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ON A RAMSEY TYPE THEOREM 

P. ERD6S and A. SZEMER&DI (Budapest) 

To the memory of A. RI~NYI 

n .+ (u): is the well known arrow symbol introduced by ERD~S and 
RADO [l]. It means that if we color the edges of a complete graph of n vertices, 
L,, by fi colors there is always a k, whose edges all have the same color. 

The symbol n + [v]: introduced by ERD~S, HAJNAL and RADO [2] means 
that if we color the edges of a k, by k: colors there is always a i&, whose edges 
contain only L - 1 colors. These symbols were studied extensively for infinite 
cardinals in [l] and [2]. In this paper we will only consider finite n. It is 
well known ([3], [4]) that 

(1) 

(2) 

n-t logn ‘2  

[ 1  
2 log2 2 

nS- 2logn” 

i I log 2’ 

It would be very desirable to determine the consta,nt c so that 

(3) n - ((c - E) log n);, n + ((c + E) log n); * 

It is not even known if such a c exists and we can make no contribution 
towards (3). 

By the methods of [3] and [4] it is easy to see that Ohere are absolute 
constants c1 and ca so that for every k and n 

(4) 

and 

(5) 
c., log n z 

ni- i 
I I log x: k’ 

It would be very desirable to bring (4) and (5) closer together, but it 
seems difficult to guess what happens for large k. 
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The methods of [4] immediately give that for a sufficientIy large absolute 
constant c3 

(6) n -+ [c,k log n]; . 

ERDBS, HAJNAL and RADO conjectured that for every c there is a 
k, = k&c) so that for k > k, 

(7) n -4 [c log n]i . 

In this note we prove (7). In fact, we prove 

THEOREM 1. There is an absolute constant c4 so thai 

(8) 
k ‘2 

-1ogn . 
log k 1 k 

(6) and (8) are not so fa’r apart, but at present we cannot even guess 
where the real truth lies. 

Let G(n) be a graph of n vertices. G(n), the complementary graph, has 

the same vertices and two vertices are joined in GF) if and only if they are 
not joined in Q(n). 

Color t.he edges of K, by k colors. At .least one of the colors has fewer 

than i (;I I edges. Thus, Theorem 1 is an immediate consequence of the fol- 

lowing 

!PHEOREM 2. Let C(n; r) be a graph of n vertices and r < g edges. Then 

either G(n; r) or G(n; r) contains a K, for s > c5 
k 

--log n. 
log k 

The result is best possible as far as the order of magnitude is concerned 
k 

since it fails for s > cs - 
log k 

log n if cg is a sufficiently large absolute constant. 

Before we prove Theorem 2, we show that it is best possible. First we 
show that 

(9) 
i 

c, log n 2 
n-b ~ . 

log k 
, cs k314 log n 

I 2 

We do not give all the details since the proof closely follows [4].l Decom- 
pose K, in all possible ways as the edge disjoint union of two graphs G, and Gz 

(i.e. K, = G, U G,) where G, has edges - in other words roughly 

l (9) in fact is contained in a paper of RBnyi, Probabilistic methods in combina- 
torial mathematics, Combinatorial Math. and its Appl., Proc. Confer. held at Chapel 
Hill, Univ. of North Carolina, Univ. of North Carolina Prepr., 1967, pp. l-13, see p. 5. 



speaking an edge belongs to G, with probability L and to Gz with probability 
Vk 

1 - L. We use the proba.bility language to shorten the computation - it 
\:‘x: 

will be clear to the reader that we could work as in [4] and [5] simply using 
binomial coefficients. 

Now we show that the probability that G, contains a IQ., s1 = c7 log n/log 12 

is less tha,n $ if c, is sufficiently large. A simple argument shows that this 

probability is less than 

(10) 

if c, > 20 (we are not int,erested in trying to obtain small values for our con- 
stants, since the best possible values are beyond our reach even in (3)). 

Now we prove that for sufficiently large cs the probability that Gz 
contains a 

K s2, s,=c,k314loga 
. 

is also less than &, The probability that G, contains a KS, is less than 

(11) 

(10) and (11) implies that with probability greater than z , G, contains no 
K,, and G2 no I’& and (9) is proved. 

(9) easily implies that Theorem 2 is best possible. We now construct 

a decomposition X, = G, + G,, so that the number of edges in G, e(Gr) < $ 

and neither Gr nor G, contains a 

KS if s> %k - log n. 
log k 

Put 12 = u.1 + . . . + uk where the Ui are as nearly equal as possible 

[ui=[c]or [F] j + 1 . Decompose the set of. n vertices of K, into sets 

Si, ] Si 1 = Ui. Define Gt by (x, y) E Gz if x E Si, ZJ E Sj, i # j. 
By (9) the comp1et.e graph defined by the vertices of Si can be decom- 

posed into two graphs Gy’ a.nd Gt’ where Cy’ contains no KS,, s1 > c,k31* log n 
and GF’ contains no KS%, s2 = c, log qz/log k 

G, = I; G(li), G,=G; 6 Gf). 
i=l i=l 
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G,lJ C, = K,, G, clearly contains no KS1 and G, cont,ains no KS*. This proves 
t,hat Theorem 2 is best possible. 

We now prove Theorem 2. Let G = G(n, t) be a graph having n vertices 
n2 

and t < - edges. At least half of the vertices, say x1> xp, . . . , rm m > $ 
k i I 

have valency v(xi) < F. We consider the subgraph G’ spanned by these 

92 vertices. 

Suppose the largest complete graph in t!?’ (i.e. independent set in Cl) 
has I vertices. We can assume that these are x~‘ . . . , x1. By assumption 

10n 
'u(2,) < T 

20m 

Yi- 
, and so ~ 

w 2 v(zi) < y . 

It follows from (12) that at most F of the vertices x[-~, . . . , 2, are joined 

to s = y or more of the vertices x,, . . . , q. We can assume that 

(13) 8-c 
c,O-log n 

log k 

where cl0 is a suitable small constant. Then the number of subsets of {q, . . . , q} 
having fewer than s elements is at most 

(14) 

provided cl0 is sufficiently small. It follows from (14) that there are {yl, . . . ,yp} c 
m -- 1 

c {Xl,. . . , xl} and {x1, . . . , xq} c{q +1, . . . T 2,) so that p < s, y > 
2 

->j%i 
+z 

and such that each Zj (1 < j < q) is joined to each ‘yi (1 < i ( p) but to no 
other point in {x1, . . . , q} - {yl, . . . , y,,}. 

Now consider the subgraph G” spanned by { zl, . . _ , zq} , p > 1%. By a 
simple and well-known theorem of ERD& and SZEKERES [3] 

(15) 

The graph c” does not contain an independent set containing s = y vertices, 

otherwise we could exchange these for {yll . . . , yP} (in zl, . . . , xi) and obtain 
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a complete subgraph in 8’ having more than 1 vertices, contrary to the defini- 
tion of 1. Therefore, by (14) and (15) a simple computation gives that c” 
contains a complete graph having c,,lclog n/log k vertices. This proves Theo- 
rem 2 and hence Theorem 1. 

Finally we would like to call attention to the fact that, as pointed out 
by V. T. MS, Theorem 2 belongs to the class of t,heorems sOudied recently by 
Y. ERD~S and V. T. S6s [S]. 
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