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On a linear diophantine problem of Frobenius
by
P. Erpos (Budapest) and R. L. GRamam (Murray Hill, N. J.)

Introduction. Given integers 0 < a, < ... < a, with ged(a,, ..., a,) =1,
n

it is well-known that the equation ¥ = }'w,a; bas a solution in non-
¥=1

negative integers x; provided X is sufficiently large. Following [9], we let
G(a,, ..., a,) denote the greatest integer N for which the preceding equa-
tion has no such solution.

The problem of determining G(a,, ..., a,), or at least obtaining non-
trivial estimates, was first raised by G. Frobenius (cf. [2]) and has been
the subject of numerous papers (e.g., e¢f. [1], [2], [3], [4], [7], [8], [9], [11],
[12], [13]). It is known that:

G(ayy ay) = (a;—1)(a,—1)—1  ([2], [11]);
Gy oy ap) < (0, —1)(a,—1) =1 ([2], [4]);

n—1
Glagy oy @) < ) gy @il
=1
where d, = ged(aq, ..., a;) ([2]). The exact value of G is also known for
the case in which the a; form an arithmetie progression ([17], [13]).
In this paper, we obtain the bound

a
G(a'1$ secy aﬂ) a<‘,. 261“_1 [_?f-] _a,n,

which in many cases is superior to previous bounds and which will be
seen to be within a constant factor of the best possible bound. We alzo
consider several related extremal problems and obtain an exact solution
in the case that a, —2n is small compared to »'?

A general bound. As before, we consider integers 0 < a, < ... < a,
with ged(ay, ..., a,) = 1.
THEOREM 1.

y
(1) G(a'h ceey Oy) K 20, [?b_] — .
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a
Proof. Let g denote a,, let m denote [f] and let 4 denote the
set {0,a,,...,a, ,} of residues modulo g. Consider the sum

€ =A+...+ A ={by+...+b,: bped} (mod g).

e !
ki

By a strong theorem of Kneser ([10]; cf. also [6], p. 57), there exists
a (minimal) divisor ¢’ of ¢ such that

€ =A9 4 . 4+ A9 (mod g)

m

where
AT = {a+rg': 0<7 < glg’, acd} (modg)
and such that
€] _ mn m—1

(2) i ey
9 9 g

Assume % does not contain a complete system of residues modulo g.
Since ged(ay, ..., @, ,,¢) =1 then A®) must consist of more than
one congruence class mod g’'. By the theorem of Kneser and the minimality
of ¢', it follows that # must contain at least m + 1 distinet residue classes
mod g’; thus

(3) ﬁ; m-tl-
q g

Note that ¢ = n and m = [¢/n] imply

(4) gy o f AL
m —=
2| mn 1
q 2

! —1 1 -1
oy 2Ll we L coman,
g g - MK
g 2

Henece, by (3),

g - ¢ “2m+1) 2

|i’|>m+1 m-+1 1

which is a contradiction.
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We may therefore assume (| > }¢. But in this case it is easily seen
that €+ % contains a complete residue system mod ¢. It follows that the
least possible integer not representable in the form

@b+ 2o by + g

with @, =0, # =0, byed, is given by
a,
2m -max(a)—g = 2a,_,|—| —a,.
aed n

This proves the theorem.
Note that in the case that » = 2 and a, is odd we have

Ay
G(a,, a,) < 2a, [‘2_] — g = A1 03— A3 — Ay

which is best possible.

An extremal problem. The question of the estimation of G naturally
suggests the following extremal problem. For integers »n and ¢, define

g(n,t) by
g{nﬁ t) = ma'XG(al) s a-n-)

a2

where the max is taken over all a; satisfying

(8} O<aoy<..<a,<t, ged(a,...,a,) =1.

By Theorem 1 the following result is immediate.

COROLLARY. g(n,t) < 2t%*/n.

On the other hand, it is not hard to see that for the set {=z, 2«, ...
vy (n—1)z, 4"} with 2 =[t/n—1)] and 2" =(n-—1)[t/(n—1)]—1,

tz

gn,t) > Gz, ..., 2" = o

—5t for n=2.

Thus, g(n, t) is bounded below by essentially t*/a.
Of course, for » = 2, the exact value of ¢ is given by g¢(2,1)
= (f—1)(t—2)—1. It appears that

_J@—2)*
g(3,1) = [—"2——] =

with the sets {{/2,t—1, ¢} or {{—2,1—1, {} for { even and {({—1)/2, i—1, t}
for ¢ odd achieving this bound. However, this has not yet been established.
It follows from the Corollary that g(n, en) < 2¢2n and g(n, n?) < 2n8;
again, the truth probably differs from these estimates by a factor of 1/2 for
large #.

26 — Acta Arithmetica XXI.
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Determination of g(#,2n+k). The remainder of the paper will be
concerned with the determination of g(n,2n+ k) for n large compared
to k. It follows easily from density considerations that g(n, 2n k)
=2n+2k—1 for k<< —1 (ef. [12]). It was shown in [5] that g(u,2n)
=2n+1 and ¢{n,2n+1) =2n+3. It was also proved in [3] that
for k fixed g(n,2n+%) = 2n+h(k) for some funection & of k provided =
is sufficiently large. The exact value of h(k) is given by the next result.

THEOREM 2. For k fizved, if n is sufficiently large then

2n+2k—1  for k< —1,

2n +1 for k=0,

2n+4k—1 for k=1 and n—Fk =1 (mod 3),
|2n+4k+1  for k=1 and n—%k # 1 (mod 3).

g(n, k) =

Proof. By previous remarks we may restrict ourselves to k= 2.
Assume for a fixed integer K > 2 the theorem holds for all z < K. Let
4 = {a,,...,a,} be a set satisfying (5) with & = K and = large (to be
specified later). We first establish

2n+4K -1 if »n—K =1 (mod3),

6 k) <

Let S(A) denote the set of sums {f x;a;: ;> 0} we are considering
and let G(A) abbreviate G(a,, ..., a_,,)f:%l'ote that if there exists an =z,
1<a<2n+K, with veS(A), x¢4, then the set 4" = A u {z} satisties

o< <...<ap,,=2n+K =2(n+1)+K—2.
By the induection hypothesis
GA) =G(A)<2(n+1)+4(K—2)+1 =2n+4K—5 < 2n+4K—1

so that (6) certainly holds in this case. Hence, we may assume 4 and S(4)
agree below 2n+ K.
Next, suppose 2n+K-+1eS(4). Then for 4" =AU {2n+ K +1}
we have
0<a;<...<lpyy =20+K+1 =2(n+1)+K—1
so that by the induection hypothesis
G(A) =A< 2n+1)+4(K—1)+1 =2n+4K -1

and (6) holds in this case. Hence, we may assume

2n+ K+ 1¢8(4).
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Now, suppose 2n+ K +2e8(4), 2n+ K +3eS(4). For A" = A vy
v {2n+K+2,2n+ K 43} we have
0< < e <ty =2m+KE+3 =2(n+2)+K—1.
By the induction hypothesis
2(n+2)+4(K—1)—1 if (n+2)—(K—1) = 1(mod 3),
2(n+2)+4(K—1)+1 if (n+2)—(K—1) # 1(mod 3)
2n+4K -1 if n—% =1 (mod 3),
2n+4K+1 if n—k % 1 (mod 3),

G(4) = G(A’)@l

so that (6) holds in this case. Hence we may assume that either
2n+K+2¢8(4) or 2n+K-+3¢8(4).

There are two cases:

(I) Suppose a, < 3K. If at least 3K consecutive integers belong to A
then by successively adding a, to these integers, we infer that G(A4)
< 2n+ K and (6) holds in this case. Therefore, we may assume that 4
does not contain 3K consecutive integers.

Sinee we have assumed 2n + K +-1¢8(A4) thenforalli, 1 <i< 2n+4 K,

] values of j

either i¢ A or 2n4- K -+1—i¢A. Thus, for exactly [K+l
we have j¢d and n+ K +1—j¢A. For a given integer f(K), if » iz suffi-
ciently large then for some ¢ < [E}i] f(K), each of the integers -4,
1< i< f(K), satisfies either
t+ied or 2n+tK+1—(t+1i)ed.
Consequently, for some i, {+1< ¢’ < {+3K, we have
2n+ K —t' +1eA4.

There are several possibilities:

(i) Suppose 2n + K —t' e A. If t' + 2 e A then we would have 2n -+ K —1' -+
+2, 2n+K—1t +3e8(4) which contradicts our assumptions on A.
We may therefore assume

n+ K —t'—1eA.

But now consider ¢’ - 3. If ¢’ - 3¢A then as before we find 2n+ K —1' +2,
2n+ K —t'+-3e8(4) which is a contradiction. Hence, we must have

2n+K—t'—2¢A.
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We can continue this argument to conclude that
n+K—t'—sed dfor 0=<s<3K-—1,

provided f(K) = 6K and n is sufficiently large. But this is a sequence of 3K
consecutive integers in 4 and since this contradicts our assumption on A4,
then case (i) is impossible.

(ii) Suppose 2n+ K —t'¢A. Then we have

t+1eA.

If we now havet’ + 2 ¢ A then as before 2n+ K —t' + 2, 2n+ K —1' +3e8(4)
which is a contradiction. Therefore, we may assume #'+2¢4, i.e.,

2n+ K —1t' —1eAd.

Now, by using the same arguments as in (i) we can argue that t'+3,
m+KE—1"—3,...,'+2r+1, 2n+K—t' —2r—1eA for 2r < f(K)—3K
if n is sufficiently large. In particular we have

t+2j+1ed, 0<j< }(f(K)—3K)

K+1
where {' < [—gi—] f(K)+3K. Since ¢, < 3K then by successively adding

2a, to the integers ¢’ + 2j + 1, we see that all integers » of the form » = '+
+2s+1,8 =0, belong to S(4) provided

6K < f(K)—3K.
Of course if ' = 0 (mod 2), then by adding ¢ +1e¢A4 to the integers
K41
. ]f(K)+6K+2

belong to S(A). For n sufficiently large, this certainly implies (6). We
may therefore assume

t'4+2s+1, =0, we see that all inte-gers>2[

t' =1 (mod 2)

and consequently all even integers =t +1 belong to S(4). In fact, is
it clear that if weA is an odd integer and 2z < 2n+ K —(¢'+1) then all
odd integers = 2n+ K (and hence all integers > 2n +- K) belong to S(4).
Thus, we may assume that

1
ved, v odd =x=> 2?1—-[KT+]]’(K)—2K.

Further, if K is odd then 2n-+ K +1 is even and therefore belongs
to 8(4) for n sufficiently large. This contradicts our assumption on A
and we may assume K is even.
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Now, let 4 be the largest integer such that 2n-+ K —2u +1e4. Since K
is even it follows that
1({[K+1
U< —|——|fK)+3K+1).
2 2
Consider the K -1 integers 2u+2j, 1 < j << K+ 1. By the definition of «
none of the integers 2n+4 K — (2% +2j)+ 1 belongs to A. Since there are

K+1 K
at most [ e ]=— of these integers for which both 2u42j¢4

2 2
. K K
and 2n + K — (2u +2j) +1¢ A then we see that at least K +1 — Tl +1

of them belong to A, say,

QU+ 2y, vovy 2u+2jied, 1> K/2+1.
Forming the sums

@n+K—2u+1)+(2u+2j), i=1,2,...,1¢
we obtain at least K /2+1 sums 2n+ K + 2j;-+1 which are =2n4+K+3
and < 2n-+4 3K +3 and which belong to §(4). But all the even integers
2n+K+2r, 1<r< K+1, also belong to S(4). Hence, S(A) contains
at least m+(K/2+1)+ K +1 integers which are less than or equal to
20 13K +3 and we can find a subset A" < S(A4) with
0<ay< ... <y 3gpie =2n+3K+3—d,

for some integer d = 0. Since

n4+3K-138—-d)—(24+3K)2+2)< —1

then by the induction hypothesis we conclude that all integers = 2n -+
+3K + 3 —dbelong to S(A). If d = 1 then in fact all integers = 2n + 3K +2
belong to S(A4); if d = 0 then since 2n+3K 2 is even then we still
have all integers = 2n+3K 42e8(4). Thus,

G(A)<2n++3K +1.
But for K > 2, 4K —1>3K+1 so that
G(Ad)<2n+4K —1

and (6) holds in this case. This concludes case (I).

(IT) Suppose a, > 3K. There are two cases:

K41

K+1
(i) Suppose a; > n+ [—T] Thus, exactly [ +

] of the inte-

K-+1
gers which are > n+[T+] and < 2n-+ K are misging from A. This
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K+1 K+1

implies that for some ¢, 1 <2 < [ ] +1, bothn+ 2[

K-+1
2

] +14ied

K41
and 13.—1—2[ ;_

] +2—ied, ie., 21?,—1—4[ ] +3e8(4). Of course,

K+1

the same argument can be repeated for 2-?1-1—4[ ] +4, ete., so that

. K41 K+1
for n sufficiently large, 2n -+ 4 [——;——] +ji+2e8(d)for1<j<4 -——;_—] +

+3. Hence S(A) contains a subset A’ with
KH+1

0<“i<°"<“,,,+..[.1£_2+_i+3 =2n+8[ ]+5-d

for some d= 0. Since

K+1 i
2(n+4[ ;r ]+3)>2n+8[ ; ]+5—d

then by the induction hypothesis all integers > 2n+ 8

]

___“_] +5 belong

+1

N

9

2
: K ; : K+1
to S(A). But since 2?1—1—4[ ]—l—j—{—2eS(A)f0r1 jgz_t[ ]—;3

K41

K
then all integers > 2n 4 4[ ] + 2 belong to §(4). However, 4[ j 1] -

-

+92 < 4K —1 for K = 2 so that (6) holds in this case.
K+1
(ii) Suppose a, < n- [%—] Consider the 3K —1 integers 2n +
4+ K—a;+i+1, 1 <<i<<3K—1. Since a, is the least element of A then
K+1

at least 3K —1 — [ ] of these integers must belong to 4. Adding a,

K-+1
to each of them gives at least 3K —1— [ ] integers in §(4) which

are > 2n-+ K and < 2n+4K. Thus, 8(A4) contains a subset 4’ with

nt+3K—1—

O<a<..<a 5.5.1]———2-?1-1-41{'—51
2

for some d = 0.
For K =4,

2(%-{—31{—1— I:Kg_l])> 2n+4K —d

go that by the induetion hypothesis
GA)<GA )< 2n+4K—1

and (6) holds. Hence, we may assume K < 3. There are two cases.
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Suppose K =2. If 2n—a,+jed, 4<j<6, then 2n+jeS(4),
4 < j< 6. Thus S(4) contains a subset A" with

<o <...<lpyy =2n+6
and by the induection hypothesis
GA)<GA)<2n+T7

so that (6) holds in this case.

If at least one of 2n—a,+7j, 4 < j < 6, is missing from A4, then in
fact, exactly one of 2n—a,+j, 4 < j < 6, i3 missing from 4, and all of
2n—a,+jed, 1<j<9. Hence, 2n+jeS(4), 7T<j<9, and §(4) con-
tains a subset A’ with

0< < .oee < Opps< 2019,
By the induction hypothesis
G(A')<2n+8
and since 2r47, 2n+48e8(4) then
G(A)<2n+6
which satisfies (6) in this case.

The case K = 3 is similar and will be omitted. It can be checked
that the condition that »n be sufficiently large in the preceding arguments
is satisfied, for example, by taking n > 20K>

This concludes case (II) and (6) is proved.

We next exhibit specific sets A which satisfy (6) with equality for n
arbitrarily large. There are three cases.

(i) » — K =1 (mod 3). Write n = 3m+K +1 and let

2m+ K 1
A= U Bi}v U 8m+3K+5—35}.

i=1 j=1
The least element of S(4) which is =1 (mod 3) is 2(3m+3K +2) = 6m +
+6K+4 so that

on+4K —1 = 6m+ 6K +1¢S(A4).

Therefore 0 < a4, < ...< @, =2n+K and G(4)=>2n+4K —1.
(iil) » — K = 2 (mod 3). Write n = 3m+ K +2 and let

2m-K+1 m+1

A= U {8i3v U 3m+4+3K+7-3j4}.
i=1 j=1

(iii) » — K = 0 (mod 3). Write n — 3m+ K and let

2m+ K m
A= {8}u U {6m+3K+2—3j}.
i=1

=1
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It is easy to see in (ii) and (iii) that A satisfies (5) and G(4) = 2n+
+4K +1.

The examples in (i), (ii) and (iii) together with (6) establish the the-
orem for k = K. This completes the induction step and the theorem is
proved.

Acknowledgment. The authors wish to thank E. G. Straus for
important suggestions in the proof of Theorem 1.

(t—2)?
2

Added in proof: The conjecture g(3, ) =[ ] —1 has recently been

gettled in the affirmative by M. Lewin (personal communication).
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