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In the present note I discuss some unsolved problems in graph theory and
combinatorial analysis which I have thought about in the recent past. I hope
that at least a good proportion of them are new.

First I introduce some notation. G(r; k) will denote a graph of n vertices
and k edges. C, denotes a circuit having r vertices, K; denotes the complete
graph of [ vertices, A graph is said to have girth k if it contains a C, but no C;
for I < k. A clique is a maximal complete subgraph (i.e. it is a complete
subgraph which is not properly contained in any larger complete subgraph).
K,(p;s ..., p,) denotes the complete r-chromatic graph where there are p;
vertices of the jth colour and any two vertices of different colour are joined
by an edge. By an r-graph G we shall mean a graph ..hose basic elements
are its vertices and r-tuples; for r =2 we obtain the ordinary graphs.
G (n;k) will denote an r-graph of n vertices and k r-tuples. A set of r-tuples
is called independent if no two of them have a vertex in common. ¢, ¢y, €3, ...,
will denote position absolute constants.

1. In the colloquium on graph theory at Tihany, Bollobas and I stated the
following problem: is it true that every graph of n edges contains a subgraph
of at least cn®/* edges which has no rectangle? Folkman (in a letter) gave the
following counter-example. Let the vettices of our G be Xy, ..., Xp} Vis o1 Vin2s
every x is joined to every y. This graph has m® edges and it is easy to see that
m

2
ment is false for m? + (;n) edges)

every subgraph having m? + ( ) + 1 edges contains a rectangle (this state-

Perhaps our conjecture is true with cn?? instead of cn*/%, but I cannot even
prove it with cnt*¢ (ent is trivial).}

2. Is it true that cvery graph of 5n vertices which contains no triangle can

t Note added in proof: Szemerédi proved en’?,
97



o8 P. ERDOS

be made two-chromatic by the omission of at most n? edges? It is easy to see
that if this is true it is best possible.

3. I proved that if k < cn then every G(n; [2#*] + k) contains k edge-
disjoint triangles. The proof uses the following theorem of Gallai and myself:
every G(n;[4(n — 1)*] 4+ 2) which has chromatic number 3 contains a
triangle.

I first thought that the theorem might hold for very much larger values of &,
but Sauer showed by a simple example that this is not so. Let the vertices of
G be Xy, ooy Xp3 ¥is ooes Yni 215 ---5 Z4. EVery x is joined to every y and z, every y
is joined to every z, and any two z's are also joined: This is a G(2rn + 4;
(n+ 1D*+4n+2) or k =4n+ 2, and it is not difficult to prove that G
contains only 4n + 1 edge disjoint triangles.

It would be interesting to determine the largest value of k& for which our
result holds; our proof only gives small values of & < cn(c < 4). Perhaps the
following result holds: to every ¢, there is an f(¢;) so that every
G(n; [4n*] + k), k < ¢, n contains at least k — f(c,) edge disjoint triangles.

In view of my theorem with Gallai the following question could be asked:
what is the smallest integer u, so that every G(n;u,) which has chromatic
number > r, contains a triangle? u, = [1n*] 4+ 1 (this is the well known
theorem of Turdn) and u; = [3(# — 1)*] + 2. u, is unknown [5].%

4. We proved that every G(u; (" ; .

is best possible. I showed that for n > ny(k) every

A2+ (37)+1)

contains a C,_,. My proof is not quite trivial. The result is easily seen to be
the best possible. It would be interesting to determine or estimate ny(k) [6].

) + 2) is Hamiltonian and that this

5. Rényi and 1 considered the following problem. Determine or estimate

the smallest f(n) for which all but 0((%})) of the graphs G(n;f(n)) on n

labelled vertices are Hamiltonian. This question seems to be difficult. Recently
Moon and Moser and 1. Palasti proved f(#) < cn®/?, but it seems certain that
S < ntte[24].

6. Denote by g(3,n) the smallest integer for which there is a graph of

g(3, n) vertices which contains no triangle and has chromatic number n.
It is known that

¢, n?lognfloglogn < g(3,n) < ¢, n?(logm)% (0

It would be desirable to improve (1) and to give an asymptotic formula for

t Note added in proof: Simonovits determined u,.
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g(3, n), also it might be of some interest to prove
Iim g(3,n + D)/g(3,n) = 1.
Denote by f(/, n) the smallest integer so that every graph of f(/, n) vertices
either contains a K or a set of n independent points. It is known that
ey n? lognjloglogn < £(3, n) < c, n*(logn)>. @)

It would be desirable to improve (2) and to obtain an asymptotic formula
for (I, n). 1 cannot even prove

lim f(l,n + 1)/f(,n) = 1.

Recently Yackel proved

2
s < s ) [ ®
I proved by probabilistic methods
fln,n) > 22, 4)

It would be very interesting to prove that
lim f(n, n)*"

exists and to obtain a non trivial lower bound for f(n, n) by non-probabilistic
methods [4], [13], [27], [30].
Yackel’s proof of (3) will appear in the Journal of Combinatorial Theory.

7. Clearly every graph can be directed so that it should contain no directed
circuit. The following problem is due to Ore. Let G be a graph. We want to
direct its edges so that it should contain no directed circuit, and further, that
it should contain no circuit which becomes directed if one reverses the
direction of one of its edges. What is the necessary and sufficient condition
that G can be directed in such a way?

Clearly G can contain no triangle. At first one may guess that every G
which contains no triangle can be directed in such a way, but Ore showed
that this is not true.

Gallai showed that the graph of Grotsch (Fig. 1) gives a counterexample.

I could find no graph whose girth is greater than four and which cannot be
directed in such a way,

The graph of Grétsch is 4-chromatic and has no triangle. Perhaps it is the
only graph of not more than 11 vertices with this property.}

1 Note added in proof: 1 learned that this is known to several mathematicians.




100 P. ERDOS

8. Hajnal and I conjectured that every graph of infinite chromatic number
contains a subgraph of infinite chromatic number which contains no triangle
(or more generally has girth > k). If our graph is the infinite complete graph
this is a well known theorem of Tutte.) We also formulated the finite version
of these conjectures: is it true that there is an f(k, r) so that every G having
chromatic number > f(k, r) contains a subgraph of girth > k and chromatic

number »?
1

FIGURE |

Finally we asked: let m be an infinite cardinal and G be an m-chromatic
graph. It is true that G has a subgraph of chromatic number m which contains
no triangle? If G is the complete graph of power m this is a result of Rado
and myself,

Perhaps these problems could be formulated for connectivity instead of
chromatic number, e.g. is it true that if G remains connected after the
omission of any finite set of its vertices and all the edges incident to them,
then G has a subgraph with the same property and which has girth > k? [3],
[22}.

9. Moon [32] proved that if » = 3k + 2 > 8 and we colour the edges of
a K, with two colours, then there are always k vertex disjoint triangles whose
edges have the same colour (different triangles can have different colours).

Let (/) be the smallest integer with the property that, if we colour the
edges of a K, with two colours, then there are always [n//] — f(J) vertex
disjoint K's all of whose edges have the same colour. Ramsey’s theorem
implies (/) < 4° but it seems certain that f(/)'"' — 1 and perhaps f(/) < ¢/,
or f(/) is bounded.

How many vertex disjoint K,’s are there, all edges of which have the same
colour? (Here different K;’s must have the same colour.) It is easy to see that
for I = 2 the answers is 42 + 0(1) [31].
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10. Denote by log, n the r-fold iterated logarithm and let L(#) be the
smallest integer k for which 1 < log,n < e. I state two simple problems in
graph theory, which seem to lead to this function L(»n). Moon and Moser
proved that if f(n) is the largest integer for which there is a graph of n vertices
having f(n) cliques of different sizes, then

logn logn

s — = 1
n Tog2 loglogn < f(n) <n log2 (D

logn
I improved the lower bound to »# — lo% — L(n), but could not improve

the upper bound.

Bondy considered the following problem. Denote by h(n) the smallest
integer for which there exists a G(n; n + h(n)) which contains a C; for every
3 £ k < n. Bondy proved (not yet published)

logn logn
E;g-é < fi(ﬂ) < @ + L(ﬂ), (2)

It seemed to us that in (1) the lower bound, and in (2) the upper bound, is
close to the truth but we could not even prove [12]
logn

logn
h(ﬂ —‘Eg"i—'ﬁo, ﬂ“@ f(n)—»oo

Bondy’s paper is not yet published.}

11. Goodman, Pésa and I [18] proved that every G(n;k) is the union of at
most [$1?] edge-disjoint complete graphs, where in fact the complete graphs
can be chosen as edges and triangles. It is easy to see that [412] is best possible.
We thought that for k > }»* our theorem could be sharpened. Lovasz proved

in this direction the following result: put e = (g) — k and let ¢ be the

largest integer for which 2 — ¢ < e. Then G(n;k) is the union of e + ¢
complete subgraphs. For e = ¢? and e = 12 — ¢ the result is sharp.

Lovész does not assume that the complete graphs are edge disjoint and
observes that the result no longer holds if edge disjointness is insisted upon.
In this case no satisfactory non-trivial sharpening of our theorem is known.

Gallai and I considered the following further problems. Is it true that every
connected graph of # vertices is the union of [4(n + 1)] edge disjoint paths?
Lovész proved this if all the vertices of G have odd valency.

Denote by /(n) the smallest integer so that every graph of n vertices is the

logn

t Norte added in proof: Spencer proved f(n) > n — Tog 2

- C.
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union of /(n) edge-disjoint edges and circuits, We showed A(n) < cnlogn,
but probably A(n) < ¢,n. K,(3,n — 3) shows that h(n) > (1 + ¢,) n. Perhaps
every graph of n vertices is the union of n — 1 edges and circuits if we do not
require them to be edge disjoint [29].

12. 1s it true that cvery G(n; [n'**]) contains a subgraph which is non-
planar and has at most ¢, vertices? It is not difficult to see that ¢, — o0
ase— 0.

13. It is well known that G(ir; k) can be planar only if k < 3n — 6, A planar
graph G(»n; 3n — 6) is called saturated. A theorem of Turan implies that every
G(n; [4n*] + 1) contains a triangle, i.e. a saturated planar graph of three
vertices. It is easy to construct a G(n; [3#°1 + [4(n — 1)]) which contains no
saturated planar graph of more than three vertices; perhaps this example is
the best possible, and every G(n; [2n*] + [4(n + 1)]) contains a saturated
planar graph of more than three vertices. Simonovits has just proved this
conjecture [15], [34].

14. T. Gallai and I proved that if

M

;>(k-1}n—(k”)

2

then G(n; f) contains k independent edges.
1 proved thatif n > 400%* and

2
!‘;((n-*kﬁ-l)

= )+(k-l)n-—(k—l)z+(kzl) @

then G(n; [) contains k vertex independent triangles.
Pésa and I proved that if n > 24k and

I>Qk—1)n—2k2+k 3)

then G(n; /) contains k independent circuits.

It is easy to see that (1), (2) and (3) become false if the inequality is replaced
by equality.

It would be desirable to improve (2) and (3) so that like (1) they would be
valid for all n, but 1 have not succeeded in doing this, and did not even
formulate a reasonable conjecture,

Denote by f(n;r, k) the smallest integer so that every G (n;f(n;r, k))
contains & independent r-tuples. The value of f(n; 2, k) is given by (1).

Denote by g(n;r,k — 1) the number of those r-tuples formed from the
elements x,, x5, ..., X, each of which contains at least one of the elements
Xyy ooy Xg—q. Clearly f(n; r, k) > g(n; r, k — 1).
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Iproved thatforn > ¢, k

Sonky=1+gln;r,k—1).
Perhaps

S(n;r, k) =1+ max ((rkr— l),g(n;f‘,k - 1))— (4)

If r =2, (4) is true and becomes (1), but T could not even settle r = 3 [11],

(171, [21].
J. Moon, found a simpler proof of (1) and (2).

15. Recently several papers were published on extremal problems in graph
theory; here I want to mention only a few of them. Let G’ be a graph. f(; G')
is the smallest integer so that every G(n; f(n; G')) contains G’ as a subgraph.
Kévari, the Turdns and independently I, proved that

S Ky(r ) < e m?7H M
It would be very desirable to prove that
Fins Ks(ror)) 20/ 0?00, )

(2) is known for r = 2 and r = 3 but no good lower bound is known for
r = 4. For r = 2, Brown, Mrs Turdn, Rényi and I in fact proved

F(n; K(2,2)) = (1 + o(1)) n*?)2. 3)

Perhaps if G is a graph of n vertices which contains no triangle and rec-
tangle, then it has at most (1 + o(1))n?/2,/2 edges.
Very likely
ptllg L e e Oy w1 )

The upper bound is not hard to prove but the lower bound is not known
forr > 2.

Let G, be the following graph: its vertices are x;yy, .., %3 21 s 2(%),
x is joined to every y, and every z is joined to two y's; distinct z’s are joined
to different pairs. Perhaps

S(n; Gy < ¢ nP, (5)

I proved (5) for k = 3, but had no success with k > 3. f(n; G,) > cn®?
is trivial, since for k > 3, G, contains a rectangle (i.e. a K,(2, 2)).

Simonovits and I tried to investigate f(n; G, — x) (i.e. we omit from G;
the vertex x and all edges incident to it). It seems likely that f(n; G, — x) =
0(n*%) and in fact we conjecture

f("; Gk - x) < pt312) - (6)
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but we could prove none of these results, We showed that to every ¢ > 0
there is a K, so that

S(n; Gg, — x) > n¥/B7¢ D

The proof of (7) is not published.

Perhaps the most interesting unsolved problems in this field are the original
problems of Turdn which are perhaps not sufficiently well known. Therefore
I restate them here: denote by g(n; k&, ) the smallest integer so that if |[S| = »
and A,, ..., A, 5 = g(n; k, I) are subsets of S, |4;] = k,1< i < s, then there
isa B c 8, |B| =/ all of whose subsets of k elements occur amongst the A4’s,
Turan determined g(n; 2, /) for every /, but for ¥ > 2 the problem is unsolved.
It is easy to see that

tim 9603 k) ()

n=w

exists for every k and J, but for k > 2 the value of the limit is not known.
In particular Turdn conjectured

g(3n;3,4) = 3n(;) +1,  g(2n;3,5) = zn(‘;) +1 ®)

but the proof of (8) seems elusive [2], [10], [14], [25], [33]. [34].

16. Rado and I considered the following question: let f(n;k) be the
smallest integer so that if 4;, 1 < i< f(n;k) |4, = n are sets, then one can
always find k. A’s which have pairwise the same intersection. We proved

k= D" < f(n; k)

\ 1 2 ?l-—l
<nlk - )+t (1 T2k =1 3k-1¢ T Ak - l)”_l) "

We conjectured that

S k) < ¢ @

Abbott improved (1), but (2) is far from being settled. Recently Sauer
determined f(2; k) (not yet published).

(2), if true would have several applications in number theory.

Rado and 1 also investigated these questions if #» and & are infinite cardinal
numbers, but all the problems can then be solved completely.
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Finally, the following question could be considered: let g(n; k) be the
smallest integer so that if |S| = n, 4; © S,1 < i < g(n; k) then one can always
find k A's which have pairwise the same intersection. Determine or estimate
g(n; k); compute Ji_n;g(n;k)”" [17, [23].

17. Let {A4,}, UA, =S, |4, = 2 be a set system. This set system is said

to be A-chromanc if one can divide S into k disjoint sets S, U S =8
i=1

so that no A4, is contained in any S; and such a division into less than k sets
is impossible. (A set system is thus two-chromatic if it has property B accord-
ing to Miller.) I conjectured and Lovész proved that if |4;] = 2 and for every
S, < S there are fewer than S; A’s contained in S, then the chromatic number
of the system is 2. The Steiner triplets of # = 7 show that this result is best
possible (even if [4;] > 2).

Probably the following result holds: there is a constant ¢, ¢, — o as
t — oo so that if {4} is a set-system, |4)] > 1, and for every S; = S there
are fewer than ¢,|S,| A’s contained in S,, then the system has chromatic
number 2.

Lovész proved that if [4,] = r > 2 and the set system is k-chromatic and
docs not contain all the r-tuples of a set of (k -ll) (r — 1) + 1 elements, then
there are k A’s any two of which intersect in the same element. Thisis a general-
ization of a well-known theorem of Brooks.

Is it true that if [A,] = # and the system is three-chromatic then there is an
element which is contained in at least (1 + ¢)* 4,’s? [20], [29].

18, Let |S|=m,A; = §,1 i</, Assume that no A; is the union of
other A’s. Kleitman and I observed that (unpublished)

€ 27/ < | < ¢, 2°nP1?
Probably there is a ¢ so that
max/, = (1 + o(1)) 2"/,

19. Let |S]=n4,c8,1<i<u,|4]=3. Assume that any subset
S; « §,|S;] = 6 contains at most two A’s. How large can u, be? No doubt
u, = o(n?) and I expect that u, < n>~° for some ¢ > 0.

Let |S|=n4;<§,|4] =3,|A,n 4] < 1. It is easy to see that there
always exists an S, < S, |S,| > ¢;+/n so that no A; is contained in S, but
the above result becomes false if ¢,/n is replaced by ¢, n*. A set S, is
called independent if no A4 is contained in it. Denote by f(n) the minimum of
the largest independent set where the minimum is extended over all possible
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choices of the sets 4;, |4, = 3, |4; n 4] < 1. Asstated ¢,\/n < f(n) < ¢, n*°.
Improve the estimation for f(n).

Hajnal and I considered the following question: let S have the clements
X1y X, To cach couple (x,x;) make correspond an element Xx;,
x, = p(x;, x;),r # i,r # j. A set §; c § is said to be independent if for any
x;€Sy,x;€8,p(x;, x;)¢S,. Denote by g(n) the minimum of the largest
independent set where the minimum is taken over all functions p(x;, x;).
We proved

e, n'? < g(n) < e;Vnlogn.

Improve the estimations of g(n) [20].

20. Kleitman proved the following conjecture of mine. Let [S| = n, 4; = S,
I € i< k. Assume that the union of two A’s never equals a third. Then

n
maxk = (1 + o(1)) ([iﬂ]) ; 4}

Moser now asked: let A, ..., 4, be k arbitrary sets. Denote by f(k) the
largest integer so that for every choice of the k sets there always are f(k) of
them A4;, ..., 4;,,, so that the union of two of them never equals a third.
Riddel observed f(k) > ¢,+/k andrecently Komlds and I showed f{k) < ¢, /k.

Moser’s beautiful question can clearly be modified in various ways. It can
also be given a number-theoretic interpretation, e.g. let a; < ... <a, be k
integers, let g(k) be the largest integer so that one can always find g(k)
integers a;, < ... so that the sums (or products) of any two are distinct (or
never equals a third etc.) [9].

21 Let |S|=n k<nf2, A, =S, 1<i<r, |4l =k<n2, |4,nA4) >

1,1 £i< j<r Ko, Rado and I proved that then max r = (;: : i) In fact

the same result holds if instead of |4;] = k we only assume |4;] < k, 4; ¢ 4.
Let us now assume |4; N A4;] = s > 1. What can be said about max r?

If n is sufficiently large we proved that max r = (; : i), but Min showed

that this is not always true and there does not seem to be an easy way to
determine max r. Denote max r = f(n; k, 5). We conjectured [16]

s = ((55) - (5)) [

It is easy to see that

rax2e2> ((3) - (5))/[2
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22. Szekeres and I proved that if x,, ..., X,.24, IS any sequence of distinct
numbers one can always find # + 1 of them which form a monotonically
increasing or decreasing sequence; it is easy to see that this theorem is false
for n? numbers.

I now asked: let £(b) be the largest integer so that every sequence of distinct
numbers X, ..., X, can be decomposed into the union of n monotonic
sequences. Hanani proved that

]
sy =202,

As far as I know the following question is not yet settled.-Let x, ..., x,
be a sequence of distinct numbers, determine max (3 x;,) where the maximum
is to be taken over all monotonic sequences [26], [28].

23, Let |A]=nl1<i<l]<c2"

i
UA,,] =N. Is it true that if
i=1

1 > nglcy| there are ¢;2%(c, = c,(c;)) subsets B of { ] 4, which have a non-
i=1

empty intersection with every A; but which contains none of the A;'s? If
f=2"1 cannot even prove the existence of a single such set B [8].

24. Let the vertices of K, be x,, ..., x,. Denote by (/,j) the edge joining
x;and x;. Let f(1, /) = £ L1 <i<j<n Put

H(r) = min (max .76 ) 1)
I Kr

where in (1) the maximum is taken over all complete subgraphs of
K, (1 € r < n), the summation is extended over all the edges of K, and the

minimum is taken over all the 2(2) functions f(i, j). I proved [7]
1 312
7 SHO) < o™, @

It would be desirable to improve (2).F
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