,
countable almost disjoint sets which does not have property B and the
union of any R, sets of our family has size R,. On the other hand we
could not settle the following closely related question: Is there a family of
N, countable almost disjoint sets which does not have property B and
any countable set ’almost contains” at most N, sets of our family? (S,
almost contains S, if all but a finite number of elements of S2 are in
S)).

Shelah and 1 proved the following conjecture of Hechler: Eve-
ry family of denumerable almost disjoint sets no two of which are disjoint
has property B. On the other hand we showed that there is a family of
almost disjoint denumerable sets which do not have property B and so that
there are no three sets in the family which are pairwise disjoint.

We also asked the following questions: Let {A,} be a family of de-
numerable sets, assume that no A_ is contained in the union of a finite
number of other A;’s and ./-la! M Aof2 # 0 for oy # a,. Is it then true

that the family has property B? Hajnal and Shelah (independently)
gave an affirmative answer. The problem could be generalized to higher
cardinals e.g. t4.} is a family of sets of power Nl, no Aa is con-
tained in the union of X, other A4 ’s and Acrl ﬁAa!2 #¢ for a; #a,.

It is then true that the family has property B? As far as | know these
questions are open.

Further we asked: Let {4 _} be afamily of denumerable sets, no two
disjoint and no A_ is contained in the union of k< w or fewer other
A’s. Is it then true that {A,} has property B? I believe this is still open
for k> 1 Lovasz and Shelah disproved it for k=1 i.e. they con-
structed a three chromatic Sperner* family of countable sets. As far as I

*Ina Sperner family of sets no one contains the other.
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know it is not known if there is a three chromatic family of countable
sets no one of which almost contains any other.

There are many interesting finite problems connected with property
B many of them already stated in our paper with Hajnal. Denote by
m(n) the smallest integer for which there is a uniform family of m(n)
sets A,, ofsize n, 1 <k<m(n) which does not have property B.
m(2)= 3, m(3)= 17, m(4) is unknown. Toft just showed m(4)< 23.
W. Schmidt and I proved

27 (1 +~f’£]“l < m(n) < en?2" .

It would be nice to give an asymptotic formula for m(n). Denote
by m*(n) the smallest integer for which there is a simple uniform family
of m*(n) sets of size n not having property B. Jewitt and Hales,
Abbott, Hajnal and I proved that m*(#n) is finite, in fact Hajnal
and I showed m*(n)< 11" and Lovédsz and I proved lim m*(n)!/" =

n = oo
= 4. Several further questions and results on this subject are stated by
Lovidsz and myself in our paper in this volume.

Before completing this chapter I state one of the unsolved problems
of Hechler which seemed very interesting to me. Let [/ be a family
of almost disjoint infinite subsets of the integers with the following proper-
ty: Let B be any infinite subset of the integers then either there is an A4
in F with A C B, or there are a finite number of sets in [/ so that B
is contained in their union. Hechler shows thatif 20 = N, then there
is such a family F of power 270 [s it true that if we split the k-tuples
of the integers into two classes, there is a set A € F all whose k-tuples
are in the same class? This problem is unsolved even for k= 2.

[l] P. Erdés - A. Hajnal, On a property of families of sets, Acta
Math. Acad. Sci. Hung. 12 (1961), 87-123.

[2] P. Erdés — S. Shelah, Separability properties of almost dis-
joint families of sets, [Isreal Journal of Math., 12 (1972), 207-214.
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[3] S. Hechler, Classifying almost disjoint families with applications
to BN-N, [srael Math. Journal, 10 (1971), 413-432.
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§3. CHROMATIC NUMBER OF GRAPHS AND SET SYSTEMS

First I state some well-known results. The girth of a graph is the length
length of its smallest circuit, C, denotes a circuit of size / and K(n;m)
denotes the complete bipartite graph of » white and m black vertices.
For every integer k& there is a graph % with x(¥)= R, and girth k.
On the other hand every ¢ with x(%)> 8, contains a K(n; ®,) for
every integer n. For every cardinal number m and integer k there is a
graph of size m, (%)= m and the smallest odd circuit of % has size
> 2k + 1. On the other hand to every % with x(%)> X, there is an
integer n so that % contains a C,; for every > n. Finally assuming
C.H. thereisa % with |9 | = x(¥)= N, which does not contain a

1
K(RO, R,) and also contains no triangle.

These results are contained in the following papers:

[1] P. Erdés — R. Rado, A construction of graphs without triangles
having preassigned order and chormatic number, 7The Journal of Lon-
don Math. Soc., 35 (1960), 445-448.

[2] Erdés — A. Hajnal, Chromatic number of graphs and set system
tems, Acta Math. Acad. Sci. Hung., 17 (1966), 61-99.

(3] P. Erdés — A. Hajnal — S. Shelah, Onsome general proper-
ties of chromatic numbers, Colloqu. Math. Soc. Janos Bolyai 8. Top-
ics in Topology, Keszthely (Hungary) (1972), 243-255.

(4] A. Hajnal, A negative partition relation, Proceedings of the Na-
tional Academy, 68 (1971), 142-144,

The simplest question which Hajnal and I could not solve states:
Is it true that if x(%)= X, then there is an n, and an edge e of ¥
so that for every n>n, thereisa C, in % containing e. We also
do not know if there isa % with x(%)= 8, not containing C; and
a K(R,, 8y). The really fundamental problem here is due to Taylor: Let
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x(%) =N, be an arbitrary graph. Is it true that for every m there is a
%' with x(%')=m so that every finite subgraph of ¥’ is contained in
4"

Our old results imply that a finite graph % has to be a subgraph
of a graph of chromatic number > R, if and only if % is bipartite.
Now in trying to settle the problem of Taylor one could try to charac-
terize the families F of finite graphs so that every graph of chromatic
number > R, contains at least one (or infinitely many, or all but a finite
number) of the graphs from F. In a triple paper with Hajnal and
Shelah we state some plausible conjectures concerning these questions.
Now complications and interesting problems arise if we insist that the car-
dinal number of the vertices of the graph of chromatic number R, should
be N, respectively N . (It is an open problem if we get anything new
by saying that the power of the vertices is < X for a> w.

Hajnal, Szemerédi and I proved (unpublished) that to every
cardinal number m and to every € > 0 thereisagraph ¢ with x(¥)=
= m such that every finite subgraph %, of ¥ of n vertices has an

independent set os size [% = e]n. We do not know if this remains true

if we insist that % has m vertices.

Also we have the following problem which seems very interesting to
me: Let % be an infinite graph. f,(n) is the largest integer so that ¥
has a subgraph %' of n vertices and x(¥') = fg(n). A well-known the-
orem of de Bruijn and myself implies that if % has infinite chromatic
number then lim f (n) = oo,

=+

Is it true that there is a function Ah(n), A(n) - = so that for every
% of chromatic mamber R, ﬂf(n) > h(n) forall n> no({f)? We know
that if such an h(n) exists that h(n) = o(logkn) for every & (logk n) de-
notes the k-fold iterated logarithm). Observe that such an A(n) does not
exist if we only assume that ¥ has infinite chromatic number (since there
is a graph of infinite chromatic number of arbitrarily large girth).
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Finally I state a few disconnected problems or chromatic graphs. Is
it true that every graph of chromatic number N, has a subgraph which
cannot be disconnected by the omission of a finite set of vertices? This
is 4 problem of Hajnal and myself. We know that there is a graph of
chromatic number X, every subgraph of which can be disconnected by
the omission of a countable set of vertices.

Another conjecture of Hajnal and mysell states: Let % be an m-
chromatic graph (m is an infinite cardinal). Then it has a subgraph which
contains no triangle and which-is also m-chromatic. If wnr = N, we con-
jectured that it hes a subgraph @ of girth & and chromatic number NO
(for every &).

Both conjectures have a finite form. We only state it about triangles:
Is there a function fin). fin) =+ as n- e so that every % of chro-
matic number s contains a subgraph %" which has no triangle and bas
chromatic number = fin).

A probabilistic proof of this last conjecture might be possible il we
couid prove the following statement: there is a function gi{n) > = so that
every graph of chromatic number > n contains a subgraph %' so that
all but o(2*'%"; subgraphs of %' have a chromatic number > g(#).

(e( %) is the number of edges of %). Thatis, %' is a graph of large
chromatic number almost all subgraphs of which aiso have a large chromat-
ic number - e.g. the complete graph has this property. Unfortunately I can
not decide about the (ruth of this conjecture.

Let % be a graph. Denote by n, <n, <... the integers for which
_ p I 2

% Lontains 4 ('“{_. Hajnal and | conjectured that if % has chromatic
pumber - & then 2% = oo, [n this form the conjecture scemed un-
altucweble, but perhaps thé following sharper conjecture wil! be much ecasier:

here is a g(k) fending to infinite with k& so that for every % (i, [An))
we have 2,;:— > g(k) where %(n, ) is a graph of n vertices and /

edges. perhaps g(k) = ¢ log A.

Gallai constructed a four-chromatic %, the smalicsi odd circuit of
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which has n''2 edges. Gallai and 1 then conjectured ihat for every
k and n> nn(k] there is a A-chromatic 9, the smallest odd circuit of
1

k=2 edges, and on the other hand if every odd

i .
circuit of W has more than czn"‘ -2 edges than x( 9,)< k. 1 claimed
that I proved this for k=4 but I was unable recently to reconstruct
my proofl. Thus perhaps my proof was not correct.

which has more than ¢, n

Finally 1 would like to call attention especially to two older probiems
of Hainal and myself which seem fundamental to us: Assume G.C H.
Does there exist a graph ‘4 of power and chromatic number N, every
subgraph of which of power N, has chromatic number R;? Is there &
graph with N | vertices of chromatic number N, so that every sub-
graph of power <R has chromatic number < N, . Clearly both 1ies-

5
tions can be stated for general cardinal numbers.
Another problem of Hajnal and myseil’ states:

Assume G.C.H. Define the vertices of %(X,) assequences ¢! i legers
of length «w,. Two vertices are joined if the two sequences agree ouly i
< N, coordinates. We prove that the chromatic number of this graph is
= Hl. We show that it is consistent that its chromatic number is > R,.
We do not know if its chromatic number can be N,.

Galvin asked: Is it true that x(%) has the Darboux property? 1o
if x(9)=m and n<n then % hasa spanned subgraph ' with
x(%')=n? Galvin showed that it is consistent that this conjecture is
false, but perhaps it is true if G.C.IL. is assumed. The conjecture may fol-
low without G.C.H. if %’ can be any subgraph of % (not necessarily a

spanned subgraph).

The situation about the chromatic number of set systems is much less
clear. Galvin, Hajnal and | are publishing a long paper about these
questions. First consider r-graphs with = 3. In marked contrast to »= 2
if 7, isa given finite triple system we do not in general know whether
a1 N, -chromatic triple system contains 1, as a sub-system, though

“ave many special results in this direction. For the many unsoived
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problems I refer to our paper which appears in this volume and also to the
recent paper of Hajnal, Rotschild and myself. Here I only state one
of our problems which seems very striking to me: Let S be a triple sys-
tem defined on a set of power R, which does not admit an independent
set of power N,. Isit then true that S contains every finite system of
triples no two of which have two elements in common.*

Before closing this chapter I only mention that a triple system of
chromatic number > 8, no two triples of which have an edge in common
must have cardinal number > N, and using C.H. Hajnal, Rotschild
and I construct such a system. Galvin, Hajnal and I construct for
every infinite cardinal m a triple system of chromatic number m so
that every subsystem for which no triples have an edge in common is two-
chromatic (has property B). On the other hand if % has chromatic num-
ber m> R, and no two triples of S have a pair in common then our
S perhaps has an s-circuitless subsystem of chromatic number m (a trip-
le system is s-circuitless if for every f<s and ¢ triples contain at least
2r +1 elements.)

(11 Erdés — A. Hajnal, On the chromatic number of graphs and
set-systems, Acta. Math. Acad. Sci. Hung., 17 (1966), 61-99, On
chromatic numbers of infinite graphs, Graph theory Symposium held
in Tihany, Hungary, (1966), Akadémiai Kiado (Budapest), Academic
Press., (New York), 83-98.

[2] T. Gallai, Kritische Graphen L., Publ Math. inst. Hung. Acad.,
8 (1963), 165-192.

(3] F. Galvin, Chromatic numbers of subgraphs, PM.H., 4 (1973),
117-119.

*Added in proof: We disproved this. See the Erdds, Galvin, Hajnal paper in this volume.
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(4] P. Erdés — A. Hajnal — B. Rotschild, On chromatic num-
ber of graphs and set-systems. Proceedings of the Cambridge Summer
School, (1971).

[S] P. Erdés — F. Galvin — A. Hajnal, On set-systems having
large chromatic number and not containing prescribed subsystems.
This volume,
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§4. MISCELLANEOUS PROBLEMS IN SET THEORY
R. Rado in a forthcoming paper studies some related questions.
1) Elekes, Hajnal and myself considered the following problem:

Let n be a given cardinal and |S|= m be sufficiently large. Is it
true that if we divide the denumerable subsets of S into n classes, there
always are three sets, A, B, C in the same class so that all the unions
AUB, AUC, BUC are in the same class as the sets? This is the sim-
plest case of several questions, instead of three sets we can ask for more
and the union we can replace by other Boolean operations.

2) Hajnal and 1 proved the following theorem: Color the edges of
X(Hl) by two colors so that neither color contains a K( No, Rl ). Then
for every countable ¥ there is a subgraph of our K(R,) isomorphic to
« all whose edges are coloured by I and all edges of the complementary
graph by Il. The following problem seems very hard and is perhaps unde-
cidable: Is it true that if we color the edges of K(82) by two colors so
that neither color contains a2 K(X,, ®,) thentoevery % of power <R,
there is an isomorphic subgraph of our K(N,) so that all edges of it are
coloured I and all edges of the complementary graph are coloured 1I. Many
further problems can be asked but I have to refer to our forthcoming paper
with Hajnal. I just state one extremely attractive question which we
raised at least 10 years ago: Color the edges of K(X,) by three colors so that
every complete subgraph of size X, contains edges of all three colors. Is
it then true that there is a triangle all whose edges have different colors?

1 give 100 dollars for a proof or disproof, also for a proof of undecidability.
Here also several generalisations are possible, also various finite forms but
we do not discuss them here.*

3) Hindman recently proved the following conjecture of
Rotschild and Graham: Let [S|= R, and divide the finite subsets
of § into two classes. Then there are infinitely many disjoint sets A,
(i < w) so that all finite unions belong to the same class. (added in proof:

* Added in proof: Assuming C.H. S. Shclah proved that the answer is no for the last prob-
lem and that it is consistent to have a negative answer for the first one.
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Bauingartner recently found a simple proof)
The following two questions can now be asked:

a) Is there an infinte cardinal m so that if |S|=m and we divide
all subsets A (or all countable subsets) of S into two classes then there
are disjoint sets A, C S for k< w so that all finite or infinite unions
belong to the same class. My opinion is that this conjecture is wrong.

b) Is the following statement true? To every infinite cardinal »
there is an m so that if |S|=m and we divide the subsets (countable
subsets? ) of S into two classes there are n sets so that all finite unions
belong to the same class.

I expect b) to be correct, Both a) and b) could be generalized if we
divide the subsets into p classes but problem 2 shows that even for finite
n new difficulties arise if p > Ro-

4) Problem of Dowker. Let S be aset, [ isa proper ideal of sub-
sets of S and consider all set mappings T(x): x € S, T(x) isin /1.

We define two properties P, and P, of /. Property P, implies
that 7(x) can be chosen so that no two elements of § are independent,
property P, implies that T7(x) can be chosen so that for every decom-
position S1 uSs, =3, Sl N S2 = ¢, and every x € Sl, y €S, either
y€T(x) or x € T(x). Clearly P, implies P,. The problem now is, does
P, imply P?

5) The theory of set mappings has been extensively studied since
Turdan raised the problem on infinite independent sets — here I just refer
to the large literature, 1 only state a problem of Hajnal and myself:
Assume G.C.H. and let |S|= N, . Does there exist a set mapping 7(X)
which maps the (k + 2)-tuples of § into elements of S so that there
should be no independent set of size Nl? We proved this for k= 0,
Hajnal showed that it is consistent for k& = 1. Nothing is known for
k> 1. We proved that if |S|> R, , then there always is an indepen-
dent set of size N,.

— 419 -



6) It easy to prove by transfinite induction that if |S§|= R, or
|S|=18, (CH. is assumed) then there is a family ={A4,} of count-
able subsets of § so that every BC S, |B|= R, is the union of two
disjoint A4 _’s uniquely. Does this still hold if |S|= N,? orin fact for
181> R,?

7) Hajnal and I considered the following questions: Make corre-
spond to every edge of a K(8;) a subset of measure > a of (0, 1). Is
there an infinite path so that the sets corresponding to the edges of the
infinite path have a common point? Another more recent question of ours
states as follows: To every edge of a K(X,) make correspond a finite
subset of the integers so that none of these sets contain any other. Is it
true that there always is an infinite path so that the complement of the
union of the sets corresponding to the edges of our infinite path is infinite? *

Let |S|=R,. To each triplet of S make correspond a subset of
(0, 1) of measure > a. Prove that there always is a quadruplet so that
the sets corresponding to the four triplets of our quadruplet have a non-
empty intersection.

*Added in proof: proved that the answer is negative.
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Now we discuss some finite problems

§5. EXTREMAL GRAPH PROBLEMS

Many papers have recently appeared on this subject. Here I do not
try to give a systematic treatment but just mention some recent problems
which perhaps have nor yet been stated elsewhere:

1. Problem of Sauer and myself. Denote by f,(n) the smallest
integer so that every ¥%(n; fr(n)) contains a subgraph which is regular
and of valence (or degree) r. Trivially f,(n) = n, but already the deter-
mination of f3(n) seems to present great difficulties. We do not even
have an asymptotic formula for log f;(n).

2. Brown, V.T. S6s and I denote by f,(n; k,!) the smallest
integer for which every %'(n, f.(n; k,[)) contains a %"(k;l) as a sub-
graph. We conjectured

(1) f3(n; k, k — 3) = o(n?)

for every k= 4. This is trivial for k=4 and 5. The first difficult case
was Kk=6. Szemerédi proved (1) a few weeks ago for k= 6. His in-
genious proof utilizes his fundamental lemma which he used in proving

ry(n) = o(n)

where r €n) is the largest integer / for which there are [ integers not
exceeding »m which do not contain an arithmetic progression of Kk terms.

We showed fi(n: 6,' 3) > ¢n3/?2 and thought that fi(n; 6,3)< n?-e,
but Ruzsa showed

f3(n; 6,3)> cnry(n) > n* ¢
for every € > 0. He also observed
f3(n; 7,4)> cnry(n).
Perhaps f,(n; k, k — 3) > ¢ nr,_;(n). Atthis moment fy(n; 7,4) =

= o(n?) is still open.
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3. Problem of Czipszer, Hajnal and myself: Let 4 be a graph
whose vertices are the integers. Denote by f{n) the number of edges (i, j),
1<i<j<n. We conjecture that if for every n> ny

n? (1 1
ﬂ?‘l)> —2-("2——'7’;4*6]
then % contains an increasing path of length k. We proved this for
k=2 and k=3, k>3 is open. It is easy to see that the result fails if
€ is omitted.

4. Is it true that to every e > 0 there is an f(e) so that every
%(n; [n'*€]) contains a non-planar subgraph of fewer than f(€) edges?

5. Finally I state a few extremal problems on bipartite graphs. M.
Simonovits and I proved that every %(n; [cn®/°]) contains a cube.
Is the exponent best possible? We can not even prove that for every ¢
and n>ny(c) thereisa ¥(n; [cn”z]) which does not contain a cube.

I proved that every %(n; [c3n3'[2] contains a %(7;9) of the fol-
lowing structure: z, x ,x,,X;,¥,,¥,,V; are the vertices, z Is joined
to x,x,,X; and each Yi is joined to two x — s (two different y’s
to different x’s). Is it true that to every k> 3 thereisa ¢, so that eve-
ry %(n; [c,n*/?]) contains a graph having the vertices z; x,...,X,,
Pin ons ,y[gl ; z isjoined to all the x —s and every y isjoined to two

x — 5 (different y’s to different x’s)? 1 can not do this for k > 4.

The following generalization just occurred to me: Is it true that every
1

2 . ) k .
@[n; Cp 1 ’] contains a graph of 1 + k + [r] vertices z; X;,...,X;;

Viseo- ,y[k] where z' is joined to x,,...,x; and each y is jointed
r

to r x’s; distinct y’s to distinct #-tuples? The easiest case seems to be
k=4, r=3 but I have not yet done this either.

Simonovits, V.T. S6s and I recently considered the following
question which we could not answer: Is it true that there is a ¢ so that
every %(n; [cn”z]) contains the following bipartite graph of 10 vertices:
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The white vertices are Xy,X,,d,X4,X%,, the black ones 22T b,ys, Yas
a is joined to all black vertices except & and & to all white vertices ex-
cept a, (x,,y,,x,,y,) and (x3,y3,x‘,y4} form a c,. It perhaps
seems more likely that the answer is negative. I proved that the result is
affirmative if we only, consider the graph spanned by X42X5,8, ¥y, Y5, 0,
ie. a K(3,3) minus an edge.

II. MISCELLANEOUS PROBLEMS ON FINITE SETS
1. Faber, Lovidsz and I conjectured that if

A, l=n, I<k<n and 1A£.ﬁA),l€1, I1<i<j<y

n

then we can color the elements of kU A, by n colors so that every
=1

A, contains elements of all colors. It is surprising that this simple con-

jecture seems to be rather difficult. It clearly fails if we have n+ 1 sets.

Lovasz and Greenwell proved it if the number of sets is Qn—%i.

We arrived at our conjecture from the following conjecture of W.
Taylor: One can color the lattice points of n-dimensional space

(xl,...,xn), I<x <t ts> 2

by k colors so that every line containing k of these points gets all the
k colors. He proves this for many special cases. The first unsolved case is
n=3, k=9,

2. Problem of Lovasz and myself. Let {Ak}, 1<k< t, be a
family of sets of size 7 no two of which are disjoint. Assume that if
|Ul=n—1 there always is a member A, of our family so that
|A, N Ul=¢. Determine or estimate min ¢, .

We proved ¢, < cn?'?log n, probably t, <cnlogn holds. In fact
it seems to us that a random choice of c¢n log »n lines in a finite projective
plane will be such that no n» — 1 points will represent the lines, but we
hane not been able to prove this. Also we can not prove say t >3n for
n>uy. The sharpest result is
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2
t">2§H—3.

3. Problem of Kneser. Let |S|= 2n+ k. Define a graph of
2n+ k ) .
l " ] vertices a s follows: The vertices of our graph are the n-tuples

of §. Two vertices are joined if the corresponding sets are disjoint. Prove
that the chromatic number of this graph is &+ 2. Clearly it is < k+ 2.
Szemerédi proved that the chromatic number is = flk) where f(k)
tends to infinity with k.

Let AI.CS, 1<i<t; |4;1=n, IAl.f‘lA;.I?l for 1<i<j<t.

A well-known theorem of Ko, Rado and myself states that
2n+ k

<7 ; 1 ], equality if all the 4, have an element in common.

Hajnal and I (and probably many others) considered the following more
general question: Let

AP, 1<i<y, 1<j<I<k
be distinct subsets of S, where |S|= 2n+ k. Assume that for fixed j

no two of the A!" are digjoint. Determine max '5' t,. It would be nice

f-l"
if

[\4

J [2n+k—-:]

(1) max Z
ji=1 -1

lzl

For /=1 this is our theorem with Ko, and Rado. The general
case would of course imply Knesers conjecture, but (1) has not been
proved even for /= 2 and we have no real evidence for its truth. (added
in proof) Hilton in fact shoved that (1) fails already for /= 2. Kneser’s
conjecture would follow from the weaker inequality

4 I+ 1 i
) max 2 < > l"”‘*']
s

i=1 n-—1

and there is still some hope that (2) holds. Hajnal and Rothschild
proved (1) for n> no(k, D).
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