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SIMPLE ONE-POINT EXTENSIONS OF TOURNAMENTS
P. ERDOS, A. HAJNAL anp E. C. MILNER

1. Introduction. A tournament F = {T, -) is a relational structure on the
non-empty set T such that for x, y € T exactly one of the three relations

X=20hX=)y—=>x

holds. Here x — y expresses the fact that {x, y} € = and we sometimes write this
in the alternative form y « x. Extending the notation to subsets of T we write
A—> B or B—A if a— b holds for all pairs a,b with ae A and beB.
T’ = (T, =') is a subtournament of 7, and 7 is an extensionof 7', if T' = T
and —' is the restriction of — to T'; we will usually write (T, =) instead of
{T', =»'>. In particular, if |T — T'| = k, we call 7 a k-point extension of 7',

A convex subset of 7 is a set K = T such that either K — {x} or {x} — K for
every xe T — K. Equivalently, K is convex if, and only if, x, ye K, ze T,
x =z — y implies z € K. The convex set K is non-trivial if K # T and |K| > 1.
A tournament 7 is simplet if it has no non-trivial convex subset.

In [1] we showed with Fried that any tournament 4 of order |7| = |T| # 2
has a simple 2-point extension. This result is best possible in the sense that there is
no simple tournament of order 4 and if 7 is an odd chain then it does not have a
simple 1-point extension. We stated in [1] that we did not know how to characterize
those tournaments which do have simple 1-point extensions. Moon [2] settled this
problem for finite tournaments by showing that the only finite exceptions are the
ones we had already noted. We now extend Moon’s result to general tournaments
and prove the following theorem.

THEOREM. If the tournament 7 = {T, —) is not a finite odd chain and |T| # 3,
then it has a simple 1-point extension.

Our proof of this result for the finite case (§3) is different from Moon’s proof.

2. Notation and preliminary lemmas. Let 7 = (T, —) be a tournament. If
xe T we define 7 (x, =) = {yeT:x >y} and T(x,<) = {ye T: x—y}. To
uniformize our notation, whenever we say that 7* = (T* -5 is a l-point
extension of 7 we shall always denote the added point by z, i.e. T* — T = {z}.
The extension F * is then uniquely determined by specifying the set B = 7 *(z, —)
and we denote this 1-point extension of 4 by 7 (B). An element x € T is extremal
ifeither {x} - T — {x}or {x} « T — {x}. C < T isa chain of 7 if — is transitive
on C (i.e. {C, =) is a simple order). We shall write C = {x, ..., x,}. to indicate
that C is the chain in which x; = x; for 1 <i < j < n. We denote by C,(7) the
set {X « T:|X| = 2, X convex in 7} and by G(7) the graph with vertex set T and
edge set C,(7). The valency of a point x € T in the graph G(7) will be denoted by

p(x).
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LemmAa 1. p(x) <2 forall xe T.

Proof. Suppose the lemma is false. Then there are distinct points x, y,, y,,
y3 € T such that {x,y;} e C,(7)(1 <i < 3). By symmetry we can assume that
Y1 = ¥ = y3. Now by the convexity of {x,y,;} and {x,y;} we obtain the con-
tradictory relations x — y, and y, — x.

LemMA 2. A pathin G(F) is a chain in 7.

Proof. Suppose C = {x{,...,x,} is a path of length » in G(7), ie.
{xpX;p 3 € Co(F )] < i < n). Assume that x; — x,. Let 2 < j < n and suppose
that we have already established that {x,,...,x;}., is a chain. Since x; = x; and
{x;, x;4} is convex, we have that x; = x;,,(1 <i <j). Also x; = x;,, since
Xj—y = X;+; and {x;_;, x;} is convex. Thus {x,, ..., x;,} is a chain. It follows by
induction that C is a chain. A similar argument applies if x; « x, orif C is a I-way
or 2-way infinite path of G(7).

LemMA 3. G(Z) is circuit free.

Proof. Suppose {xy,...,x,} is a circuit of length n = 3 in G(Z). Assume that
Xy = X,. Then, by Lemma 2, {x;,...,x,}~ is a chain in . Also, {x5, ..., X,, X{}
is a chain. This gives the contradictory relation x, — x;.

An immediate deduction from Lemmas 1 and 3 is the
COROLLARY. G(7) is the union of disjoint paths.

For brevity we shall write 7 € & if 7 has a simple 1-point extension. The next
lemma is due to Moon [2].

LemmA 4. If F is simple and | 7| = 4, then T € 6.

Proof. Since 27! > 2|T| + 2, there is a set B = T such that B # ¢, B # T,
B # J(x,—=)and B # {x} U J (x, =) forany x € T. Consider the 1-point extension
FT(B) = {T u {z}, »>. Suppose K is a non-trivial convex subset of 7 (B). Since
B is a proper, non-empty subset of T, K # T. Therefore, since  is simple and
K n T is convex in 7, K = {x,z} for some xe€ T. Since T — B — {z} —» B, we
have that T — B — {x} = {x} = B — {x} contrary to the definition of B. This
shows that 7 (B) is simple and that 7 € &.

Our main lemma is the following.

LeMMA 5. Let |7| = 4, and suppose there is an element xe€ T such that
() p(x) < 1, (ii) x is not an extremal element of 7, and (iii) 7y = (T — {x}, =) € 8.
Then 7 € 6.

Proof. By Lemma 4 we can assume that 7 is not simple. By (iii) there is
B = T — {x} such that 7 (B) = {(T — {x}) u {z}, - is simple. If there is a
y € T by (i) there is at most one such that {x, y} € C,(7) and if y ¢ B, then we put
A = B u {x}. Otherwise, put A = B. Then the l-point extension Z (4) of 7 is
simple.

To see this, suppose that K is a non-trivial convex subset of 7 (4). Since 7 ,(B)
is a simple subtournament it follows that either (a) K = (T — {x}) u {z} or (b)
K = {x,z} or (c) K = {x,y} for some y € T — {x}. If (a) holds, then x is extremal
in . If (b) holds, then 7 (x, ») = B,  is isomorphic to 7 ,(B) and therefore



SIMPLE ONE-POINT EXTENSIONS OF TOURNAMENTS 59

simple. If (c) holds, then y is the unique point such that {x, y} € C,(7") and, by the
definition of A4, either y -z — x or y <z «, ie. {x,y} is not convex in J (4).
Thus in each case we obtain a contradiction.

3. Proof of the theorem for finite tournaments. We need two additional lemmas
which are true only for finite tournaments.

Lemma 6. If F is a finite tournament, then G(J) cannot have exactly two
components.

Proof. Suppose that T = C, u C,, where C;, C, are components of the graph
G(7). Then by Lemma 2 and the Corollary after Lemma 3, C,, C, are paths in
G(7) and chains in 7. Suppose that C, = {xy, ..., X}, C; = {J1, ..., Yu}~ and that
x; = ;. Using the fact that {x;, x;,,} and {y;, y;+,} are convex in 7, we immediately
deduce that C; — C,. Thus 7 is a chain and G(") has only one component.

LemMA 7. Suppose that 7 is a finite tournament, || = 4 and that T is not a
chain. Then there is x € T such that (i) p(x) < 1, (ii) x is not an extremal point and
(iii) T — {x} is not a chain.

Proof. Since |7 | = 4, it follows from Lemma 6 and the Corollary after Lemma 3
that there are at least four points x € T which satisfy (i). Since there are at most two
extremal points, there are two points, say x; and x,, which satisfy both the conditions
(i) and (ii). We may assume that T — {x;} = {¥is.ees ¥ps X2, Vps 15 ooy V) and
T — {x3} = {J1s s Vs X1s Vst 15 ++» Vut» are both chains and that 1 < r < s < n.
Since 7 is not a chain we can assume further that r < s and that x; — x,. Itis
obvious that (ii) and (iii) are satisfied with x = y,., and a simple matter to verify
that (i) also holds.

We now conclude the proof for finite tournaments.

If || = 1or 2, then trivially 7 € §. Also g € & if |7| = 4 since every tourna-
ment of order 4 is isomorphic to a subtournament of the simple tournament J* of
order 5 illustrated.

Te;

>

We now assume that .7 is a finite tournament of order |77| = 5 and use induction
on |7|. By hypothesis 7 is not an odd chain. If  is the even chain {x,, ..., x;,},
then it is easy to verify that 7 ({x;,+,:0 < i < n}) is a simple I-point extension.
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Therefore, we may suppose that 7 is not a chain. By Lemma 7, there is xe T
such that p(x) < 1, x is not extremal and 7, = (T — {x}, =) is not a chain. By
the induction hypothesis 7, € & and therefore € & by Lemma 5.

4. Proof of the theorem for infinite tournaments. We first need some results about
chains. Let 7 = (T, —») be a chain. Then  is a simply ordered set in which a
precedes b if and only if @ - b. The order type of J with this ordering will be
denoted by tpZ . As usual, w denotes the least infinite ordinal number and w* is the
reverse order type. A set X < T is cofinal (coinitial) in 7 if whenever t € T then
either t € X or there is x € X such that t - x (x — 1). Fora, b e T we denote by
[a, b) the closed interval {a,b} U {xe T:a »x > borb - x = a}. Let #(J) be
the set of all the non-trivial closed intervals [a,b] = T (i.e. with a # b). Also, for
x € T we define

E(x) = {y e T : [x,y]is finite}.

Clearly, E(x) is a sub-interval of 7~ which is either finite or infinite and having order

type @ or w* or w* + w.
We showed in [1] that, if 7 is a chain, then #(J) has the Bernstein property,
ie. there is a set B = T such that

Bal#@ and 1-B# @ (leF()). )

(This result was also proved by Hausdorff [3] for the case when 7 is a densely ordered

set.)

Of course, if 7 is a finite chain {x,, ..., x,}., then B is one of the two sets {x,, x5, ...}
or {x;, X4, ...}. Note that if B satisfies (1) then so also does the complementary set
T — B. Consequently, there is B = T which satisfies (1) and

B is coinitial in 7. (2)

Unless . is an odd chain we assert further that there is B = T such that (1) and
(2) hold and also
T — Bis cofinal in . 3)

For suppose that B satisfies (1) and (2) but not (3). Then there is a final element
a+ T — {a} and a € B. It is easy to see that (1) and (3) hold with

B, = (E(a) — B) u (B — E(a)) in place of B. Now, if (2) is false for B,, then there
is an initial element b — T — {b} and be T — B,. It follows that b e E(a) n B
and that T = E(a) is an odd chain.

We need the following stronger result.
LEMMA 8. Suppose that & is a chain and that tp7 £ o + w*. Then there are
two distinct sets B = Tsatisfying (1), (2) & (3).

Proof. By the above, there is one set B = T such that (1), (2) and (3) hold.
Let U denote the set of extremal points of 7 (i.e. [U| = 0,10r2). Put4 = (), .y E(x)
and B, = (A n B) u (T — A u B). Itis easy to see that the set B, satisfies (1), (2)
and (3). Also, since tp7 £ o + w*, it follows that A # T and hence that B, # B.

LEMMA 9. Let  be a chain and let B = T satisfy (1), (2) and (3). Then F (B)
is a simple 1-point extension of .
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Proof. Suppose that K is a non-trivial convex subset of Z(B). Then K n T
is a sub-interval of 7. Ifz ¢ K, then |[K n T| > 1 and there is [ € #(Z) such that
I = K. Therefore, by (1), there are @, b € I suchthata € B, b ¢ B. Hence, a «z « b,
and this contradicts the assumption that K is convex. Therefore,ze K. K n T is
coinitial in . Otherwise, there is x € B such that x - K n T and we have the
contradiction that z - x — K — {z}. Similarly, K n T is cofinal in . Since
K n T is aninterval in &, K = T v {z} and this is a contradiction.

LemMma 10. If A is a maximal chain of the tournament 7 = {T, =) and a€ A,
be T — A, then {a, b} is not convex in 7.

Proof. Suppose {a, b} is convex. Then 7 (a,«) n A - {a,b} > T (a,») N A
and so A u {b} is a chain.

LemMa 11. Let 9 = (T,—) be an infinite tournament and suppose that
T = J,<14,, where A, is a maximal infinite chain of the subtournament
{(Uusv<a Ay =) (@< 2). Let B, = A, be a set satisfying the conditions (1), (2)
and (3) for the infinite chain {(A,, =) (v < 1), and let B = | ),<; B,. If X is a non-
trivial convex subset of  (B), then there is an ordinal o such that 0 < « < A and
X ={zpv U¢$v<1Av'

Proof. By Lemma 9, for each v < A, either A, u {z} = X or

(4, v {z}) 0 X| < 1.
Suppose that z ¢ X. Then there are f3, y such that f < y < 4 and
| X N Ayl =X n 4| =1

Then X n (4, U 4,) is convex in {4, U 4,, =), a contradiction against Lemma 10.
Therefore, z € X. Let o be the least ordinal such that X n 4, # . Then 4, < X.
Ifa < B < Aand y € A, then by the maximality of 4, there are x, X" € 4, such that
x -y —> x' and so y e X. This proves that X = {z} U | J,<,<;14,. Also, since
X is a non-trivial, & > 0.

LemMMA 12, Suppose that 7 and A,(u < 1) satisfy the same conditions as in
Lemma 11. Suppose also that tp{Ay, =) £ @ + w*. Then T € 6.

Proof. Let B,(v < A) satisfy conditions (1), (2) and (3) for the chain {(4,, —).
By Lemma 8, there is By’ = A, such that B," # B, and such that B,’ also satisfies
(1), (2) and (3) for {4y, =»>. Put B = |),<;B,, B = By U | Jo<y<1B,. Suppose
that 7 (B) is not simple. Then by Lemma 11, there is o such that 0 < o < A and
X = (Jagy<2 4, U {2} is convex in 7 (B). Similarly, if 7 (B’) is not simple, there is
p such that 0 < f < A and Y = Upg,<; 4, U {z} is convex in J(B). Let
y = max {«, B}. Suppose there is an element y € B, — B,'. Since z = y in J(B),
we have that A, —» y in 7. Similarly, since z <y in F(B'), 4,y in 7. This
contradiction shows that B = B’. By symmetry, we also have that B’ < B, and this
contradicts the fact that B # B'.

We now conclude the proof of our theorem.

Let # = (T, —) be an infinite tournament. If X is a chain of 7, then there is a
maximal infinite chain 4, > X. Hence there is a partition of T,

T=A0UAIU“-UA1, (4)
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where A(> 1) is an ordinal, 4, is finite (possibly empty), 4o > X and 4,(u < 1)
is a maximal infinite chain in the sub-tournament ((J,<,<; 4,, =). We shall write
T'=T —A;and 7' = {T', -).

We shall first prove, by induction on |4;|, thatif 7' e £then T € 6. If4; = &
there is nothing to prove. Suppose 4; # &. By Lemma 10, there is no edge of the
graph G(7) of the form {x, y} with x € A; and y ¢ 4;. Therefore, by the Corollary
after Lemma 3, there is an element x € A, such that p(x) < 1. This x is not extremal
in 7 by the maximality of A,. By the induction hypothesis (T — {x}, =) € § and
hence 7 € & by Lemma 5.

We will now assume that 7 ¢ & and obtain a contradiction. If there is a partition
(4) of T which is such that tp{d,y, =) £ @ + w*, then 7' (and hence ) e & by
Lemma 12, Therefore, we can assume that

tpX, =) €< 0 + 0* (5)

whenever X is a chain in 4. Consider any partition of T of the form (4). Let
B, = A, be a set which satisfies the conditions (1), (2) and (3) for the chain {A4,, =)
(v < A)and let B = | J,<, B,. By our assumption 7 ¢ & and so 7 '(B) is not simple.
Therefore, by Lemma 11, there is « such that 0 < & < 4 and | J,<,<; 4, U {z} is
convex in 7 '(B). Since A4, — B, —» z — B, in J'(B), we have that

Ao = Bo e A= s 2 Bo
in . Since A,, B, are infinite chains and A, precedes By, it follows from (5) that

tp{A,, =) = w. Similarly, A, — B, and A, are infinite chains and 4, — B, precedes
A,, and hence tp{4,, =) = w* by (5). This contradiction completes the proof.
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