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Denote by o(n) the sum of divisors of n. A well known and probably
hopeless problem in number theory states: Prove that o(n) = 2n has
infinitely many solutions, i.e. there are infinitely many perfect numbers.

More generally, one can try to estimate the number of solutions

of o(n)/n = a, 1 <n <2 A method of Hornfeck and Wirsing [2] gives
that for fixed @ the number of solutions of a(n)/n = a, 1 <n <@, is o(a°).

a(n)/n is multiplicative and the logarithm of a multiplicative function
is additive. Henceforth in this paper we will study real valued additive
functions.

We will try to give upper bounds for the number of solutions of
(1) fn)=¢, 1l<n<una.

Denote by (7 (x, ¢) the number of solutions of (1). We will make
rarious restrictions on f(n) in trying to get as sharp estimates as possible.
To get non-trivial results we first of all have to exclude the case f(n) = 0,
henceforth this will always be assumed. First of all we prove the following
simple

TuroreM 1. For any f(n) we have uniformly in ¢

Gz, e) < (1—¢g)w.

To prove Theorem 1 observe that since f(n) is not identically 0
there is an integer m for which f(m) == 0. In fact the smallest such m is
always a power of a prime, m = pgo.

Let t be any integer with p,1 1. Clearly f(t) + f(tp0) and hence ¢t and
tpy? can not both satisfy (1), or

x ar
G (z,¢)<w -_I:p;;ﬂ ] —+ Iip—';"'_l_:l % (1 = Ef)m

which completes the proof of Theorem 1.
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Tt is easy to see that Theorem 1 is best possible. Let f(n) = 0 if p 1 n,

f(n) =1 it pin. Then G(z,0) = w—[%]
To get less trivial results put

G(x) = max@(z,e¢) and Gy(xr) = maxG(z,c).
¢ o0

We are going to prove the following five theorems.

THEOREM 2. Let f(n) be an arbitrary real valued additive function.
Then

lim Go()

T=00 &L

exists and the limit is < 1.
Clearly Theorem 2 is best possible, e.g.

0 if »n is odd,

n) =
i 1 if » is even.
TaroreM 3. Let f(n) be totally additive (i.e. f(ab) = f(a)-<+f(b) for
every a and b). Then
Llim ED(QE)— < i
r=cc & 2
TuroreM 4. For every &> 0 there is a totally additive function for
which
Gy (2 1
lim D—(I‘)— S ——g,
xp=oo €
We can prove that the limit is always < 1/e but the proof is very
complicated.
THEOREM 5.

Golx

log2 < lim infmax
T=o0 i €O
Theorem 5 does not contradict Theorem 2, since in Theorem 2 the
additive function was fixed and # tended to infinity and here both
and f(n) can vary.
TrneoreM 6. There is an absolute constant O > 0 so that

Go(x
lim sup max of ) <1-—0.

T=0c0 F: &
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Now we prove Theorem 2. Assume first that

Ip)#0 p

But then Gy(x) = o(x) follows from a well known theorem of Erdos [1].

Assume next > 1/p < eo. Let ¢, = 0, ¢, ... be the range of f(n)
fle)#0
and denote by g; the density of the integers with f(n) = ¢;. A simple

sieve process shows that g; exist and g; > 0, N g; = 1. All these results
are both simple and well known. Thus to prove Theorem 2 it suffices
to show ¢; < 4. Let 2 = p, <p,<... be the sequence of consecutive
primes. Put f;(p{) = f(pi) for 1<i<j and f;(p{) = 0 for i > j. Denote
by g the density of the integers satisfying fj(n) = ¢;. Clearly

(2) g: = lim g

j=o00

Thus to prove our Theorem it suffices to show
(3) 9" <}.

We prove (3) by induction. (3) is trivial for j = 1. Assume that it
holds for all j < k and we prove it for k-+1. Consider the equation f;,(n)
= ¢,. It is immediate that the density of the integers » satisfying p, . 1 »,

1
fir1(n) = e, equals g“‘(l — = ~-) (Since if pfn, 1 < i< k, f.(n) depends
Preia

only on the pji and thus the solutions of f.(n) = ¢ are equidistributed
modpy,;.)

Consider next those solutions of f(n) = ¢, for which p;. ,|n. These
integers clearly coincide with the solutions of f,(n) = ¢, —f(py..), Pialn.
Put

Cﬂ_.f(p;:)—'-l) = Cz.

Thus the density of these solutions equals ¢ (pi ! —priy"). We have

g¥ <1 —¢™ To see this observe that if 2 + w then thls lE‘- obvious by

g L g™ < 1, if 2 — u then ¢'® < 1 is implied by the induction hypothesis.
Thus finally

1 1 ey 1 1
gt < g (1— )4— D (1- L’")Z( : 1)
Pria = P ?’A £l

1 2 1
. t}“‘} (1 i ) = i
Pria Prea =

by the induction assumption.
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It is easy to see by using similar arguments that equality in Theorem 2
is possible only if f(n) has the following structure: f(2%) = 1 for all q,
there may be one exceptional prime p for which f(p”) = 0 or 1 for all q,
and for every other prime ¢, f(¢") = 0. None of these functions are totally
additive and this immediately implies Theorem 3.

Proof of Theorem 4. Let 4 = A(e) be sufficiently large and let
A< p,< ... <p;. be any sequence of primes satisfying

k
1
1—9< §—<1—|—7}
i=1 P

(e.g. we can take the primes in (4, A°)). The sieve of Eratosthenes gives
that the density of integers n which are divisible by exactly one of the
p’s and which are not divisible by any p; is

[l

which proves Theorem 4.
Proof of Theorem 5. We will show that for a sufficiently small
but fixed e

1
lim inf — max Gy (x) > log2 +e.
T=00 @€ ¢
To see this we construet for every x an additive funection for which
the number of solutions not exceeding x of f(n) = 1 is greater than
x(e+log2). Let = 0 be sufficiently small and put
0 if p<at? or P>z,
f@)zl

1 i s <p<a.

The number of solutions of f(n) =1, n< & clearly equals

o SEFSRIAS S

e 3 =N _- 7 e : — , y 41
whm} in QM <p<wandin ) "< p<qg<w pg<s. We easily
obtain from the well known theorem of Mertens (¢, and ¢, are absolute
constants)

L
(5) \1 = == 10g10g3’—10g10gﬁih” > log2+¢yn
pram—p | p
and
(6) 3 <.

(4), (b) and (6) immediately implies our assertion.
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It would be easy to give an explicit bound for ¢ and even to find
the best value of e whieh this method gives, but it is not elear if this method

1
gives lim —maxG,(x).
g=oo &

Let p, < p,< ... < p.<a be any set of primes not exceeding a.
Denote by A,(p;, k) the number of integers m < # which are divisible
by precisely k p’s. Put

1
lim —max 4, (p;, k) =¢

=00

where the maximum is taken over &k and the set of primes. Clearly

(7) lim ;‘;maxGo(:c) 3

Is there equality in (7)? The value of ¢ could perhaps be determined,
it seems likely that one has to take k = 1.

Let us slightly modify our problem: Let a, < a, < ... <2 be any
sequence of integers. Schinzel and Szekeres [5] proved that if 4 (a,, ay, ...)
denotes the number of integers not exceeding # divisible by precisely one
a; then for a suitable sequence

Ag(ay, @,y ...)> for some a > 0.

X
~ (loga)”’

On the other hand Lubell [3] proved that if ¢, < a, < ... is a fixed
sequence of integers then the density of integers which are divisible by
exactly one a does not exceed }.

The results of Schinzel-Szekeres and Lubell show the same contrast
as our Theorems 2 and 5.

Now finally we prove Theorem 6 (this contrasts with the Schinzel—
Szekeres result where no such bound exists). In fact we show

(8) Gylz) < (1 - 101"““)'

It would not be too difficult to prove
Go(@) <
but we do not do this since it would involve some extra work and at
present we have no hope of obtaining a sharp inequality for G(x).

Let p” = m be the smallest integer m = p* with f(m) = 0. As stated
in the introduction we then have

Go(x) < x— [ :B-]
m

thus henceforth we can assume f(n) = 0 for n < 10100,
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Next we show that we can assume

(9) e
I(p)#0 P L
peel3

Assume (9) does not hold. Denote by A(x) the number of integers

not exceeding 2 all whose prime factors are not exceeding a'*. It is easy

to see that

T
10 Az

(10) (w) = T
(10) follows either by a simple sieve process and computation, or we can
refer to the results of de Bruijn and Buchstab. If (9) does not hold we
obtain from (10) that the number of integers n << & for which f(n) = 0
is greater than

(11) x _;;i‘: '\_"I x - x
10 P L ¢ 7 1000

f(p)+#0 ¢%=101000

p<zlf3 a=1

(11) immediately implies (8). Thus we can assume that (9) holds.
Let now m be the largest integer not exceeding 2'* for which

(12) 11
T

f(p)#0
p=m

By (9) such an m exists and we can of course assume

1
(13) Y’ >

HF‘I?’E“
p=m

3

Now we prove the following
LEMMA 1. For every m”™ <t < m and every ¢

100

The point of Lemma 1 is that ¢ = 0 is permitted.

First of all we settle the case ¢ # 0. Clearly f(n) = 0 unless n =
0(modp), f(p) # 0 or n = 0(modg"), ¢ > 10°%°, ¢ > 1. Thus the number
of integers n <t for which f(n) = 0 is at least

_ t i
-3t 3 ok
p=m 49101000

f(p)#0 a1

by (12). (15) implies G (t, ¢) < /2 for ¢ +# 0.

(14) G(t,0) < t(l ~i)
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Now we estimate G(t, 0). f(n) + 0 if n is divisible by precisely one
prime p <t with f(p) # 0 and ¢“4n for ¢° > 10 g > 1. The number
of these integers not exceeding f is clearly greater than

o B Sl 3 E-s

p=t r=q=t #7-.191000
H(p)#0 f(p)+0 ax1
f(a)=0

Now by (13) and the results of Rosser-Schoenfeld [4]

17 2 1 - 1 SW 1 - 1
Y n=1 P 13 : 99;1‘»}:—.‘] 4 20’
f(py=0 G
and by (12)
(18) 1<1(Z 1)'“'/1 1 1
ey o P [ 2 — ogn !

e, Pq 2 = P 2 12 288
Hp)#0 I(p)#0
H@)#0

hence from (16), (17) and (18)

21>tZ—— Z —~s 2 %——n(t)

p=t L=yl 2%=101000
fim)#0
oo )

t t t 3t t

> —— - >
20 288 10'  2logt = 100’

which completes the proof of Lemma 1.

Now we prove our Theorem. Let a << # be an integer for which f(n) = e,
¢ # 0. We are going to estimate the number of these integers as follows:
Put 2= ulo{®, (u(, ™) = 1, all prime factors of u,, are < m and all
prime factors of v, are > m. We shall show that there are “many” integers
n < z for which f(n) s ¢ and this will give an upper bound for the number
of the integers » <« for which f(n) = ¢. First we prove the following

LEMMA 2. The number A (m, x) of integers n < x for which

a

&
w™m < : (=)
U’ < m  and —- <, < oo

m
is greater than x[10°.
Lemma 2 will follow easily from Brun’s method. Let us denote by
A,(m, x) the number of integers n < z for which

(19) ?nggll’]l.lll Cu ?“J:!‘?'I,:'SDI} <= “‘-E:’) < ﬂl’.‘*)ﬂ".il}l
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and by N(t, ) (< m < «'”) the number of integers not exceeding = of

the form
tv, (1:, ”p) =1

p=m

It is well known and easy to see from Brun’s or Selberg’s sieve that

¥ty > 1 =z I [(1 1 - &
@ e —— e .
4 R P 100tlogm

Now clearly

Ay(m,z) = 2 N(t, »)
m297[300  § -, 298/300
x 1 @
== ===,
100logm Z t 10°

m297[800 _ ¢, 298/300

To complete our proof we show

[4d;(m,x)—A(m, x)| < Toe

The condition v\ < z/m"™ is vacuous (assuming (19)) since otherwise

wPop™ > p. If o™ < x/m then

208/ % - o
208300 _ _ jis0 < 10001/150 = ke
w0 = (1019 10

ax
(1) 4 78) g

Uy V! S — M
e m

which proves Lemma 2.
Consider now all the A (m, «) integers n < x of the form

® @
(20) toss (Ug’:)s ”P) =1, t<m, —mmw< o< i
p=m

These numbers are clearly all distinet and by Lemma 2 their number
is greater than #/10° Suppose now that

(21) fi™) =e.

(21) of course implies

(22) f@) =e=f(v)), 1<t<-—75
(20) and (22) implies

mPNo0
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Thus by Lemma 1 the number of the solutions of (22) is less than

T 1
W\t 100 )

hence for at least A(m,x)/100 integers n <z f(n) # ¢ or by Lemma 2

A(m, x) @
100 16%7

(2 —Gyo(2)) >

which proves Theorem 6.

The methods used in this paper carry over without any change for
complex valued additive functions (since the real part of a complex valued
additive function is a real valued one) and for some of these results for
general multiplicative functions.

In a subsequent paper we will investigate the effect on @ (2) of the
condition f(p) +# 0 and f(p) # f(q) (p,q primes) and we also plan to
investigate general multiplicative functions.
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