
ON THE NUMBER OF SOLUTIONS OF 

P, ERDijS AND E. SZEMEREDI 

Denote by rk, !(n) the number of solutions of 

n= c x” 
i=l 

in positive integers xi. The well-known hypothesis K of Hardy and Littlewood 
states that for every E > 0, 

(1) is well-known for k = 2, in fact for n > no (E), 

(2) Y2,2(Y1)<,(1+E)log2/log’ogn, 

and (2) does not hold for every n if log 2 is replaced by a smaller constant. Nearly 
40 years ago Mahler [7] disproved the hypothesis for k = 3. He showed in fact 
that for infinitely many y1 (cl, c2, . . . denote positive absolute constants), 

(3) Y3,3(n)>clrP2. 
It is possible that, for all n, 

(4) r,,,(n)<c,nl’l2, 

but nothing is known about this, It is probable that the K-hypothesis fails for 
every k> 3 too, but probably 
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(5) 

for every E if X>+,(E). (5) would be just as useful for Waring’s problem as the 
K-hypothesis. 

Chowla [l] proved that for k 2 5, r,, Jn) # O(l), and Chowla and Erdiis [3] 
proved that, for every k 2 2 and infinitely many n, 

Mordell proved that ~~,~(n)#O(l), and Mahler [8] proved that, for infinitely 
maw n, ~3,2(~)>(logn) . 1/4 As far as we know there is no nontrivial upper bound 
forU > d 1 n an a most nothing is known about r,,!(n) for 1 <k, k > 3. 

Another very difficult problem is to estimate A&), the number of integers 
m Sx for which 

rn=Cxf 
i=l 

is solvable. A classical result of Landau states that 

A,,,(x)=(C+o(l)) x/(logx)“2. 

Mahler and ErdGs [4] proved that, for every k > 2, Ak, 2 (x) > c$x”~ (ak > 0), and 
Hooley proved .&, 2 (x) =(ck + o(l)) x”~. It seems certain that, for every 1< k, 

&r>Ct,&‘k and &k(x)>x’-” 

for every E > 0, if x > x0 (E). Unfortunately we have no contribution towards settling 
these classical problems; for important partial results see the papers of Davenport 
PI* 

P. Erd& [S] proved the following result. 
Let rr<... <rk<n, k>n’-“‘%‘“W’, c,<*log2. Then for n>n,(c,), there is 

an m so that the number of solutions of m =rf - $ is greater than 

exp(c2 logn/log logn). 

He also proved that for infinitely many n the number of solutions of n =p2 + q2, 
p, q primes, is greater than exp(c, logn/log logn). P. Erdiis states without giving 
the proof that for every k there is an nk so that the number of solutions of 
nk =p3 + q3 + r3 is greater than k. The analogous result seems to be unknown for 
more than three summands. 
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In the present note we prove the following: 

THEOREM. Let t be a positive integer, cl a positive number, and 1 and n 
positive integers satisfying l>c,n. Let a, <... <al be positive integers smaller than 
n but otherwise arbitrary. If n>no(cl, t) there exists an integer m such that the 
equation 

has more than t solutions. 

Before we prove our theorem we wish to state a few well-known and very 
difficult problems in additive number theory. 

Denote by fk(n) the largest set of integers 1 Sal < 0.. <a1 s n for which all 
the sums 

jl Wi7 Ei=O or 1, il EiSk 

are all distinct. ErdGs and Turban conjectured 

(6) f*(n)=n”‘-m(l). 

This problem seems very deep. Erdiis, Turin and Lindstriim [6] proved 

f2(n)jn”2-tn1/4+1 

and recently Szemeredi proved fi (n) < n ‘I2 + o (n ‘j4) ; the proof is very complicated. 
The results of Singer [9] immediately imply fi (n) 2 (1 + o(1)) n112. P. ErdSs often 
offered 300 dollars for a proof or disproof of the conjecture (6). 

Chowla and Ryser conjectured that 

17) fk(n)=(i +0(l)) n1’k. 

They proved f,(n)Z(l +o(l)) n’ik. P. ErdGs offers 100 dollars for a proof or dis- 
proof of (7). The methods used for f2 (n) seem to break down completely. 

Finally denote by F(n) the largest set of integers 15 al < 9-m c a, < n for which 
all the sums Ci = r Eiai, Ei = C! or 1 are all distinct. P. Erdiis and L. Moser proved 

F(n)S- 
log n + log log n 
log2 -zgY+c’ 

and Conway and Guy showed that for t > 22, F(2’) 2 t + 2. P. Erdiis asked 40 years 
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ago: Is it true that 

(4 F(n)=logn/log2+0(1)? 

Erdiis offers 300 dollars for a proof or disproof of (8). 
We now prove our theorem. The proof is rather complicated and to motivate 

it we first try to explain its plan which follows [3]. 
Let s be sufficiently large but fixed, A will denote the sequence 1 $a, < ... -=z al 

5 n, 1> c1 12. A (u, d, n) denotes the number of integers of the sequence A satisfying 

a,=u (modd). 

Suppose that we have found a square-free integer T,, r > r,(k, s, t, c), all of 
whose prime factors pi, . . ., p, are sufficiently large so thaf for everyj, 1 jjsr, 

(8) A(0, T,/pj; n)> lpjj2T, ; 

and the number of residue classes u (mod T,pT- ‘), u ~0 (mod T,lpj) (the number of 
these residue classes is pjk) which do not satisfy 

(9 A(u, T,pj”-‘; n)>l/sT,pf-l 

is less than p:/8k for j= 1, . . . , Y. Then we can prove our theorem by the method 
of [3]. 

To see this denote by F(T,) the number of solutions of the congruence (in 
distinct a’s) 

(10) ii’ a:-O(modq’) (15;50, 

and let Fj(T,) denote the number of those solutions of (10) for which 

Clearly 

Ui ~0 (mod T,lpj), ai f 0 (mod pj) 3 i=l,2 ,...I k. 

(11) C Fj(T)SF(T,)- 
j=l 

Next we estimate Fj (T,) from below. The first k - 2 summands of (10) we choose 
arbitrarily subject only to 

(14 a, = 0 (mod T,lpj), a, + 0 (modpj). 

The number of choices of a, satisfying (12) is, by (8) greater than 

(13) lpjf2T,- nf T, > lpjf4T, 
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by I> crrz, if the prime factors of T, are greater than, say, 10/c,. From (13) we obtain 
that the number of choices of k-2 distinct a’s satisfying (12) is greater than 

0 

k-2 

(k-Z)!>& 9 . 

We have to choose u~-~ and uk so that besides satisfying (12) they should satisfy 

k-2 

u&l +a:= -i& 4 (mod&. 

A well-known result in elementary number theory states that if p>pa, then the 
number of solutions of the congruence 

xk+yk=.(modpk), x, yfO(modp) 

is greater than pk/2. 
Now observe that the number of solutions of the congruence (15) in residues 

where at least one of them does not satisfy (9) is less thanpf/4. To see this observe 
that there are at most p,k/8k residues not satisfying (9), and once one such residue 
has been chosen there are at most k choices for the other residue in (15). Thus the 
number of solutions of (15) in residues satisfying (9) is greater than pF/4k. Hence by 
(9) the number of solutions in uk- i and uk of (15) is greater than 

(16) ( > ~ ‘!$= 1 l2 

SQp 4 4s2l3-2’ 

From (14) and (16) we have 

(17) 

Thus from (17) and (11) and I> c,n we have, for r > r,(k, s, cl), 

(18) F(T,)>r(17;-‘(100k)-1)ks-2>r112(nk/~~;k). 

Now the integers If= 1 CZ~ are all less than knk. Thus there are at most knkrk 
of them which are multiples of 7;” and hence by (18) for at least one of these integers, 
say m, Tk, the number of solutions of 
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is greater than rli2/k> t for r> t2k2, and this completes the proof of our theorem. 
Now we ‘only’ have to prove the existence of an integer T, satisfying (8) and (9) 

and this will be the chief difficulty of our proof. We need three lemmas. 

LEMMA 1. Let e>O, c>O, and r be a positive integer. Then there is an no= 
n, (E, c, r) so that for every n > no if 1 <a, < . . . <a, <n, I> cn is any sequence of inte- 
gers, then there is a square-free integer t, -C to (E, c, r) so that V(t,) =r (V(m) denotes 
the number of distinct prime factors of m) and for every divisor d oft,, 

(19) (1-s) Z/dtA(O, d; n)<(l +.c) Z/d. 

The proof of the lemma follows fairly easily from Turan’s method and we will 
leave some of the details to the reader. First of all it immediately follows from 
Turan’s method that 

~+A, Cl = Cl (El c) 

where in c l/p the summation is extended over all the primes p which do not 
satisfy 

(l-&/r) 1 

P 
<A(O, p; n)<(l +e”’ I. 

P 

Henceforth we only consider primes p which satisfy (21). Let p1 be the smallest 
such prime. Put t1 =pl ; t, clearly satisfies (19). Suppose we have already con- 
structed an integer t,=pl...p,, p1 < ... < pS so that for every divisor d’ of t, we have 

(22) (1-.5,/r) l/d’<A(O, d’; n)<(l+s,/r) I/d’. 

It again follows by Turan’s method (taking note of (22)) that 

where in c l/p the summation is extended over the primes p for which for some 
divisor d’ of t,, 

(24 (1 -qs+ 1) /r)l/pd’ <A (0, pd’ ; n) < (1+ q,+ l)l$/~d’ 

does not hold. Let pS+ 1 be the smallest prime greater than pS which satisfies (24) 
for every divisor d’ of t,. Put t, + i = t,p, + 1. Clearly t, satisfies (19) and by our con- 
struction t, < to (E, c, r) which proves our lemma. 
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LEMMA 2. Let E > 0, c> 0, mr < *.a <m, be any sequence of integers which are 
pairwise relatively prime. Let L> L,(c, E), N> N,(m,, L, E) and b, < .a. <b, -C N, 
I>cN be any sequence of integers. An mi, 15 isr, is said to be bad if there are 
more than Emi residue classes u (modmi) so that for each of them 

(25) B(u, mi, N) < 1/2Lmi. 

Then there are fewer than L bad mls, 

The lemma would follow easily from the large sieve but we give a very simple 
direct proof. A residue class u (mod mi) is bad if it satisfies (25). If a bj is congruent 
to a bad residue class modrni for any i= 1,. .., r, we throw it away. Assume that 
our lemma is not true and that there are L or more bad m;s. Consider any L of 
them, say mi,, . . . . mi,. We throw away, by (25) at most l/2 b’s; thus by l>cN 
there are at least 1/2 I’s, b, < --- <&, SO that every bj(modmiJ, l,<s,<L is not a 
bad residue class (i.e. B(bj, mi., N) does not satisfy (25)). But since mi, is bad, 
1 ss$ L, there are at least smi, bad residues mod m,., or the b’s are in at most 
(1 - E)~ nt= 1 miS residue classes mod ni= i miS. Thus for L > L,(c, E), 

cN/4<1/2<M<(l +o(l)) (1 -E)~ N<cN/4, 

an evident contradiction, which proves Lemma 2. 
Let now t, be an integer which satisfies (19) and let r be sufficiently large. Let 

d 1 t,. A prime p 1 t,/d is said to be bad with respect to d if the following holds: 
Let b,c*.-<b,tn/d be theintegersa&,r>(l--E)l/d>(l-s)cn/d, byLemma 1. 
Now p is bad (with respect to d) if there are more than spk residues modpk so that 
(25) holds for each of them (mi = $, N = n/d). By Lemma 2 there are fewer than L 
bad primes p 1 tdd. 

LEMMA 3. There is a d 1 t,, V(d)>logr/2 log2 so that no p 1 d/d, is bad with 
respect to dl where dI is any divisor of d. 

If we prove Lemma 3 our proof is finished since we can simply put d = T, and 
(8) and (9) are satisfied. Thus we only have to prove Lemma 3. 

Lemma 3 follows from an argument used by Spencer and ErdGs (their paper 
will be soon published in Matematikai Lapok) but in view of the fact that the paper 
is in Hungarian it seems appropriate to give the simple proof in full detail. The 
argument is of course purely combinatorial. Let IqI= r, ql c cp. By assumption 
there are fewer than L bad elements xscp with respect to ‘pl (x#qi). A subset q1 
of cp is called bad if there is an element x of cpl so that x is bad with respect to 
q1 -x. Clearly there are at most L(, I i) bad subsets (pr c q with Iql ( = u. 
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We want to prove that there is a subset Ac rp, IAl >logr/2 log2 which contains 
no bad subsets, and this will complete the proof of our lemma. 

Clearly there are at most 

I-element subsets of q which contain a bad subset. Now if Y > ro(L), Zs logr/2 log2, 
then 

thus there is an I-element subset A, 1 zlogr/2 log2, which contains no bad subset, 
which proves our lemma and theorem. 

Lemma 1 could have been strengthened in the following way: 
Instead of (19) we could have proved that for every u, 

(19’) (1 -E)&d<A(U, d; I?)<(1 +E) l/d 

uniformly for every residue class U. 
The proof would be essentially the same as that of (19). Several other possi- 

bilities of generalisations we plan to discuss in another paper. 
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