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A NOTE ON RATIONAL APPROXIMATION

by
P. ERDGS (Budapest) and A. R. REDDY (East Lansing)

Recently (cf. [1], [2]) we have studied the problem of approximating
reciprocals of certain entire functions by reciprocals of polynomials under the
uniform norm on the positive real axis. In this connection we present here
gome results.

NotarioN. Let m, denote the class of all algebraic polynomials of degree
at most n. Denote by
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For every » > 0, let o,(x; r) € @, denote the best Chebyshev approximation to
fin [0, r], Le.,
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Let Pulx; r) = onlw; r) + 6a(r) for each »n = 0.

TaeoreM 1. If g{n) tends to infinity arbitrarily fast, then there is an entire
Sfunction f(z) of infinite order such that for infinitely many n
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Proor. Let u; — = very fast and n, — ~o even much faster. Put
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If ng — o< fast enough, then f(x) is an entire function of infinite order, ux — o
depends on g(n) and ny on u; and on g(n).
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Set 0 < zg(u;.u)a—, then
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if 4, is sufficiently large.
On the other hand, let 2z > u%;,4, then
a1 (2u)m 1
7 ) fl) = wpy g(m)’

(4) 0g[l+2’

k=1 Uik
if w4, is sufficiently large.

The result (2) follows from (3) and (4).

TaroreM 2. Let f(z) = j‘a;‘z", gy >0, a4, >0 (k>=1) be any entire
k=0

function of finite lower order B. Then there exists a sequence of ordinary polynomials
{Pn(z)}n=o with P, € m, for each n > 0, such that for any € > 0
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Proor. By hypothesis f(z) is an entire function of finite lower order 8.
Therefore for each & > 0, we obtain

(5)

M=o

(6) lim %‘L’ =0, where M(s) = Max| f(z) .

F—em
Then (6) implies that there exist arbitrary large values of s, for which
log M(s) _log M(r)

" il pite 0 r<s.
From (7), we get with s = re"@**
“ M(s) < {M(n))".
We have from ([2], p. 181)
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From ([2], 3.4)) it follows that
1) o) < 3 aur.

k=n+1
Hence from (9) and (11), we get for 0 < z < r
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From (8) and (12), we get for all those values of r for which (7) is valid
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Now we choose here

(14) {M(r)}e+* = exp [ 5 j: 8] ,

which is permissible because M (r) — oo a8 r — co. Then from (13) and (14),
we get
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From (10) and (14), we get
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Set Pn(x; r) = Pp(x), then from (15) and (16), we get the required result (5),

REMARK. Theorem 2 improves considerably a recent result of Erpés
and RepDY ([1], Theorem 3). It is easy to construct an entire function, with
order infinity and lower order finite, for this function clearly E{}.{,_n)”" 41
(cf. [2], Theorem 1). e
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