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Denote by r (n) the sum of divisors of n. A well known and probably
hopeless problem in number theory states : Prove that a(n) = 2n has
infinitely many solutions, i .e. there are infinitely many perfect numbers .

More generally, one can try to estimate the number of solutions
of a (n) /n = a, 1 < n < x . A method of Hornfeck and Wirsing [2] gives
that for fixed a the number of solutions of a (n) /n = a, 1 < n < x, is o(x') .

a (n) /n is multiplicative and the logarithm of a multiplicative function
is additive. Henceforth in this paper we will study real valued additive
functions .

We will try to give upper bounds for the number of solutions of

( 1 )

	

f (n) = e, 1 <n<x .

Denote by G (x, c) the number of solutions of (1) . We will make
various restrictions on f (n) in trying to get as sharp estimates as possible .
To get non-trivial results we first of all have to exclude the ease f (n) = 0,
henceforth this will always be assumed . First of all we prove the following
simple

TiaoRrnr 1 . ror any f (n) we have uniformly in c

G(x, e) < ( 1-Ef)x .

To prove Theorem 1 observe that since f (n) is not identically 0
there is an integer iii. for wliieh f (m) ~ 0 . In fact the smallest such m is
always a power of a prime, m = poo .

Let t be any integer with p,, -r t . Clearly f (t) 0 f (tpoo) and hence t and
tpoo can not botli satisfy (1), or

G (x, c) -~ x
-C po ° J ± C pó -~1 < ( 1- el ) x

which completes the proof of Theorem 1 .



2

	

P . Erdős, I. Ruzsa, jr ., and A . Sárközi

It is easy to see that Theorem I is best possible . Let f(n) = 0 if p T n,

f(n) = 1 if p ;n . Then G(x, 0) = x- x
-
p

To get less trivial results put

G(x) = maxG(x, c) and Go (x) = maxG(x, c) .
C

	

o 0

We are going to prove the following five theorems .
TIiEoREIT 2. Let f (n) be an arbitrary real valued additive function .

Then

lim Go (x)

exists and the limit is < ? .

Clearly Theorem 2 is best possible, e.g .

0

	

if n is odd,
.f (n) _ 1

	

if n is even .

Timor.EDT 3. Let f (n) be totally additive (i.e . f(ab) = f (a) +f (b) for
every a and b). Then

THEOREM 4. For every
which

lim
G,,(x)

	

1
< - .

X=00 x

	

2

s > 0 there is a totally additive function for

G, (x)

	

1
lim --->--e .
X=00 x

	

e

We can prove that the limit is always < Ile but the proof is very
complicated .

Tzm,, onEtii 5 .

log2 < lim infmax
G, (x)

X-~

	

f

	

x

Theorem 5 does not contradict Theorem 2, since in Theorem 2 the
additive function was fixed and x tended to infinity and here both x
and f (n) can vary .

Ti1E,OREDT 6 . There is an absolute constant C > 0 so that

lim sup max Go (x)
< I - C .

X=o

	

f

	

x
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Now we prove Theorem 2 . Assume first that

But then G,(x) = o(x) follows from a well known theorem of Erdös [1] .
Assume next

	

1/p < oo. Let c o = 0, cl , . . . be the range of f(n)

and denote by gi the density of the integers with f (n) = c2 . A simple
sieve process shows that gi exist and g; > 0,

		

g i = 1 . All these results
i

are both simple and well known. Thus to prove Theorem 2 it suffices
to show g i < 2. Let 2 = p 1 < p2 < . . . be the sequence of consecutive
primes. Put f; (pi) = f (pi) for 1 < i < j and f; (pá) = 0 for i > j . Denote
by g;' ) the density of the integers satisfying fj (n) = ci . Clearly

( 2 )

	

gz = lim gSj ) .

Thus to prove our Theorem it suffices to show

(3)

	

9~') < z

We prove (3) by induction. (3) is trivial for j = 1 . Assume that it
holds for all j < k and we prove it for k +1 . Consider the equation fk+1 (n)
= cu . It is immediate that the density of the integers n satisfying pk+,-fin,

1
fk+1 (n) = cu equals guk)(1--). (Since if p~~lln, 1 < i < k, fk (n) depends

pk+~
only on the poi and thus the solutions of fk(n) = c are equidistributed
modpk+l • )

Consider next those solutions of f (n) = c„ for which pk--11In . These
integers clearly coincide with the solutions of f7,(n) = c,,-f (pk--1), p''v 11n .
Put

w
Cu _ (pk--1) = Cz

Thus the density of these solutions equals g,, (Pk -P -W--I) . We have
g(zk) < 1- y~k) . T o see this observe that if z n then this is obvious by
g(Uk) gzk) < 1, if z = u then g (k) < 2 is implied by the induction hypothesis .
Thus finally

9úk+ 1)

1
+ gúk) I-	

2

pk+1

	

pk+1

by the induction assumption .

g
(
uk) (1-	 1 	{

	

(1-gzk) ), (- - - 1 )
pk+1

	

w=1

	

w=1 pk+1

	

pk+1

1
2'
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It is easy to see by using similar arguments that equality in Theorem 2
is possible only if f(n) has the following structure : f (2 a ) = 1 for all a,
there may be one exceptional prime p for which f(pa) = 0 or 1 for all a,
and for every other prime q, f (q") = 0 . None of these functions are totally
additive and this immediately implies Theorem 3 .

Proof of Theorem 4 . Let A =A (8) be sufficiently large and let
A < pl -- . . . < pk be any sequence of primes satisfying

1- n <
2=

(5)

and
(6)

fV) _

(e.g . we can take the primes in (A, A')) . The sieve of Eratosthenes gives
that the density of integers n which are divisible by exactly one of the
pi's and which are not divisible by any pi is

k

H (

	

1
p) A

1- 1

2=1

	

2
i-=

	

e

which proves Theorem 4 .
Proof o f Theorem 5 . We will show that for a sufficiently small

but fixed E
1

lim inf-maxG o (x) > log 2+E .
x=~

	

x f

To see this we construct for every x an additive function for which
the number of solutions not exceeding x of f (n) = 1 is greater than
x (E -{- log2 ) . Let 71 > 0 be sufficiently small and put

0 if p < XI-n or p > x,

{I if x#-n<p<x .

The number of solutions of f(n) = 1, n < x clearly equals

\1 x

	

x

	

1

	

1
(4)

	

LJ1 Lp

	

~2 CpgJ =X (Y1 p

	

2pq)
I c(x)

where in f l xl-l < p < x, and in ~2 x1-n < p < q < x, pq < x . We easily
obtain from the well known theorem of Mertens (c, and e, are absolute
constants)

O'-J 2 < CA

(4), (5) and (6) immediately implies our assertion .

1- = loglogx-loglogx~-' > log2+e,n
p
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It would be easy to give an explicit bound for s and even to find
the best value of s which this method gives, but it is not clear if this method

1
gives lim-maxG O (x) .

X=o x
Let p i < p2 < . . . < p, x be any set of primes not exceeding x .

Denote by A x (p g , k) the number of integers m < x which are divisible
by precisely k p's . Put

1
lim --maxA,(p i , k) = c
x=o0 x

where the maximum is taken over k and the set of primes. Clearly

(7)
1

lim - maxG,,(x) > c.
X=o x

Is there equality in (7)? The value of c could perhaps be determined,
it seems likely that one has to take k = 1 .

Let us slightly modify our problem : Let al < a2 < . . . < x be any
sequence of integers . Schinzel and Szekeres [5] proved that if Ax,(a,, 012 7 . . .)

denotes the number of integers not exceeding x divisible by precisely one
a; then for a suitable sequence

x
Ax(a,, a 27 > x (logx)°' for some a>0.

On the other hand Lubell [3] proved that if a l < a2 < . . . is a fixed
sequence of integers then the density of integers which are divisible by
exactly one a does not exceed z .

The results of Schinzel-Szekeres and Lubell show the same contrast
as our Theorems 2 and 5 .

Now finally we prove Theorem 6 (this contrasts with the Schinzel-
Szekeres result where no such bound exists) . In fact we show

1
(g)

	

Go(x) < x (1-	101000) .

It would not be too difficult to prove

G 0(x) < ó x
but we do not do this since it would involve some extra work and at
present we have no hope of obtaining a sharp inequality for G 0 (x) .

Let p' _ m be the smallest integer m = pa with f (m) 0 . As stated
in the introduction we then have

x
Go (x) < x -	

M

thus henceforth we can assume f(n) = 0 for n < 101000 .
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(9)

Next we show that we can assume

Y 1 1

p > 11'
f(p)#o
p<x 11 3

Assume (9) does not hold. Denote by A(x) the number of integers
not exceeding x all whose prime factors are not exceeding x113 . It is easy
to see that

x
(10)

	

A(x) > 10
'

(10) follows either by a simple sieve process and computation, or we can
refer to the results of de Bruijn and Buchstab . If (9) does not hold we
obtain from (10) that the number of integers n < x for which f (n) = 0
is greater than

x

	

x

	

x
a >

10 f(p)#o p

	

q a>101o0o q

	

1000
p<x 11 3

	

a>1

(11) immediately implies (8) . Thus we can assume that (9) holds .
Let now m be the largest integer not exceeding x113 for which

(12)

	

1

	

1

f(p) 0
p < 12

p<m

By (9) such an m exists and we can of course assume

(13)

	

~ 1 > 1
p 13

Now we prove the following
LEMMA 1 . For every m991100 < t < m and every c

(14)

	

G(t, c) < t
(1- 100)

The point of Lemma 1 is that c = 0 is permitted .
First of all we settle the case c 0- 0. Clearly f (n) = 0 unless n

0(modp), f(p) 0 or n - 0(mod ga), qa > 101000, a > 1. Thus the number
of integers n < t for which f(n) = 0 is at least

f(p) o
p<m

p<m
f(p)7, 0

'~1 t
>

t

p u q, 2
q a>10 1 o0 0

a>1

t

by (12) . (1.5) implies G(t, c) < t/2 for e

	

0.



Now we estimate G(t, 0) . f(n) -A 0 if n is divisible by precisely one
prime p < t with f (p) 0 and qa ~ n for qa > 101000, a > 1. The number
of these integers not exceeding t is clearly greater than
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u
~ t

P\L Cp

	

T•<q<t
f(P)r0

	

f(P) #-0
f(q)#0

1

	

1Y -> 13
P<' p

f(P)O0

and by (12)

(18)

	

1

	

1
	 G -

pq 2
AP) 0

	

f(P)#0
f(q)#0

hence from (16), (17) and (18)

n (m) < n2

Lpq

	

a

	

qa J
>10 1000

~i
r

a>1

Now by (13) and the results of l osser-Schoenfeld [4]

M99/100<P
<m

1 1

	

1

2 122

	

288 '

11 > t

	

1 -t

	

1--t

	

1 ~(t)
P<t

	

]; <q-< . pq

	

q
AP)7o
f(q) 0

t

	

t

	

t

	

3t

	

t
> 20 288 10,00 - 2logt > 100 ,

which completes the proof of Lemma 1 .
Now we prove our Theorem. Let a < x be an integer for whichf(n) = c,

c 0 0. We are going to estimate the number of these integers as follows
Put n= UOv (m ) , (u (,n ) , v (m ) ) = 1, all prime factors of u,,, are < m and all
prime factors of vm are > m . We shall show that there are "many" integers
n < x for which f (n) zA c and this will give an upper bound for the number
of the integers n < x for which f (n) = c. First we prove the following

LEMAin 2. The number A (m, x) of integers n < x for which

qa>lo l000
a>1

and

	

m
< v (r;,' ) < m 99í100

is greater than x/10 6 .
Lemma 2 will follow easily from Brun's method . Let us denote by

A, (m, x) the number of integers n < x for which

In 99/100 = nt29v/300 < it (n) < In?
298/300

M



It is well known and easy to see from Brun's or Selberg's sieve that

Now clearly
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and by N(t, x) (t < m < x 1/3 ) the number of integers not exceeding x of
the form

1 x

	

i»- x
N(t, x) > 10 t

	

1 p

	

100t1og m
p-~m

N(t, x)
,,2971300 < t<m298f300

X

	

1

	

x
a

	

5> 10010bm 'r 297j300<t<m298/300
t

	

10 ,1

To complete our proof we show

x
JAI

(m, x) -A (m, x) I < 106 .

The condition v(' ) < x/m 99/ loo is vacuous (assuming (19)) since otherwise
u (m ) v (m ) > x. If v („i) < x/m then

A1 (m, x) _

,u(n)v(n) < m
m29a/3oo

	

m 11 150 < ( 10 1000)1/150 < 106 ,

which proves Lemma 2 .
Consider now all the A(m, x) integers n < x of the form

(20) tv(n)(,n),1 1 p) = 1, t < m, x	 - < v (m) <x .m99/1oo

	

m

(22)

(20) and (22) implies

p<m

tv,

These numbers are clearly all distinct and by Lemma 2 their number
is greater than x/10 6 . Suppose now that

(21)

	

f(tv(m ) ) = c .

(21) of course implies

f(t) _ c -f(v (m )),

(V,. 1 1 p) = 1 .
p<_m

m99/100 <	x < m .V (n)
M

X1 < t < (;i .
vm



Thus by Lemma 1 the number of the solutions of (22) is less than

vm) (1 100) ,

hence for at least A(m, x) /100 integers n < x f(n) e or by Lemma 2

A(m, x)

	

x
(x-Ga (x)) >	100

	

10$ '

which proves Theorem 6 .
The methods used in this paper carry over without any change for

complex valued additive functions (since the real part of a complex valued
additive function is a real valued one) and for some of these results for
general multiplicative functions .

In a subsequent paper we will investigate the effect on G (x) of the
condition f (p) 0 and f (p) -A f (q) (p, q primes) and we also plan to
investigate general multiplicative functions .
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