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ASYMPTOTIC DISTRIBUTION OF NORMALIZED
ARITHMETICAL FUNCTIONS

PAUL ERDOS AND JANOS GALAMBOS

ABSTRACT. Let f(n) be an arbitrary arithmetical function and let
A N and B N be sequences of real numbers with 0< B N - . + oe with N.

We give a sufficient condition for (f(n)-AN)/BN to have a limiting
distribution. The case when f(n) is defined by f(n ) = Zg(d), where the
summation is over all divisors d of n and g(d) is any given arithmetical
function, is discussed in more detail . A concrete example is given as
an application of our result, in which example f(n) is neither additive
nor multiplicative . Our method of proof is to approximate f(n) by a
suitably chosen additive function, as proposed in [41, and then to apply
general theorems available for additive functions .

1 . The general theorem. Let f(n) be an arbitrary arithmetical function

and let A N and BN be sequences of real numbers with 0 < BN ----i + m as N + m.

Let NvN(n : . . . ) denote the number of those integers n, not exceeding N, for which

the property stated in the dotted space holds . Let finally F(x) be a proper distribu-

tion function, that is, F(x) is increasing, left continuous and its limits at + oo and
- are one and zero, respectively . We say that the normalized arithmetical function

(f(n) - A N)/BN has the limiting distribution F(x), if, as N - + oo,

(1)

	

vN(n : f(n) - A v < xB V) = F(x) + o(1),

for all continuity points of F(x) . Our aim in the present paper is to determine

the sequences A N and BN for which (1) holds . This will be achieved by

choosing strongly additive functions GN (n) which are "close" to f(n), a

term to be made specific below, and for which the relation

(2)

	

v,~(n: GN (n) - AN < xB N) = F(x) + o(1)

is known to hold with some sequences AN and B N . In (2) again, N--- + -o
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and its validity is assumed for all continuity points of F(x) . We then deduce
that (2) implies (1) with the same BN and F(x) and with A N determined by

AN and by our concept of "closeness" of arithmetical functions . The
details are as follows .

Put
N

(3)

	

Af, GN, aN ) = N-1

	

(f (n) - G N(n) - aN ) 2 ,

(4)

(5)

n=1

where aN is a sequence of real numbers . Writing

f(n) - aN - AN = (f(n) - G N(n) - a N ) + (G N(n) - AN),

the well-known Markov inequality implies that, if

d(í, G N'

	

N
aN)IB 2 -, 0 as N - +~,

then (1) and (2) are equivalent if we put A N = aN + AN . (Though this is a

very frequently applied argument in the theory of distributions of arithmeti-

cal functions, the reader may want to refer to [7, p . 45] for details .) Since

general solutions for (2) are known, our aim is to guarantee the validity of

(4), and thus to make the value in (3) as small as possible . The strongly

additive function G N(n), asymptotically minimizing (3), was determined by

one of us in a recent paper [4] . For this strongly additive function, at prime
numbers p,

[NIP]

	

N

G N(p) _ [P
2/(p - 1)}N -1 E f(kp) - ipl(p - 1) IN

	

E f(k) .
k=1

	

k=1

We shall use (5) as a guide rather than definition for GN (n) and in applica-

tions the exact value of (5) will be replaced by asymptotic expressions . We

point out that, when a specific choice of the asymptotic expression for (5)
has been made, in most known cases the normalizing constants AN and B N
in (2) are given by

(6)

	

AN =

	

G,7(p)
and

p<N p

2 (p)
Z

	

G NB N =
psN

p

We shall concentrate mainly on these choices of AN and B N • It may be of

interest to remark here that in a recent paper [5] a solution for (2) was given

with normalizing constants different from those in (6) . The general result
of [5] is, however, quite complicated and it would be an interesting work to

make refinements of those results .

We now summarize the conclusions in the preceding arguments .
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Theorem 1 . Let f(n) be an arbitrary arithmetical function and G N(n)
be a strongly additive function, determined by any asymptotic expression of
the right-hand side of (5) . Assume that (2) holds with the values given in
(6) . Then the validity of (4) implies (1) with A N = a N + AN .

Note that we have a freedom in the choice of aN in (3). This can help

in many cases to guarantee the validity of (4), which is our major assump-
tion . Indeed, if for a choice of G N(n) and aN,

(y)

	

d(f, G N, aN ) D2 = O(B 2) ,

then

2D N
d(f, G1,, a N + D N) = d(f, GN, aN ) + DN -

		

N ` (f(n) - GN(n) - aN
),

n=1

Therefore, if a N is chosen so that

N

(8)

	

N-1 E (f(n) - G N(n) - aN) - D V ,
n=1

then (4) is automatically satisfied with d(f, GN, a N + D N ) . This freedom in

choosing a N will be exploited in the next section where we investigate a

concrete class of functions for f(n), covering the additive and multiplicative

functions .

2 . A special case. In this section we give a more specific form of Theo-
rem 1 for the case when

(9)

	

f(n) _ Y_ g(d),
dl n

where g(d) is any given arithmetical function . First of all, notice that if
g(d) = 0 for all d except when d is a power of a prime number, then f(n) is
additive and, evidently, any additive function can be obtained in this way .

On the other hand, if g(d) is multiplicative, then so is f(n), and, by the

Moebius inversion formula, all multiplicative functions can be represented

in the form of (9). However, our aim is to obtain a general theorem which

does not make these restrictions on g(d) . We shall prove the following result .

Theorem 2. Let g(d) be an arithmetical function and define f(n) by (9).
Let GN(n) be strongly additive which is defined at primes p by the formula

(10)

	

G,J(p) = p

	

g(d)

	

p

	

E

	

g(d)

dsN ; pl d d

	

p I d-_tN/p]+1 d



¢

	

PAUL ERDOS AND JANOS GALAMBOS

Assume that (2) holds with the constants in (6) and that B N -> + - with N .
Then, if

(11)

	

N ` 1

	

f2(n) -

	

g (~) 2 = 0(BN),
n=1

	

d- 1

	

}

the normalized arithmetical function
N

f( n) -

	

gds - DN}IBN'
d=1

where D N is a suitable sequence of numbers satisfying D N = 0(B N ), has a

limiting distribution which coincides with the one obtained in (2) .

Before giving the proof, let us make two remarks . First of all, we wish
to re-emphasize that our assumption about the validity of (2) is not a strong
restriction, as very general solutions are known for (2) to hold (see, in par-

ticular, [7, p . 58]) . Hence, in most cases, our only assumption is (11) . Our

second remark is to point out that Theorem 2 is a straight extension of the

Erdős-Kac theorem, or the more general result of Kubilius [7, p . 58]. Indeed,

as we have remarked, J (n) in (9) reduces to additive functions if g(d) = 0
whenever d is not the power of a prime number, and it becomes strongly addi-

tive, if g(d) 4 0 only if d is a prime number. Now, in the definition (10) of
G N(p), the second term tends to zero, as N , + -o, for the class H of Kubi-

lius, and the first sum contains only a single nonzero term, namely, when

d = p . Thus, for all p < N, GN(p) = g(p) = f(p), which in turn yields that

G N(n) _ /(n) for all n < N .

We now turn to the proof of Theorem 2 .
Proof. We shall apply Theorem 1, and therefore we have to show that

the expressions in (5) and (10) are asymptotically equal and we have to

specify aN. For this goal, first observe that

N

	

N

	

N
:N - 1 Y f(n) = N - 1 Z E g(d) = N - 1 E g(d)

CdJ
(12)

	

n=1

	

n 1 dl n

	

d=1

Z g(d)
d + 0 N -1 Z 1g(d)~ ,

d=1

	

d=1

and that, as is well known for any-strongly additive function,

1
N

	

GN (p)
N`

	

G N(n) ti	 p
n = 1

	

p:sN



N

	

G ( )
(17)

	

N-1

	

f(n)G N(n) _	 p p
n=1

	

P_N

Bearing in mind (8), we choose

a ti

	

g(d) -

	

GN(p)
N

	

d

	

p
d=1

	

PsN
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For giving an asymptotic formula in (5), notice that

f(kp) _

	

g(d) _

	

g(d) +

	

I g(dpt),
dlkp

	

dlk

where V is summation over dlk, (d, p) = 1, and t is defined by pt- 1l k but
p t1k. Thus

[NIP]

	

[NIP]

	

[Nlpl

	

,
N - 1 E f(kp) = N-1

	

f(k) + N -1 1: 1: g(dpt)
k=1

	

k=1

	

k=1

[NIP]
1 r g(- +

(1

_ 1

	

g(d)

d_1

	

p d<N,pld
d

(12) and (14) now yield that we can choose G N(p) by the formula (10) to
approximate the expression of (5) .

Turning to (4), we get

N

	

N
d(f, G y , aN) = N-1

	

f2(n) + N- 1 E GN(n) + aN

(15)

	

n=1

	

n=1

f(n)G N(n) -
2Ny

	

(f(n) - G N (n))'
N

'E
n=1

	

n=1

As is well known, the strong additivity of GN (n) yields (see [7, (3 .5),
p. 34])

N
(16)

	

N - 1

	

G 2 (n) _

	

GN(p)
2 + 0

~ GN(p)

n =1

	

00 p

	

(P<N -~

On the other hand,

N

	

N

	

\

	

[NIPl
E f(n)G N (n) _ E ~~g(d) E G N(p)1 = E GN(p) E f(kp),
n=1

	

n=1 d~n

	

~PIn

	

/ psN

	

k=1

and thus, by the exact value (10) of GN(p) and by (14),

Thus (15), (16) and (17) yield

g(d) + 0

	

GV(p)

d=1

	

(1N p
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N

	

2
d(/, GN, aN) = N-1 Z /2(n)

	

i-

	

g~d) + O(Bv),
n=1

	

d=I

and therefore, by the assumption (11),

d(/, G N , a,N) = 0(BN) .

But this is exactly the formula (7), from which we deduced that with a suit-

able sequence D N = O(B N ), d(/, GN , a N + DN ) satisfies (4). Therefore

Theorem 1 is applicable with a N of (18) being replaced by a N + D N , where

D N = 0(B N ) . As Theorem 1 says, the normalizing constants are

N
A

N
=a,v +DN +

	

g(d +DN
d=1

and B N itself, where the notations (6) and (18) apply . Theorem 2 is thus

established .

Throughout this paper, the approximating functions G N (n) can vary

with N and they are actually defined for n < N only. However, if Y-g(d)/d

converges, then the second term in (10) tends to zero, and, by letting N -

+ -, G N(n) can be replaced by a single strongly additive function . If, in

addition, the tail of Eg(d)%d tends to zero sufficiently fast, the main result

of Galambos [41 becomes applicable, that is, a limiting distribution of /(n),

defined in (9), exists without any normalization . This case also reobtains

some of the results in Erdös and Hall [2], and, at the same time, gives an

extension of that investigation by not requiring that g(d) > 0 . The general

case, when Eg(d)/d converges, however, still remains open, since our

assumption of B N

	

+ m with N excludes most of these cases from our

present investigation .

We now give an example as an application of Theorem 2 . Let g(d) = 1

if d - p aq'8 with primes p and q and a > 0, 0 > 0, and let g(d) = 0 otherwise .

Then for /(n), defined in (9), we have from Theorem 2, that, with a well

defined real number c,

VN(n . /(n) - ( log log N) 2 < ( c + x)(log log N) 3/2 )

	

F(x),

where

(19)

	

F(x) _ ( 277)- 112 ( Í° exp(-t 2/2) dt .

Indeed, by (10), for any fixed prime p (the asymptotic equation is in terms

of N - • + m),
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GN(p),,,pZ'p-xq-a= Z` p-(~"-1)q-8

=O+00» L p-(a-1)

	

q -B _ (p/(p - 1) (1 + 0(1)) log log N,
a> 1

	

8:1 ; q<N

where I' denotes summation over primes q and integers a > 1, J3 > 0 with

p°'q'3 < N. In terms of N, we can take any asymptotic value of GN (p) above,

thus G N (p) = p/(p - 1) loglog N can be taken . Also, since we are interested

in asymptotic distribution, we can equally take GN(p) = loglog N, and thus

(20)

	

GN(n) = U(n) log log N,

where U(n) is the number of prime divisors of n . Since by the Erdös-Kac

theorem, for GN (n) in (20) and F(x) of (19),

VN(n : GN(n) - (log log N) 2 < x (log log N) 3/ 2 ) , F(x),

Theorem 2 implies our claim by showing that
N

DN = N- 1

	

(f(n) - U(n) log log N) 2 = clog log N) 3 (1 + 0(1)) .
n_1

This last asymptotic formula follows by elementary but somewhat compli-

cated calculations, hence its details are omitted (the reader can find esti-
mates of a similar nature in [6]) .

We conclude with a remark . In our approach it was not essential that
the argument n of PI(n) should run through the consecutive integers . When-

ever the asymptotic distribution of an additive function is known to exist on
a sequence m 1 < m 2 < . . . of integers, our argument remains unchanged .

For such extensions of the theory of asymptotic distribution of additive

functions, see the survey (Galambos [3]).

REFERENCES

1 . P. Erdös and M . Kac, The Gaussian law of errors in the theory of additive
number theoretic functions, Amer . J . Math . 62 (1940), 738-742 . MR 2, 42 .

2. P. Erdös and R . R. Hall, On the distribution of values of certain divisor
functions, J . Number Theory 6 (1974), 52-63 .

3 . J . Galambos, Distribution of arithmetical functions . A survey, Ann . Inst . H .
Poincare Sect. B 6 (1970), 281-305. MR 45 #6780 .

4 .	, Approximation of arithmetical functions by additive ones, Proc .
Amer. Math . Soc. 39 (1973), 19-25 .

5 .

	

, Integral limit laws for additive functions, Canad. J. Math. 25 (1973),
194-203 .

6. H. Halberstam, On the distribution of additive number theoretic functions,
J . London Math. Soc. 30 (1955), 43-53 . MR 16, 569.



PAUL ERDOS AND JANOS GALAMBOS

7. J. Kubilius, Probabilistic methods in the theory of numbers, Gos . Izdat .
Polití6. i Naucn . Lit. Lítovsk . SSR, Vilna, 1959 ; rev . ed ., 1962; English transl .,
Transl . Math. Monographs, vol . 11, Amer . Math . Soc., Providence, R. I ., 1964 .
MR 23 #A134 ; 26 #3691; 28 #3956 .

MATHEMATICAL INSTITUTE, HUNGARIAN ACADEMY OF SCIENCES, BUDAPEST
V., HUNGARY

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENN-
SYLVANIA 19122


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

