ON THE CAPACITY OF GRAPHS

by
P. BRDOS and J. KOMLOS (Budapest)!

To the memory of A, RENyI

The capacity of a graph § is the number of non-isomorphic (non-empty )
subgraphs of @, and is denoted by »(n, §): here n indicates the number of
vertices of § (or the order of §, in notation n = I§|). (Throughout this paper,
subgraph will always mean induced subgraph.)

Put

¥(n) = max ¥»(n,§).

|G|=n

Obviously
n<swn)=2"—1.

Goldberg conjectured that

In this paper we are going to disprove this conjecture, moreover, we
establish the following

THEOREM 1.

" iR
lim () ==
new 2

1.

Theorem 1 states that for large n there is a graph of whose subgraphs
almost all are different (non-isomorphie).

Actually, we will show that almost all graphs have this property.

We say that almost all graphs have a given property, if the ratio of the
number of graphs with » vertices not having this property to the total number
of graphs with # vertices tends to 0 as n — ~o. If this property does not depend
on the labeling of the vertices of the graph (if there is any). then the above
statement does not depend on the fact whether we consider the graphs labelled

(and divide by 2@)) or not-labelled (and divide by the number A4, of non

! This work was partially carried out while the second author spent an acade-
mic year at MeGill University, Montreal.
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isomorphic graphs with n vertices). This can be seen easily using the well-
known asvmptotic relation

We are going to prove the following sharpening of Theorem 1.
THEOREM L. For all graphs §

(1) v(n, Lg) < B 2[5] s ,

and given ¢ - ) we have for almost all graphs

1 +E.) n

(2) wn,G) > 2 2s
Henee

1
ym) — v — glatom)n
Actually, we will prove a bit sharper estimation:

1 —
win) =20 2" O{Iniogn).

However. »(n. §) can be very small, since for the complete graph §,
r(n. §,) = n. Theorem 2 is in accordance with tue fact that almost all graphs

are not svmmetric,

DeriNition. The consistency set of a subset U of the vertices of a graph
is the set 1" of vertices » 4 I/, for which » is connected by either all vertices
in {7 or none of them.

LA, £ a graph of order w there alivays exist two vertices such that the

: : ; ; : n :
consisteney sel of this pair of verlices conlains at least e 1 vertices.

Lemma 1 obviously implies part (1) of Theorem 2, since putting one of
these vertices and an arbitrary subset of their consistency set, and the other
vertex and the same subset, the two subgraphs defined this way are iso-
morphic. Theorem 4 will state that in almost all graphs the above pairs of
subgraphs are practically all pairs of isomorphic subgraphs.

Proor of the lemma. Denote the valencies of the vertices by vy, v, oL Ve

H
)

Thus the =um of the numbers of vertices of consistency sets of all the

pairs of vertices is obviously equal to

i [ [ 1 — oy (1 1)(n — 3)
o i i A L
l__l[{z) + | 5 ”7 n 1 )
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; ; ; n
therefore at least one of these numbers is greater than or equal to
2

proving the lemma.
The statement that in a (labelled) random graph of order n some event
(property) has probability p will mean that the ratio of the number of graphs

n
of order » having this property to the number 2(2) i p.This can also be expressed
(using the language of probability theory) by saying that this event has
probability p if the labelled graphs of order n are obtained by drawing the

; ; |
edges at random, independently of each other, with probability =

Now we formulate an auxiliary theorem which gives an interesting
explicit formula for the probability that two subgraphs of a random graph
are isomorphic under a given mapping.

et us have ab not necessarily different subgraphs
Let us have two (labelled 1t necessarily different bgrapl
G §s of a (labelled) random graphs, and a one-to-one mapping ¢ from the
vertices uy, g, . . .. wm 0f G to those of G, say v, vy, . . ., vy (6. v, =@(w))).
Put
Gil = Gel =m,
Bl L0l v 3 Uiy

ViAot v By

A=U—-V, M=UNV, B=V T

(A. B or M can be empty). Let us call a sequence ol different vertices

U Upgso o s i ¥ & path of length o if
e, = ), -ty = i, ) = glus), wi, €A € B
(obviously w, ., ..., u, € M).
A sequence of different vertices w, ., , .. ., i is called a cvele of length
e if
Uy, =Py )yos oy U, =Wy, )i %, == @,
(obviously u;, .. ., u € M).

Thus the mapping ¢ can he “split” into disjoint paths and cveles of
lengths dy,dy, . . ., ds and e, 65, . ., ;. respectively.

5
Put > d; =d, i = ¢. The number p — m — » will be called the

=1
parameter of the mapping. E.g. p = 0 means the identity map. in the case
p — 1 at most two elements are moving (we have a path of length one, or a
evele of length 2). in the case p — 2 we either have a evele of length 3, or a
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cycle of length 2 and a path of length 1, or a path of length 2, or two paths
of length 1, and any other vertex is mapped into itself. The number p describes
the number of moving vertices and the wayv they move, that is why we call
it the parameter.

Tueorem 3. The probability that the subgraphs G, and G, in a random
graph are isomorphic under the map ¢ is equal lto 27%, where

) . mim - 1)+ ~ | 1 N (e c)).
2 =il2 2 i

Here (a,b) stands for the greatest common divisor of @ and b, and
{x} = a — [«] for the fraction part of x.

Since («, b) =~ a, Theorem 3 leads to the following estimation.

(loroLLARY. The above probability is at most

_mm=r-1) _mip-1)
(4) 2~ 7 =g °?

The proofs of Theorems 2 and 4 will be based on this inequality.

If two subgraphs G, and §, are isomorphic, there might exist many iso-
metries from @, to §,, the parameter of the one having the greatest parameter
is called the rank of isometry of the pair §;, §,.

Let us denote the number of pairs of isometric subgraphs of a graph §
with n vertices by N(n,§) and that of isometric subgraphs with rank of iso-
metry p by Ny(n, G).

Thus

N(n,§) = 3 Npyn,§),

p=1
and obviously

(5) vn,§) =2"—1—- Nn,G).

We will see that for almost all graphs ¢

el 2

e n ——
—4fnlogn —~+4)nlogn

(6) 2: < Ni(n,§) < 2°

or more generally for fix p

_ N _\YaTogR _ ., o _ & +4Yniogn
(7) 2¢ < Np(n,§) < 2 .

REMARK. The upper part of (7) says that we have for almost all graphs §:
If there is a pair of subsets and a map between them with parameter at least p,
then the number of vertices not moving under the mapping is at most
n —

A T

55 +4 |nlogmn .

(7) will lead to the following theorem:
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THEOREM 4. For fized P we have the expansion for almost all graphs

[\/r

N(n,G§) = N o(n,§) + o(Np(n,§) ).

p=

In particular, N(n, §) = (1 + o(1))N,(n, §).
(5) and Theorem 4 imply Theorem 2.

For given two vertices the number (' of vertices in the consistency set

of this pair has a binomial distribution of parameters n B =

n—-2-i
1=0,1,....n—2

P(C — i) :[

proving (6). More generally, that of a set of L vertices follows a binomial
. . 1 e— =
distribution of parameters n — £, prr and applying it to fixed cycles of length

at least 2, and paths, allowing to change only the not moving vertices, they
can be chosen only as the subsets of the intersection of the consistency sets
of these cycles and paths, whose number of elements has binomial distribution
of ]}i—].l'al'll{*.tuel'ﬁ

r 5 . l
= C,"{_— 2 (d: 1 IJ —,
j=1 i=1 2C=-1)+ X d;
91’:. r=1

] Ly i)
orn —m+s, . These cycles and paths can be chosen in at most (4n)*? ways.
The probability that at least one of tlwse (4n)*F binomial distributed
- pp mn —_— =
numbers differs from o> by more than 4]* = | nlogn is less than (4n)?P -

" e—ﬂ-ﬂ log n — G(l)

Thus for given p in almost all graphs

i
+4 ];" 2—5'}"n log n

A i
2! < Nyn,§) < (4n)2 - 22
proving (7).
For proving Theorem 4 we have to show that for fixed P in almost
all graphs
> N, n,8) =o(Np(n,§).
p=P+1

For this we use (4).
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Choose P, > P in such a way that

7% LN w

' 2<Q(2f"
R

2P

T

for some ¢ > 0. Thus, the number of pairs of subgraphs with m << [El; -+ 5] n
vertices is less than
=
n 2(2P e)n = o(Np(n,Q)) .

For a given pair of subgraphs with

m = l

—|—£] n

2Pu

vertices and a given map ¢ between them we have either

a) ri—phl —2};)— n
0
or
b) r—r' > R i,
where "= X1, ie. r—»" is the number of non-moving vertices. Clearly
=2

’ -

r -+ < m.

In ease a) we have

" "
¥ s p— —
- 2Pn ’
thus
el n
n=n—7r_=r =r—
! — 2P, ]
whence
"
m - —-
2P.
p:> G)
Therefore
m(p—1) _ ¢ "
AN 1 o SR e it __'::1- —i -n-
2 T 2-2P

The number of maps ¢ is m! = n!, thus — by (4) the probability
of having such a pair of subgraphs with such a map, is at most

-] nt

2l 2P — (1),
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In case b) we have

.
" e =F e §
2P,

; n
i.e. we have at least

vertices which are not moving under the mapping.

According to the Remark, this implies in almost all graphs that the parameter
is at most P, thus, in almost all graphs the number of such pairs is at most

> N, (n,§)=o(Np(n, ).
p=P41

Finally, we prove Theorem 3.

We have |UUV|=m + s (s was the number of paths), therefore

m+ s
there are ( edges between the points of U U V. Let us call this graph %.

(Edges different from these ones are of no influence to the fact whether G,
and @, are isomorphic or not). An edge (u.b) is said to be equivalent to an
edge (¢, d) if for some integer (possibly negative or zero)

d= f_!'k(l”). b= q'k((f)
or

= r;k{d). h = r;:k(c) R

i.e. if the repeated mapping ¢* takes the edge (a, b) to (e, d). This is obviously
an equivalence relation among the edges of 3. Denote the number of equiva-
lence classes by f# and put

m -8

. | P

Since we can decide about one edge in each class arbitrarily (whether this edge
should be drawn or not), and this determines all the edges of ¥ (since we
want §, and G, to be isomorphic), the probability that §, and G, are isomorphic
equals 27, Now we are going to determine the value of z and verify that it is
the value given by (3).

This will be done by constructing a system S of edges of %, which con-
tains exactly one edge from each class.

We divide the edges of I into five groups: the edges within a path,
between paths, between a path and a cycle, within a cycle and between cycles.
We will refer to them as edges of category I, I1, . . . |V, respectively. In a path
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of length d, we choose the edges starting from the first vertex of the path,
i.e. d; edges. Thus we put
-
(i) >d;=d
=1
edges of category T to system S.

Between two paths of lengths d; and d; we choose the edges starting
from the first vertices of the two paths (and going to the vertices of the other
path), thus putting

o = 5
(i) > (di+dy+1) =d(s -1>+|2

1=i<j=s

edges of category II to system S.

Between a path of length d; and a cycle of length ¢; we choose the edges
starting from the first vertex of the path (and going to the vertices of the
evele), thus we put

(iii) Y

edges of category II1 to system S.
Within a cycle of length ¢; we choose one edge connecting two vertices
of distance 1, one edge connecting two vertices of distance 2, ete. up to dis-

c.
tance { ’} ;
2

(The distance of the vertices a and /i is the smallest non-negative £ for
which a = ¢(b) or b = ¢*(a).) Thus

7 r-le; 1 " e,
(iv) ¥ I|l=—e - ¥I=
=le] 2 Sz

vertices are chosen to S.

Finally, between two cycles of lengths ¢; and ¢; we have ¢, - ¢; edges,
and it is easy to see that these edges are split into equivalence classes of size
[/, ;] (the least common multiple of ¢; and ¢;), thus we have

[eie))

equivalence classes, and choosing one edge from each class, we put

_(cf':c':'

. 1l 1
(v) S (e, 6): > (&0 =
1<i<j<r 2 i7=1 2

edges of category v to system S.
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Summing the right-hand sides of (i) — (v) and using the relatione + d = m
we see that S contains

8 1
i :s.-m—!—lol—rg\ ;]—2 ]

hLj=1 i=1

edges and it is easy to see that S contains exactly one edge from each equiva-
lence class. Thus

4§
=

r

2 Ci, ¢ " ]
f=

| m

=

1
!—l 2
proving Theorem 3.
(Received My 26, 1971)
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