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ON A RAMSEY TYPE THEOREM

by
P. ERDOS and A. SZEMEREDI (Budapest)

To the memory of A. RENYI

n — (u); is the well known arrow symbol introduced by Erpss and
Rapo [1]. Tt means that if we color the edges of a complete graph of n vertices,
kn, by k colors there is always a &, whose edges all have the same color.

The symbol n — [v]; introduced by Erp&s, HasNaL and Rapo [2] means
that if we color the edges of a £, by k colors there is always a k, whose edges
contain only £ — 1 colors. These symbols were studied extensively for infinite
cardinals in [1] and [2]. In this paper we will only consider finite n. It is
well known ([3], [4]) that

) " logn f
2 log 2 |
(2) 2 logn 3
log 2 |s

It would be very desirable to determine the constant ¢ so that
(3) n—((c —¢e)logn)i, n -+ ((c+ &) logn).

It is not even known if such a ¢ exists and we can make no contribution
towards (3).

By the methods of [3] and [4] it is easy to see that there are absolute
constants ¢; and ¢, so that for every £ and »

(4) n— (& logn|®
klogk )y

and

(5) n 2 log n 2.
logk k

It would be very desirable to bring (4) and (5) closer together, but it
seems difficult to guess what happens for large k.
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The methods of [4] immediately give that for a sufficiently large absolute
constant c,

(6) n -+ [cok log n]f .

Erpés, HasNaL and RADO conjectured that for every c¢ there is a
ko = kg(c) so that for k > &,

(7) n — [clog ;.
In this note we prove (7). In fact, we prove

TrEOREM 1. There is an absolute constant ¢, so that

3 12
(8 n—|c logn]| .
: [ * log & g Jk

(6) and (8) are not so far apart, but at present we cannot even guess
where the real truth lies.

Let G(n) be a graph of n vertices. G(n), the complementary graph, has
the same vertices and two vertices are joined in G(n) if and only if they are
not joined in G(n).

Color the edges of K, by k colors. At least one of the colors has fewer

than —Ll— (: edges. Thus, Theorem 1 is an immediate consequence of the fol-

lowing
2
THEOREM 2. Let G(n;r) be a graph of n vertices and r < %edges. Then
either G(n; r) or G(n; r) conlains a K, for s > CSI—E‘—Z log n.
ogk

The result is best possible as far as the order of magnitude is concerned

since it fails for s > ¢ log n if ¢4 is a sufficiently large absolute constant.

k
log k&
Before we prove Theorem 2, we show that it is best possible. First we
show that
(9) n -+ (c,logn,cs k3% log ng.
log &

2

We do not give all the details since the proof closely follows [4].! Decom-
pose K, in all possible ways as the edge disjoint union of two graphs @, and @,
(i.e. K, =G, UG,) where @ has ],_’IE: (:) edges — in other words roughly

1(9) in fact is contained in a paper of Rényi, Probabilistic methods in combina-
torial mathematies, Combinatorial Math. and its Appl.,, Proc. Confer. held at Chapel
Hill, Univ. of North Carolina, Univ, of North Carclina Prepr., 1967, pp. 1—13, see p. 5.
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speaking an edge belongs to &, with probability 1"1_1 and to ¢, with probability

i. We use the probability language to shorten the computation — it

- 7E
will be clear to the reader that we could work as in [4] and [5] simply using
binomial coefficients.

Now we show that the probability that &, contains a K, s, =c; log nflog k

1

is less than % if ¢; is sufficiently large. A simple argument shows that this

probability is less than

(10) < nSrexp | —

ke 10 10

if e, > 20 (we are not interested in trying to obtain small values for our con-
stants, since the best possible values are beyond our reach even in (3)).

Now we prove that for sufficiently large ¢; the probability that G,
contains a

3_2_1'28_’“] 1

] (s1)

K

_— 4
s,r Sy =cgk¥tlogn

is also less than il(—) The probability that G, contains a K, is less than

1\
1_}:_1;, <n exp[

(11) "

8y 4 klfz) <70

4 .
(10) and (11) implies that with probability greater than i G, contains no
K, and G, no K and (9) is proved.
(9) easily implies that Theorem 2 is best possible. We now construct

2
a decomposition K, = &, - @,, so that the number of edges in &, e(G;) < ?—;c—

and neither &, nor &, contains a

&, 4 a5 log n.
log k
Put n = u, + ...+ u, where the «; are as nearly equal as possible
[u,- = !:-}:—] or l%] 4 1] . Decompose the set of n vertices of K, into sets

S;, | 8i| = u,. Define G by (x, y) €GE if €8, y€ 8, i = J.
By (9) the complete graph defined by the vertices of S; can be decom-
posed into two graphs G{? and G5 where G\” contains no K sy S > cghtlog n

and G’ contains no K s 52 = ¢; log nflog k&

k . K :
== U Ggf); GQZG; U Ggl)'

i=1 i=1



298 ERD(OS, SZEMEREDI: A RAMSEY TYPE THEOREM

G,\U G, = K,, G, clearly contains no K and G, contains no K. This proves
that Theorem 2 is best possible.

We now prove Theorem 2. Let ' = G(n, t) be a graph having »n vertices

and ¢ < _L_ edges‘ At least half of the vertices, say @, @, ..., 2p [m = E‘

have valency wv(z;) <Z IT We consider the subgraph G’ spanned by these
m vertices.

Suppose the largest complete graph in G’ (i.e. independent set in G’)
has 7 vertices. We can assume that these are x, ..., x;. By assumption

10n 20m
v(a;) < _fc—< v

, and so

(12) Stm<@ﬁ

:-I
It follows from (12) that at most % of the vertices x; 4, ..., x, are joined
401 . . _
to s =7 or more of the vertices z,, ..., 2. We can assume that

cyologn

13
e logk

where c,, is a suitable small constant. Then the number of subsets of {z;, . . . , 2}
having fewer than s elements is at most

01k 5
R -
s—1 40

provided ¢,y is sufficiently small. It follows from (14) that there are {y,,....y,} C

|
C{zy...,x}and {2, ...,z c{® s, . - - » T} sO that p<s,¢

Vn
and such that each z;(1 < j =< ¢) is joined to each y; (1 =< i =< p) but to no
other point in {z, ..., z} — {1, - - -+ ¥p}-
Now consider the subgraph G” spanned by {z,...,%}, ¢ >|7. By a
simple and well-known theorem of ErRpGs and SzEKERES [3]

(15) f+”—ﬂ+mmy
w— 1

i B 40! ;
The graph G” does not contain an independent set containing s = = vertices,

otherwise we could exchange these for {y;, ..., y,} (in ), ..., ) and obtain



(5]
=]
[Z=]
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a complete subgraph in @’ having more than [ vertices, contrary to the defini-
tion of I. Therefore, by (14) and (15) a simple computation gives that G”
contains a complete graph having ¢, klog nflog & vertices. This proves Theo-
rem 2 and hence Theorem 1.

by V.

Finally we would like to call attention to the fact that, as pointed out

T. S6s, Theorem 2 belongs to the class of theorems studied recently by

P. Erpés and V. T. S6s [6].
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