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1. Introduction

Denote by N,,(ct,/3) the number of distinct fractions p/q, where 1
and a < p/q < / . Let

D(a) = lim 1N,, a - 1 , a + 1„-,, n

	

2n

	

2n
It is shown in Sheng (1973) that

D(a) = i if a is irrational
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if q > 1 and (p, q) = 1 . In this paper we prove two theorems .

THEOREM 1 . If (p, q) = 1 and q > 1, then

ID (q /-~ I <q(1+ 2
) .

THEOREM 2 . Let {an } and {/3 n} be two sequences satisfying 1 > /3„ > an > 0

and lim,-,n(p n - an ) = cc). Then

lim Nn(an , /3n)
=

3~
n-+. n2 (/3 - a„)

	

n2 .

In other words, the distribution of fractions is uniform over sufficiently long
intervals .

Throughout this paper, u(n) denotes the Möbius function, 0(n) denotes
Euler's 0-function, and [x] denotes the maximum integer <_ x .

124



[21

	

Distribution of rational points

	

125

2. Lemmas

LEMMA 1 . Let n be a positive integer. Then

then

PROOF . This follows from

and, for n > 1,
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PROOF. Using 0(r) = r E p(d) , we obtain (see Hardy and Wright (1960),
ajr

	

d
page 268, lines 9-10)

LEMMA 3 . I}' (p, q) = 1 and n >_ qv > 0, then
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PROOF . The proof is similar to that of Theorem 4 in Sheng (1973) .

LEMMA 4 . If (p, q) = 1 and n >_ qv > 0, then

f(A) _ I 1 u(d) ~ d[d] 2~ Ld
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By Lemma 1,
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(2.2)

	

n
N,, (P ,P + n _ 3v + O (1 + O (vqlng vq ~ .
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PROOF . This follows from (2.1) and Lemma 2 .

3. Proofs of theorems

PROOF OF THEOREM 1. This follows from

and Lemma 2 .

PROOF OF THEOREM 2. Given a positive integer n and real
satisfying

0<a</3<1 and /i-a=
> n'n

we choose P E (a, /i) where
q

q< Y d y E (a, A (x, Y) = 1, y >_ 1 .

Let h1k < p1q < rls be consecutive terms of the Farey sequence of order q . It is
easy to see that

for some real number v and that

Theorem 2 is proved if
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l3 + 0 (Y ) + 0 (00n)(3.1)

	

-N"(a, /i) i	 ~

holds .
We prove (3 .1) in three possible cases .

CASE 1 . Suppose qy < n# . There exist >_ 0 and n >_ 0 such that

a=q - n,#=q+ n, +n=y.

By Lemma 4,
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2 (~ + rl) + O 1) + O qYlogqY)

which can easily be reduced to (3 .1) .

CASE 2 . Suppose qy > n+ and k 5 s. Then there exist >_ 0 and rl > 0

such that

By Lemma 4,
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It is now easy to deduce (3.1) from (3 .2) .

CASE 3. Suppose qy > n+ and s < k . Then there exist ~ > 0 and t1 >_ 0
such that

r
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na= s - n,~= s - n,~-rl=y .

Here
n N„(a,

	

2 ( - n) + O s ) + O
S~log (s))

and (3.1) follows as in Case 2 from

s~ < 2n-Iy .

This essentially proves Theorem 2 .

One of us, T. K. Sheng, would like to take this opportunity to correct the
following misprints in Sheng (1973) : on page 244, the last term of (1 .4) should read

0( vqlogvq ) instead of O
vp log vq

1

; and on page 245, line 10 should read
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