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Introduction. Given integers 0 < a, < . . . < aa with gcd(a,, . . . , a,) =l, 
12 

it is well-known that the equation N = zxkak ha#s a solution in non- 
k=l 

negative integers xk provided ic’ is sufficiently large. Pollowing [Y], we let 
G(al, a-., a,) denote the greatest integer N for which the preceding equa- 
tion has no such solution. 

The problem of determining C (a,, . . . , a,), or at least obtaining non- 
trivial estimates, was first raised by G. Frobenius (cf. [2]) and has been 
the subject of numerous papers (e.g., cf. [l], [2], [3], [4], [‘?I, [5], [9], [ll], 
[12], [13]). It is known that: 

G(a,, az) = (a,-l)(a,-I.)-1 (PI, C111); 
G(a 1, . . . . aJ < (a,-l)(a,-11-l (PI, II41); 

n-1 

G(a l? "', a,) < 2 ak+&/d,,, 

k=l 

Pohere dk = god(a, , . . . , ak) ([ii?]). The esact va’lue of G is also known for 
the case in which the a, form an arithmetic progression ([l], [13]). 

In this paper, we obtain the bound 

G(a I ,..., a,)<2a,-, fE -a,, [ 1 n 

which in many cases is superior to preTious bounds and which will be 
seen to be within a constant factor of the best possible bound. mTe also 
consider several related extrema’l problems and obtain an exact solution 
in the case that a,-2n is small compared to TL”“. 

A general bound. As before, we consider integers 0 < a, +C . . . c a, 
with gcd(a,, . . . . a,) = 1. 

!I!HE~RE~II 1. 

(1) GM l, . . . . a,) < 2aTaLl 3% [ 1 n -a,, 
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Proof. Let g denot’e a,,, let m denote 5 and let 9 denote the [ 1 set {O, a,, . . . , Q,-~) of residues modulo g. CoGider t’he sum 

%=A+ . ..+A = {b,+...+b,: ~,EA) (modg). 
\ 

m 

By a strong theorem of Eneser ([IO]; cf. also [6], p. ST), there exists 
a (minimal) divisor g’ of $ such that, 

whexe 

V = A@‘) + . . . + A@‘) (mod g) 
m 

A@‘) = (a + rg’ : 0 < r < g/g’, n,a] (mod g) 

and such that 

Assume V does not conOain a complete system of residues modulo g. 
Since gcd{a,, . . . , cc,-, , g) = 1 then A@‘) must consist of more than 
one congruence class mod g’. By the theorem of Kneser and the minimality 
of g’, it follows that Q must contain at least vn + 1 distinct’ residue classes 
mod g’ ; thus 

(3) 
IQI) m+l 

g ‘g” 

Note that g 3 n and nz = [g/n] imply 

(4) 
1 m-l 

m+l>T 

i i 

. 
m’ri 1 -- -- 
g 2 

Suppose now that I%? < +g, By (2) and (4) we have 

17292 m-l m-l ~-~ < 2(mSl). 
g g ’ mlz 1 - -- 

g 2 

Hence, by (3), 

IVI __m+l> mtl =L 

g’ !I’ 2Cm-k1) 2 

which is a contradiction. 
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We may therefore assume 197 > $g. But in this case it is easily seen 
that %‘+ 0 contains a complete residue system mod g. It follows that the 
least possible integer not representable in the form 

“lb,+... -I- +22m bn + x$i 

with X~ > 0, x> 0, b,eA, is given by 

2mmmax(a)-g = 2u,-, % -a,. 
WA [ 1 

This proves the theorem. 
Mote that in the case that rz = 2 and a2 is odd we have 

Gh, a2) < 2a, + [ 1 -a2 = a,a,---al--a2 
which is best possible. 

An extremal problem. The cluestioa of the estimation of G naturally 
suggests the following extremal problem. For integers IZ and t, define 
s(n, t) by 

g(N, t) = maxG(a,, . . . . a,) 
ai 

where the max is taken over all ai satisfying 

(5) O<a,<...<a,<t, gcd(u,, . . . . a,) = I. 

By Theorem 1 the following result is immediate. 
COROLLARY. g(n,t)< 2t2/n. 

On the other hand, it is not hard to see that for the set (x, 2z, . . . 
. . . . (n-l)%, LX*} with x = [t/(%-l)] and IC* = (in-l)[t/(n-1)1-l, 

t2 
g(n, t) > G(x, . . . . x*)2 1 -5t for ?L>2. 

tin- 

Thus, g (n, t) is bounded below by essentially P/n. 
Of course, for YL = 2, the exact value of g is given by g(2, t) 

= (t-l)(t-2)---l. It appears that 

!7(3, t) = [ 1 (t--Y --1 
2 ? 

with the sets {t/2, t - 1,1) or (t -2, t -1, X} for t even and ((t -1)/2, t- 1, t} 
for t odd achieving this bound. However, this has not yet been established. 
It follows from the Corollary that g(n, ~9%) < 2&n and g(lz, n2) < 2~~; 
again, the trut,h probably differs from these estimates by a factor of l/2 for 
large 92. 

26 - Acta Arithmetica XXI. 
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Determination of g (n, 2n + k), The remainder of the paper will be 
concerned with the determination of g(n, 212 + k) for n large compared 
to 7G. It follows easily from density considerations that g(N) 2~ + k) 
= 2n+2k-- 1 for 7i: < - 1 (cf. [12]). It was shown in [5] that g(n, 2~) 
= 2n+l and g(ti, 2n+l) = 2n+3. It was also proved in [5] that 

for ir, fixed g(lz, 212 + k) = 2% + h(k) for some function h of k provided rz, 
is sufficiently large. The exact value of h(k) is given by the next result. 

THEOREM 2. Par k fixed, if n is sufficient&y large the?% 

[2n+2L-1 for 3c< -1, 

2Nfl Or 
gcn, 74 = I 

3’ k =o, 

2n+4k-1 for k>l and n-k =1 (mod3), 

[2n+4k+l fov k> 1 and m---k + 1 (mod3). 

Proof. By previous remarks we may restrict ourselves to k: 3 2. 
Assume for a fixed integer K > 2 t,he theorem holds for all k -=c K. Let 
A = {al, .‘.) a,> be a set satisfying (5) with 7L: = K and n large (to be 
specified later). We first establish 

(6) 
212+4K---1 if 

g(n, k) G 
N-K _= 1 (mod3), 

2n+4E+l if n - K g 1 (mod3). 
n 

Let S(A) denote the set of sums (2 aiai: zi > O> we ase considering 
i=o 

and let G(A) abbreviate G ( aI, . . . , a.,). Note that if there exists an x, 
1~ x < 212$-K, with ze#(A), x#A, t#hen the set A’ = Au (z> satisfies 

o<a;<...<a;+, = 2n$K = 2(12+1)+K-22 

By the induction hypothesis 

G(A) = G(A’) < 2(n+l)+4(K-2)+1 = 2n+4K-5 < 2n+4K-1 

so that (6) certainly holds in this case. Hence, we may assume A and 8(A) 
agree below 2lz+ K. 

Next, suppose 2nfK+lES(A). Then for A’ = Au {2n+K+l} 
we have 

0 < ai < . . . < aL+1 = 2m+K+l = 2(12+l)+K--I 

so that by the induction hypothesis 

G(A) = G(A’)< 2(n.+1)+4(K-1)-t-l = 2n+4K-I 

and (6) holds in t’his case. Hence, we may assume 

2n+K+l#H(A). 
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Now, suppose 2n+K+2cX(A), 2n+K+3cEs(A). For A’ = Au 
u (2n+E+f22s+K+3) we have 

0 -C ul < . . . < a:,, = 2m+K+3 = 2(n+2)+K-I, 

By the induction hypothesis 

G(A) = G(A’) < 
2(%+2)+4(K-I)-1 if (72+2)--K-l) E l(mod3), 

2(n+2)+4(K-I)+1 if (n+2)-(K-l) $ l(mod3) 

I 2n+4K-1 if n--k = 1 (mod3), 

= 212+4E+l if rz-k + 1 (mod3), 

so that (6) holds in t’his case. Hence we may assume that either 

2n+K+2$$8(A) or 2m+K+3#H(A). 

There are two cases: 
(I) Suppose a, < 3K. If at least 3K consecutive integers belong to A 

then by successively adding a, to these integers, we infer that G(A) 
< 2%+ K and (6) holds in this case. Therefore, we may assume t’hat A 
does not contain 3K consecutive integers. 

Since we have assumed 2n + K + 118 (A) then for all i, 1< i < 2a + K, 

either i#A or 212 + K+ 1 -i #A. Thus, for exactly K+l I- 1 --2-- values of j 

we have j $A and 32 + K + 1 -j #A. For a given integer f(‘K), if n is suffi- 

ciemly large then for some t < [ 1 F f(K), each of the integers t +i, 

1 < i <j(K), satisfies either 

t+icA or 2m+K+l-(t+i)cA. 

Consequently, for some t’, t+l< t’,( t+3K, we have 

2nfK-t’$lcA. 

There are several possibilities : 
(i) Suppose 2n + K - t’ E A. If t’ -j- 2 E A then we would have 2n. + K - t’ + 

+2, 2m+K-t’+3ES(A) which contradicts our assumptions on A. 
We may Oherefore assume 

2m+K-f-1cA. 

But now consider t’ + 3. If t’ + 3 CA then as before we find 2.n + K - t’ + 2, 
2n + K - t’ + 3 ES(A) which is a contradiction. Hence, we must have 

2n+E-t’-2cA. 
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We can continue this argument to conclude that 

2n-j-K-t’--cA for O<s<3K-1, 

providedf(K) >, 6K and 12 is sufficiently large. But this is a sequence of 3K 
consecutive integers in A and since this contradicts our assumption on A, 
then case (i) is impossible. 

(ii) Suppose 2n+K-t’#A. Then we have 

t’+lEA. 

IfwenowhaveV+2EAt8henasbefore2n,+K-t/+2, 2n+K-t’+3~8(A) 
which is a contradiction. Therefore, we may assume t’ + 2 #A, i.e., 

2n+K-t’-IcA. 

Now, by using the same arguments as in (i) we can argue that t’f3, 
2n+K-t’-3, . . . . t’+2r+l, !&n-/-K-tt’-22r--1~A for 2r< f(K)-3K 
if 12 is sufficiently large. In particular we have 

f-t-2j+lcA, 0 <j -=c &(f(K)-312) 

X+1 where t’ < ___ 
[ I 2 

f(K) +3K. Since a, < 3K then by successively adding 

2a, to the integers t’ + 2j -k 1, we see that all integers x of the form m = t’ + 
+2s+l, s 3 0, belong to B(A) provided 

6K<f(K)-3K. 

Of course if t’ 3 0 (mod 2), then by adding t’ + 1 EA to the integers 

t’+ 29 + 1, s >, 0, we see that all integers >, 2 II I F f(K)+6K+2 

belong to S(A). For 12 sufficiently large, this certainly implies (6). We 
may therefore assume 

t’ = 1 (mod 2) 

and consequently all even integers > t’ + 1 belong to B(A). In fact, is 
it clear that if z EA is an odd integer and % < 2% + K - (t’ + 1) then all 
odd integers 3 2r2+ K (and hence all integers > 21x+ K) belong to S(A). 
Thus, we may assume that 

xcA, x odd =sx>2n- [ 1 G f(K)-2K. 

Further, if K is odd then 29a+ K + 1 is even and therefore belongs 
to S(A) for VL sufficiently large. This contradicts our assumption on A 
and we may assume K is even. 
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Now, let u be the largest’ integer such that 2-n + K - 2~ + 1 EA. Since K 
is even it follows that 

Yi IL F f(K)+3K+I). ([ 1 
Consider the K+ 1 integers 2u +2j, 1 < j < K + 1. By the definition of u 
none of the integers 2n. + K - (2zc + 2j) + 1 belongs to A. Since there are K+l 
at most ____ [ 1 2 

= c of these integers for which both 22c+ 2j #A 

and2n.fK-(22c+2j)+l#AthenweseethatatleastK+l- $ =G +1 

of them belong to A, say, 
2u+2j,, . . . . 2u+2j,cA, it>, K/2+1. 

Forming the sums 

(2m+K-22u+l)+(2?h+2ji), i = 1, 2, . . . . t, 

we obtain at least K/2 + 1 sums 2n + K + 2jji + 1 which are >, 2n+ K + 3 

and < 2% + 3K + 3 and which belong to S(A). But all the even integers 
2n+K+21’, 1 <Y< K+l, also belong to S(A). Hence, S(A) contains 
at least n + (K/2 +I) + K + 1 integers which are less than or equal to 
2nf 3K + 3 and we can find a subset A’ e S(A) with 

0 < a; < . . . < ak+3K12+2 = 2n.+3Ki-3--d, 

for some integer d > 0. Since 

(2n+3K’$--d)-(2+3K/2+2) < --I 

then by the induction hypothesis we conclude that all integers 3 212 + 
+ 3K + 3 - d belong to S(A). If d 3 1 then in fact all integers > 2~ + 3K f.2 
belong to S(A) ; if d = 0 then since 2% + 3K + 2 is even then we still 
have all integers >2m+3K+2~S(A). Thus, 

G(A) < 2n+3K+l. 

But for K>2, 4X--133K+l so that 

G(A) < 298-t4K-I 

and (6) holds in this case. This concludes case (I). 
(II) Suppose a, > 3K. There are two cases: K+1 
(i) Suppose u, > 12 + 2 . [ 1 K+l 

Thus, exactly 2 1 1 of the inte- 

.=+I 
gers which are > n. + 2 [ 1 and < 2n+ K are missing from A. This 



406 P. Erdiis and R. L. Graham 

implies that for some i, 1 < i < 
K-i-1 [ 1 K+l 
~ 

2 
fl, bothvzf2 2 [ 1 +l+ieA 

Kfl 
andn+2 ~ [ 1 K+l 

2 
+a---ieA, i.e., 2%-j-4 2 [ 1 +3~fi’(A). Of course, 

K+l 
the same argument can be repeated for 2% + 4 - [ 1 2 

+4, etc., so that 

for n sufficiently large, in + 4 
Es-1 [ 1 K+l 
2 +j+2ES(A)forl<jj4 2 + [ 1 

+ 3. Hence 8 (A) contains a subset A’ with 

0 < a; -c . . . < a’ 
K+l 

n+4[";l];3 = 2fif8 2 +5--d [ 1 
for some d > 0. Since 

2(11’4[qq +3)> 2,+s[-y +.5-d 

K+l 
t*hen by the induction hypoOhesis all integers > 2~2. + 8 -2- + 5 belong [ 1 
to 8 (A). But since 2.n f 4 

Kil 
+j+2E#(A)forl<j<4 ___ [ 1 2 1-3 

Kfl 
then a.11 integers > 2% + 4 ~ [ 1 K+l 

2 
+ 2 belong to S(A). HoweTTer, 4 2 + [ 1 

+ 2 < 4K - 1 for K >, 2 so that (6) holds in this case. K+l 
(ii) Suppose a, < n + 2 . [ 1 Consider the 3K -1 integers 212+ 

-t-K -ua,+i+l, 1 < i < 3K -1. Since a, is the least element of A then K+l 
at least 3K-l- ~ [ 1 2 

of these integers must belong to A. Adding a, 

K+l 
to each of them gives at least 3K -1 - 2 [ 1 integers in S(A) which 

are > 2n+ K and < 2n. + 4K. Thus, #(A) contains a subset A’ with 

0 < a: < . . . < cc’ fi+3K-1-[13x] = fJfr+m-- 

for some d > 0. 
For K 3 4, KS1 [ I) - 

2 
> 2n+4K-il 

so that by the induction hypothesis 

G(A) <((A’) < 2,mf4K-l 

and (6) holds. Hence, we may assume K < 3. There are two cases. 
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Suppose K = 2. If 2n- a, +j EA? 4 < j < 6, then 2n +j <S(A), 
4 < j < 6. Thus S(A) contains a subset A’ with 

O-C~~<...-=CU.~+~ =2nf6 

and by the induction hypothesis 

G(A) < G(A’) < 2nf 7 

so that (6) holds in this case. 
If at least one of 2~- Q-j, 4 <<j < 6, is missing from A, then in 

fact, exactly one of %a -cc,+j, 4 < j < 6, is missing from A, and all of 
2n--ua,+j~A, l<j< 9. Hence, 2n+j~S(A), 7 <cj< 9, and #(A) con- 
tains a subset A’ with 

O<a~<...<d~+s<2n+9. 

By the induction hypothesis 

G(A’) < 2n+8 

and since 2nf7, 2n+St-S(A) then 

G(A) < 2%+ 6 

which satisfies (6) in this case. 
The case K = 3 is similar and will be omitted. It can be checked 

that the condition that n be sufficiently large in the preceding arguments 
is satisfied, for example, by taking s > 2OK’. 

This concludes case (II) and (6) is proved. 
We next exhibit specific sets A which satisfy (6) with equality for ?$ 

arbitrarily large. There are three cases. 
(i) ~2, -K E 1 (mod 3). Write n = 3m +K+ 1 and let 

zm+K ?-?Zfl 

A = u (3i)u U (3m+3K+5-3j). 
i=l j=l 

The least element of S(A) which is = 1 (mod 3) is 2 (3m + 3K + 2) = 6m + 
+6K+4 so that 

2n+4K-1 = 6m+6K+l#S(A). 

Therefore 0 -=c a, < . . . < a, = 2nfK and G(A) > 2nf4K--1. 

(ii) N-E G 2 (mod3). Write n = 3m+K+2 and let 
Zm+K+l W-1 

A = U {3i)v u {3m+3K+7-3j). 
i=l j=l 

(iii) n-K = 0 (mod 3). Write ti = 3wb$ K and let 
2m+K 

A = iJ (3i) u fi {6m-/-3K+2-3j). 
i=l j=l 
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It is easy to see in (ii) a#nd (iii) that A satisfies (5) and G(A) > 2n+ 
+4R+l. 

The examples in (i), (ii) and (iii) together with (6) establish the the- 
orem for k = K. This completes the induction step and the theorem is 
proved. 

Acknowledgment. The authors wish to thank E. G. Straus for 
important suggestions in the proof of Theorem 1. 

(t--2)2 
Added in pr’oof: The conjecture g(3, t) = 2 [ 1 -1 has recently been 

settled in the affirmative by M. Lewin (personal communication). 

References 

ca 
[31 

[41 

l-51 
[61 
[71 

PI 

PI 

[lOI 

Ull 

rw 

P. T. B ateman, Remark 012 a recent lzote 0% linear forms, Amer. Math. Monthly 
65 (1958), pp. 517-51s. 
Alfred Br auer, 0% ayoblem ofpu&tio~zs, Amer. J. Math. 64 (1942), pp. 299-312. 
- and B. M. Seelbinder, On. a probEem of partitions, II, Amer, J. Xath. 
76 (1954), pp. 343-346. 
- and J. E. Shockley, 0% a problem of B’robenizcs, J. Reine Angew. Math. 
211 (1962), pp. 215-220. 
P, ErdGs, Problem P-84, Can. Math. Bull. 14 (1971), pp. 275-277. 
H. Halberstam and K. F. Roth, SeqzLences I, London 1966. 
B. R. Heap and M. S. Lynn, A graph theoretic algorithm for the solution of 
a linear diophantilze equatio%, Numerische Math. 6 (1964), pp. 346354. 

- 0% a linear diopha+ttine problem of B’robemius: an improved algorithm, 
hrumerisohe Math. 7 (1965), pp. 226-231. 
S. M. Johnson, A linear diophantirte problem, Can. J. Math. 12 (1960), 
pp. 390-398. 
M‘. Kneser, Absohiitzungen der asymptotischen Dichte van Summennze~~gew~, 
Math. Zeitschr. 58 (1953), pp. 459-484. 
N. S. Mendelso hn, A linear diophantine eqzcation. with applicatioss to m~vne- 
gut&e matrices, Ann. N. Y. Bead. Sci. 175 art. 1 {1970), pp. 287-294. 
M. Nagata and H. Matsumura, SGgaku 13 (1961-62), p. 161; Math. Rev. 
25 no. 3#2386 (1963). 

HUNGARIAN ACADENY OF SCIENCES 
Budapest, Hungary 

BELL TELEPHONE LABORATORIES. INCORPORATED 
‘Murray Hill, New Jersey 

Received on 25. 8. 1971 WO) 


