COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI

10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

## A NON-NORMAL BOX PRODUCT

P. ERDŐS - M.E. RUDIN

We use the convention that a cardinal is the smallest ordinal of that cardinality, and an ordinal is the set of ordinals less than it is. The topology on an ordinal is the order topology.

If  $\{X_n\}_{n\in\omega_0}$  is a collection of topological spaces, then the box product of  $\{X_n\}_{n\in\omega_0}$  is  $\prod_{n\in\omega_0} X_n$  with the topology induced by using  $\{\prod_{n\in\omega_0} U_n \subset \prod_{n\in\omega_0} X_n \mid U_n \text{ is open in } X_n \text{ for all } n\}$  as a basis.

Suppose X is the box product of  $\{\alpha_n\}_{n\in\omega_0}$  where each  $\alpha_n$  is an ordinal; if  $f\in X$ , then f(n) will denote the n-th coordinate of f.

We say F is a scale (of cardinality  $\kappa$ ) provided F is a family  $\{f_{\alpha}\}_{\alpha \leq \kappa}$  of members of  $\omega_0^{\omega}$ , such that:

- (1)  $\alpha < \beta < \kappa$  implies  $f_{\alpha}(n) < f_{\beta}(n)$  for all but finitely many n,
- (2)  $f \in \omega_0^{\omega_0}$  implies there is an  $\alpha < \kappa$  and an  $m < \omega$  with  $f(m) < f_{\alpha}(m)$  for all m > n.

Suppose  $\kappa$  is cardinal for which there is a scale. Clearly  $\omega_1 \leq \kappa \leq 2^{\omega_0}$ ; so the Continuum Hypothesis [CH] yields  $\kappa = \omega_1$ . But it is consistent with the usual axioms of set theory that  $\kappa$  be  $\omega_1$  or  $\omega_2$  or  $\omega_3, \ldots$ .

In [1] it is proved among other things that:

- (a) [CH] implies X is paracompact if  $\alpha_n = \omega_0 + 1$  for all n.
- (b) [CH] implies X is paracompact if  $\alpha_n = \omega_n + 1$  for all n.
- (c) [CH] implies X is normal (but not paracompact) if  $1 < k \in \omega_0$  and  $\alpha_0 = \omega_k$  but  $\alpha_n = \omega_0 + 1$  for all n > 1.
- (d) No conclusion is reached if  $\alpha_0 = \omega_1$  and  $\alpha_n = \omega_0 + 1$  for n > 0.

Consider these facts in the light of the theorem proved in this paper:

Theorem (Erdős): If  $\kappa \neq \omega_1$  is the minimal cardinality of a scale, then X is not normal where  $\alpha_0 = \kappa$  and  $\alpha_n = \omega_0 + 1$  for all n > 0.

Thus it is consistent with the usual axioms of set theory that the box product  $\omega_k \times (\omega_0 + 1) \times (\omega_0 + 1) \times \dots$  be either normal or not normal for all integers k > 1. But the problem with k = 1 is still untouched and seems harder than ever. Also the conjecture of Rudin that (a) is true without [CH] in the hypotheses seems more interesting.

**Proof of the Theorem.** Assume  $\kappa > \omega_1$  is the cardinality of a scale  $\{f_{\alpha}\}_{\alpha < \kappa}$  and there is no shorter scale. Also assume X is the box product  $(\kappa \times (\omega_0 + 1) \times (\omega_0 + 1) \times \ldots)$ . For each  $\alpha < \kappa$  and  $i < \omega_0$ , define  $h_{\alpha i} \in X$  by  $h_{\alpha i}(0) = \alpha$  and  $h_{\alpha i}(n) = f_{\alpha}(n-1) + i$  for n > 0. Let  $H = \{h_{\alpha i} | \alpha < \kappa \text{ and } i < \omega_0\}$ . For each  $\alpha < \kappa$ , define  $k_{\alpha} \in X$  by  $k_{\alpha}(0) = \alpha$  and  $k_{\alpha}(n) = \omega_0$  for all n > 0. Let  $K = \{k_{\alpha} | \alpha < \kappa\}$ .

Observe that K is closed and disjoint from  $\overline{H}$ . Assume open sets  $U \supset H$  and  $V \supset K$ . We prove  $U \cap V \neq \phi$  and thus X is not normal.

For  $0<\alpha<\kappa$  we assume without loss of generality that  $k_{\alpha}(n)>0$  and  $h_{\alpha i}(n)>0$ . Thus, since U and V are open, there are  $u_{\alpha i}$  and

 $v_{\alpha}$  of X such that  $u_{\alpha i}(n) < h_{\alpha i}(n)$  and  $v_{\alpha}(n) < k_{\alpha}(n)$  for all n, and  $\{g \in X \mid u_{\alpha i}(n) < g(n) \leq h_{\alpha i}(n)\} \subset U$  and  $\{g \in X \mid v_{\alpha}(n) < g(n) \leq k_{\alpha}(n)\} \subset V$ .

For each  $0<\beta<\kappa$ ,  $\nu_{\beta}(0)<\beta$ . Thus there is a  $\delta<\kappa$  such that  $\gamma<\kappa$  implies  $\gamma<\beta$  for some  $\beta$  with  $\nu_{\beta}(0)<\delta$ . Let  $\Delta=\{\beta<<\kappa\mid\nu_{\beta}(0)<\delta\}$ . Let  $\theta=\{\alpha<\kappa\mid\alpha$  has uncountable cofinality}. Since  $\{u_{\alpha i}(0)\}_{i\in\omega_0}$  is countable, for each  $\alpha\in\theta$  there is  $\beta_{\alpha}<\alpha$  such that  $u_{\alpha i}(0)<\beta_{\alpha}$  for all  $i\in\omega_0$ . Again, since  $\beta_{\alpha}<\alpha$  for all  $\alpha\in\theta$  and the cofinality of  $\kappa$  is greater than  $\omega_1$ , there is  $\lambda<\kappa$  implies  $\gamma<\alpha$  for some  $\alpha\in\theta$  with  $u_{\alpha i}(0)<\lambda$  for all  $i\in\omega_0$ . Let  $\Lambda=\{\alpha<\kappa\mid u_{\alpha i}(0)<\lambda$  for all  $i\in\omega_0$ }.

Choose  $\mu < \kappa$  with  $\lambda < \mu$  and  $\delta < \mu$ . Choose  $\beta \in \Delta$  with  $\mu < \beta$ . There is  $\eta < \kappa$  with  $f_{\eta}(n) > v_{\beta}(n+1)$  for all n > 0. Choose  $\alpha \in \Lambda$  with  $\alpha > \eta$  and  $\alpha > \mu$ . Then  $f_{\alpha}(n) > v_{\beta}(n+1)$  for all but finitely many n. Thus there exists a positive integer i such that  $f_{\alpha}(n) + i > v_{\beta}(n+1)$  for all  $n_i$  hence  $h_{\alpha i}(n+1) > v_{\beta}(n+1)$  for all  $n \in \omega_0$ . Since  $\alpha \in \Lambda$  and  $\lambda < \mu < \alpha$ ,  $(\mu, h_{\alpha i}(1), h_{\alpha i}(2), \ldots) \in U$ . Since  $\beta \in \Delta$  and  $\delta < \mu < \alpha$  and  $v_{\beta}(n+1) < h_{\alpha i}(n+1) < \omega_0$  for all n,  $(\mu, h_{\alpha i}(1), h_{\alpha i}(2), \ldots) \in V$ . Thus  $U \cap V \neq \phi$ .

## REFERENCE

[1] M.E. Rudin, Countable box products of ordinals, *Transactions* of the A.M.S., (to appear).