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Let -1 < cx < 1, p(z) > 0 an integrable function. P,(x), n = 1, 2, . . . 
is the sequence of orthogonal polynomials with respect to p(z). 

In other words P,(z) is a polynomial of degree n and 

j? P,(z) P,(x) p(z) dz = 0, n # nz 
-1 

It is well known that all the roots of P,:(z) are simple and they all are 
in (-- 1, + 1). Many mathematicians obtained asymptotic formulas for 
P,(z) if various regularity assumptions are made about p(s) and from these 
one can deduce results about the distribution of the roots of P,(x) [2]. 

Let - 1 5 z1 < . . . < x, < 1 be the roots of P,(z) (we omitted the upper 
index n since there is no danger of misunderstanding). Put cos 6i = zi 
and denote by N,(a, 6) the number of 6’s on the arc (a, b), 0 < a < b < x. 
TTJR~N and I proved [l] that if the roots of p(s) form a set of measure 
0, then 

(1) N,(a, b) = n + + o(n). 

In other words the roots of P,(z) are uniformly distributed in this sense. 
As far as I know this is the most general result on the uniform distribution 
of roots. More than 30 years ago 1 had an idea to obtain a result which in 
some sense is more general. Assume that 1 p(z) ( < C and denote by 9 the 
set in 3 for whichr,(x) > 0. Assume further that 9has the followingproperty: 
To every E > 0 there is a S > 0 so that if we omit from 9’an arbitrary set 
of measure <6, the remaining set has transfinite diameter greater than 
1 

-T 
- F. I conjectured that the necessary and sufficient condition that the 

roots of P,(x) should be uniformly distributed in the above sense (i.e. that 
they satisfy (1) for every 0 < a < b < n) is that 9 has property P. 

I have never succeeded in obtaining a satisfactory proof of this con- 
jecture (ULLMAN and I obtained some preliminary results). 

It is easy to see that the conjecture fails to hold if I&C) 1 <C is not 
assumed. 

IO 
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Now we investigate the interval (- -, +-). Let p(x) 2 0 and assume 
that Y@(x) is integrable in (- -, +w) for every n 2 0. Let P,(z) be the 
unique sequence of polynomials satisfving 

henceforth we normalize P,(z) to have the highest coefficient 1. 
Let 1, < . . . < 5, be the roots of P,(x). As far as I know the distribu- 

tion of the x’s have been studied only in case of the classical polynomials 
(e.g. Hermite or Laguerre polynomials). Transform the interval (x1, x,) 
linearly onto (- 1, + 1) so that x1 goes into - 1 and x, into +l. The sequence 
x1 < . . . < x, goes into y1 < . . . < yn. We say that the roots of P,(x) are 
uniformly distributed if the y’s satisfy (1). It is of course well known that 
the roots of the classical polynomials (Hermite, Laguerre) are not uni- 
formly distributed in this sense. The reason for this fact turns out to be 
that the weight function p(x) does not tend to 0 fast enough. We prove the 
following 

THEOREM. Let - 00 < z < OCI, 0 < p(x) < C. Assume that to every E < 0 
there is an xc, so that for ec9ry 1 x 
1 y I > 141 T &)I f&7% 

1 > x0, if y is of the same sigs as x and 

P(Y) < PW. 
Then th.e roots of P,(z) are uniformly distributed in the above sense. 

(2) implies that for every k as 1 x j -+ 00 

(3) p(x) = o(e-IXIL). 

It seems likely that if (3) holds for every k then the roots of P(x) are 
uniformly distributed. This would be stronger than our theorem but I have 
never been able to prove it. Some condition like (3) is certainlv needed for 
the uniform distribution since if p(x) = e-lx/’ it is not difficult to show 
that the roots of P,(x) are not uniformly distributed. 

The proof of our Theorem will be very similar to our old theorem with 
T~E~N, the rapid decrease of p(x) makes our polynomials behave as if they 
would be orthogonal in (- 1, + 1). 

We will use the following extremgl property of P,(z) : Let’ q,(x) = x” I . . 
be any polynomia,l, then 

m 

(4) -i p%4 A4 dx i .if d(4 ~(4 k 
-cc 

equality in (4) holds only if q,(x) = P,(x). 

Let (u,, un) be the largest interval so that for every u,; <x < vrl? p(s) > f . 

Pirst we show that t.he roots of P,(x) are uniformly distributed in (u,, v,) 
(in the above sense). 
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Let us assume that the roots of P,(r) are not uniformly distributed in 
(2~~. w,). Let F > 0 and put 

(5) A, = max !P&) I > I J’nbo) 1 = 4. 
rr,(l-E)<X<w~(l-E) 

It is well known that if the roots of P,(X) are not uniformly distributed 
in (u,, un) then 

(6) A, > (1 + cy vn - uq H, 
i i 4 

It follows from (6) and the well-known theorem of Markov that for 

From the definition of (zL~, v,) and by a repeated application of (2) we 

have that for q, - 

18) P(X) > (1 - r)” 
for every q > 0 if n is la,rge enough (choose E = ~(71) small enough). From 
(7) and (8) we obtain 

1 
m x0 f= 

(9) 
f 

- P:(x) p(x) dfc > 
I 

P;{x) p(x) dz > 

-m 1 
x0 - 5 

if q is sufficiently small and n is sufficiently large. 
Now we show that (9) leads to a contradiction. Denote by T,(x) the 

normed Chebyshev polynomial belonging to (u,, v,). We have from (4) 

(10) f Pi34 P(X) dx I y T;“, (4 ~(4 dx. 
--m --m 

We now show that (9) contradicts (10). To see this observe that 
I 

(11) 

j T;(x)p(x) dx = TT;(x) p(x) dx + 
--m l&l 

< 
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Clearly from p(z) < C 

P. EEDi% 

(12) -I, < 4C(V, - u,) 
lu,-u* zn 
I 
~- 

4 1 

since, as is well known, 

All the roots of IT,(x) are in (u,, v,), thus 

(13) 117n(x)(<Ix--n/” for v,<x<cQ, 

b T,(x) 1 < / v,q - z 1’2 for ~- 03 < 2 < U,, 

Prom (13) and (4) we obtain by a simple computation that for every 
6 > 0 if n is sufficiently large 

(12), (14) and (10) implies: 

(15) 

m 
s Pgx)p(x) dx d (1 + 28)s vu, - un r 1 

2n 
. 

4 
-co 

(15) contradicts (9), thus we proved our assertion that the roots of P,(Z) 
are uniformly distributed in (u,, v,). 

Now to prove our theorem we only have to show that for every E > 0 
if 7lJ > %I(&) 

(16) xi > Ml + &) J 2, < %U + 8) * 

It will suffice to show z, < v,(l + E). Assume without loss of generality 
that 

(17 ) 

Put 

XII - v, 2 u, -- x1 > E v,. 

Q&4 = ~ x Pn(x) ( - 9,). 
5 - x,: 

We now show that (17) implies 

(18) j  @A4 ~(4 dx < j: p”,(x) ~(4 dx 

-co --m 

(18) contradicts (4). Thus (18) will imply that (1’7) leads to a contradic- 
tion, which completes the proof of (16) and our Theorem. 
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To prove (18) observe that for z < % -2 ” 

for U, < x < v, and n > n,,(s) 

The inequality in (19) follows from x, > v,(l + E) and from the fact that 
(2) implies 21, - u, = o(n) (in fact it implies V, - u, = o((log n)e)). 

Let 2, be defined by (5). We have from the theorem of Chebyshev 
1 

and (7) that for r0 - - 
2d 

(20) 

Hence from (19), (20) and (8) 

On the other hand from (17) and by a repeated application of (2) we obtain 
by a simple computation 

m  m  m  
/. 

- 
J 

&f&4 ~(4 dx - %4 ~(4 ok < 
I’ 

c?s, P(X) dx< 
x*-an X*-‘-o* x*--h -. 

(22) z 2 
2 2 

aJ m 

< 
J 

(x - x1)2n p(x) dx II: 
s 

Ah-V* X*--‘&r 
2 2 

(To obtain the last inequality in (22) observe that by (2) p(x) decreases 
much faster than (x + c,J2* increases.) 
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(21) and (22) immediately imply (18) if E and 71 are sufficiently small 
and n > n&e, 7). Thus our Theorem is proved. 

It is possible that the method used in this paper will permit to con- 
clude that (3) also implies our Theorem, but as stated previously, I have 
not succeeded in this. 
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