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The capacity of a graph 4 is the number of non-isomorphic (non-empty)
subgraphs of q, and is denoted by v(n, q) ; here n indicates the number of
vertices of qá (or the order of 4, in notation n = I ~ l) . (Throughout this paper,
subgraph will always mean induced subgraph .)

Put

Obviously

Goldberg conjectured that
lira

-)
= 0 .

n-- 2"

In this paper we are going to disprove this conjecture, moreover, we
establish the following

v(n) = max v(n, q) .

n < v(n) -- 2" - 1 .

THEOREM 1 .

bin v(u) = 1 .
n-- 2n

Theorem 1 states that for large n there is a graph of whose subgraphs
almost all are different (non-isomorphic) .

Actually, we will show that almost all graphs have this property .
We say that almost all graphs have a given property, if the ratio of the

number of graphs with n vertices not having this property to the total number
of graphs with n vertices tends to 0 as n - - . If this property does not depend
on the labeling of the vertices of the graph (if there is any), then the above
statement does not depend on the fact whether we consider the graphs labelled
(an(I divide by 2 (2 )) or not-labelled (and divide by the number A„ of non

1 This work was partially carried out while the second author spent an acade-
mie year at NleGill University, Montreal .
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isomorphic graphs with )i vertices) . This can be seen easily using the well-
known asymptotic relation

\Ve are going to prove the following sharpening; of Theorem 1 .

THEMtEli

	

For all yr(rphs

(1)

	

v(n, q)

	

2"

	

2["] 1

mid gire)r

	

(I Ire haze for almost "11 graphs

/11g, I7
(2)

	

r(n (~) + 2"

	

2 2

Ifence

v(n) -2"

	

2
~'+�(J))n

_Actually, we will prove a bit sharper estimation :

In+O(1-nIOgn)
r(n) = 2 11

	

2

R weN-er . r(n, ) can be very small, since for the complete graph 'dn
vOr, v . Theorem 2 is in accordance with Cite fact that almost all graphs
'Ire not symmetric .

DEFINITION.The consistency set of a subset U of the vertices of a graph
is the set V of vertices 'r ~ U, for which r is connected by either all vertices

in U or none of them .

l EM-ATA . I rl . a !trrrph of order n there rchr (qf/ exist hco reel fires tiuch that the.

r •ousisleitcy •s ct rff this pair of rrrtices contains at least
[21

	

1 rertices .

].enema I obviously implies part (1) of Theorem since putting one of

these vertices 'cnd an a bitrarv subset of their consistency set, and the other
verte-N and the salve subset, the two subgraphs defined this way are iso-

morphic . Theorem 4 will state that in almost all graphs the above pairs of
subgraphs are practically all pairs of isomorphic subgraphs .

Timor of the lemma . lhrnote the valencies of the vertices by 1,1,

	

12

n
Thus the >uul of the uumbels of vertices of consistency sets of all the

pairs of' vertices is olm iously equal to

n
o.

r

-,
2(z)

n1

+ I'n

	

1

	

(n- 1)(n - , )
2

	

I,

	

~>

	

' l

	

4
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therefore at least one of these numbers is greater than or equal to -3
2

proving the lemma .
The statement that in a (labelled) random graph of order n some event

(property) has probability p will mean that the ratio of the number of graphs

of order n having this property to the number 2 (2) is p . This can also be expressed
(using the language of probability theory) by saying that this event has
probability p if the labelled graphs of order is are obtained by drawing the

edges at random, independently of each other, with probability
1

.

Now we foniiulate an auxiliary theorem which gives an interesting
explicit formula for the probability that two subgraphs of a random graph
are isomorphic under a given mapping .

Let us have two (labelled)

	

not necessarily different -- subgraphs
9i , '., of a (labelled) random graphs, and a one-to-one mapping o' from the
vertices ii i , x6 21 . . . , 26 77, of q1 to those of q 2 , say "I, "I	r,,, (i .e . vi

	

q.(u i )) .

Put

__ {?" I ,"v 2 , . . .,'vm},

.f - 1? v, ii- =unv, B_ rr-U
(_l, B or :11 can be empty) . Let us call a sequence of different

ir i ,, i j a path of length d if

16,

	

q

	

.

	

, iti, _ 9(ui , -, ), v

	

(,uia),

	

6fi, E A . r . E B

(obyiou~ly ar

	

. . , ri,-~ E .17) .

A sequence of dili'erent vertices

	

i is called a ev(,le of length

7ri . .

	

,

i( E 117) .

TI)lis the mapping q can he "split" into disjoint paths and cycles of
lengths (1,, (12 , . . . , (Is and c,, c2 , .

	

r, respectively .
s

Pid L1' di -- d,

	

cj = c . The number 7) = i!i

	

r -ki ill be called the
i=1

	

i-i

parameter of the mapping . E .g . p = 0 means the identity map, iii the case
p = 1 at most tyro elements are moving (we have a path of length one, or a
cycle of length 2), in the case p - 2 we either have a cycle of ienLth 3, or aa

c if
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(3)

(4)
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cycle of length 2 and a path of length 1, or a path of length 2, or two paths
of length 1, and any other vertex is mapped into itself. The number p describes
the number of moving vertices and the way they move, that is why we call
it the parameter .

THEOREM 3 . The probability that the subgraphs 41 and q2 i)a a random-
yraph are isomorphic under the map (f is equal to 2 -a , where

ire (n?

	

1)

	

r̀ c ;

	

1
a =

	

- + G

	

S (rr , cj ) .
2

	

i=1 2

	

2 i,.i=l

Here (a, b) stands for the greatest common divisor of a and b, and
{x} = x - [x] for the fraction part of x .

Since (a, b) ! a, Theorem 3 leads to the following estimation .

COROLLARY . The above probability is at most

m(m-r-7)

	

m(p-1)

The proofs of Theorems 2 and 4 will be based on this inequality .
If two subgraphs qX1 and q2 are isomorphic, there might exist many iso-

metries from q1 to 42, the parameter of the one having the greatest parameter
is called the rank of isometry of the pair q1, q2 .

Let us denote the number of pairs of isometric subgraphs of a graph q
with n vertices by N(n, 4) and that of isometric subgraphs with rank of iso-
metry p by N p(n, q) .

Thus
N(n, q) _

	

Np(n, q)

and obviously

(5)

	

v(n, q) > 2" -- 1 -- N(n, q) .

We will see that for almost all graphs q
Z-4yn loge

	

n+4yn log n(6)

	

2

	

' N I (n, )

	

2 2

or more generally for fit p

" -4ynlogn

	

-- 41nlogn(7)

	

22Y

	

'NP(n, q) G 2 2u

REMARK . The upper part of (7) says that we have for almost all graphs q:
If there is a pair of subsets and a map between them with parameter at least p,
then the number of vertices not moving under the mapping is at most
n,
n- +4Vnlogn .
2

(7) will lead to the following theorem :
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THEORE.vt 4 . For fixed P uve bare the expansion for almost all yra.phs

P
N(n, ~) = Z NP(??, q) -{- o(NP(n, ~))

P=I

In particular, N(n, q) _ (1 -}- o(1))Ni(n, q) .

(5) and Theorem 4 imply Theorem 2 .

For given two vertices the number C of vertices in the consistency set
1

of this pair has a binomial distribution of parameters n- -- 2, -
9

For this we use (4) .

- 2

	

�-2-i

P(C _-i)-
nf

	

1~ l li f 1

	

i=(),1, . . .,?? . 2
i

	

2

	

2

proving (6) . More generally, that of a set of k vertices follows a binomial

distribution of parameters n

	

k, -~ and applying it to fixed cycles of length
21-1

at least 2, and paths, allowing to change only the not moving vertices, they
can be chosen only as the subsets of the intersection of the consistency sets
of these cycles and paths, whose number of elements has binomial distribution
of parameters

r

	

s

	

1

n --

	

C, _

	

(di { 1), -~
j=1

	

i=1

	

•' (C;-1)+ 2' di
9'

	

s-,

or it -- m + s, Ip . These cycles and paths can be chosen in at most (4n) 2 p ways .
2

The probability that at least one of these (4n) 2 p binomial distributed

numbers differs from
nP

by more than 4
e-SP log" =

0(1) .

	

2

Thus for given p in almost all graphs

2P
-4jnlogn

`NP(n q)<(4n)2 P . 2 2P }42

	

1{/V21
VW1ogn

,

proving (7) .

For proving Theorem 4 we have to show that for fixed P in almost
all graphs

2 NP(n, ) -= o(NP(n, ~))
P= P+i

2P 11 n log n is less than (4n) 2P
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Choose Po j P in such a way that

for sonic e > 0 . Thus, the number of pairs of subgraphs with

vertices is less than
('I

	

\
n 2 2p

e' n
- 0(Np(n,

For a given pair of subgraphs with

n2>
l

1
+ s~n

2P0
vertices and a given map q, between them we have either

a)

or
b)

where r'-Z1, i .e . r - r' is the number of non-moving
Ci>2

r -}- r' -- )72 .

In case a) we have

92

7-- EI n

r r' < 1 n
2 P

r r' ~
1

n,
2P

1

( i -E)"
<22P

972 <
1

f2P
E 92

vertices . Clearly

The number of maps q is n ! < 0, , thus - by (4) - - the probability
of having such a pair of subgraphs with such a map, is at most

2 2"n! 2 2 ' 2p

	

= 0(1) .

n

2P
thus

n

2P-
m-hence

9n
n

2P,
P>- 2

Therefore
7n(p --1) > a

n
2

.
2

	

=2 . 2P



In case b) we have
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r ,
n

2P^

i .e. we have at least
U

vertices which are not moving under the mapping .

According to the Remark, this implies in almost all graphs that the parameter
is at most P, thus, in almost all graphs the number of such pairs is at most

P~

NP(n, ~) = o(NP(n, ~))

P=P -1

Finally, we prove Theorem 3 .

We have UU V I = m + s (s was the number of paths), therefore

there are
/m

2 s ) edges between the points of 'U U V. Let us call this graph X

(Edges different from these ones are of no influence to the fact whether 41
and q2 are isomorphic or not) . An edge (a, b) is said to be equivalent to an
edge (c, (1 ) if for some integer (possibly negative or zero)

a = q k (c) , b = q k (d)
0 1 ,

a = (V" ( d), b = T, k (e) ,

i .e . if the repeated mapping (1,k takes the edge (a, b) to (c, d) . This is obviously
an equivalence relation among the edges of X. Denote the number of equiva-
lence classes by / and put

(m-;-s~

2

Since we can decide about one edge in each class arbitrarily (whether this edge
should be drawn or not), and this determines all the edges of X (since we
want 41 and q2 to be isomorphic), the probability that q1 and q2 are isomorphic
equals 2- " . Now we are going to determine the value of x and verify that it is
the value given by (3) .

This will be done by constructing a system S of edges of X, which con-
tains exactly one edge from each class .

We divide the edges of X into five groups : the edges within a path,
between paths, between a path and a cycle, within a cycle and between cycles .
We will refer to them as edges of category 1, 11, . . . , V, respectively . In a path
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of length d, we choose the edges starting from the first vertex of the path,
i .e . d i edges . Thus we put

(i)

(v)

of the vertices u
or b - Tl' (a) .) Thus

edges of category 2 to system S .

s̀

G di =d
i=1

edges of category T to system S .
Between two paths of lengths d i and dj we choose the edges starting

from the first vertices of the two paths (and going to the vertices of the other
path), thus putting

(11)

	

(di+di+1)-d(s

	

1)-{-( s l
1<i<j<s

	

2

edges of category II to system S .
Between a path of length d i and a cycle of length c j we choose the edges

starting from the first vertex of the path (and going to the vertices of the
cycle), thus we put

s

	

r
1

i=1 j=1

edges of category III to system S .

Within a cycle of length c i we choose one edge connecting two vertices
of distance 1, one edge connecting two vertices of distance 2, etc. up to dis-

ci
tance [-

2
(The distance

which (i. = Tk(b)
and b is the smallest non-negative k for

r

	

Ci

	

1
C

	

r í (,,
2 ]

	

2

	

~-> 2

vertices are chosen to S .
Finally, between two cycles of lengths c i and cj we have c i • cj edges,

and it is easy to see that these edges are split into equivalence classes of size
[ci, cj ] (the least common multiple of c i and cj ), thus we have

Ci cj
	 _=(Ci, Cj)

[ri, Cj]

equivalence classes, and choosing one edge from each class, we put

~~ (ri, Cj)-
_1

(Ci, Cj)
1<_i<jSr

	

2 i,j=1

1
- C
2



Summing the right-hand sides of (i) -(v) and using the relation c -
we see that S contains
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1

	

r

	

r
(C Cj)

	

C-

	

,2

	

2

edges and it is easy to see that ,S contains exactly one edge from
fence class . Thus

77l + S

	

11b'

	

r C .

	

1

	

r
x= ( 9

	

- ~=
I2J

	

2}

	

2 `~1(Ct,Cj)>

proving Theorem 3 .

(Pecei.rel 3bi!j 26, 1971)
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