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SOME NUMBER THEORETIC RESULTS

(In memery of our good friend Leo Moser)

P. Erpos axp E. G. BTRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod ») so that the sums of
different numbers of elements are distinet,

In the second part irrationalities of Lambert Series of
the form % f(n)fa - 0. are obtained where fin) = d{n), #(n)
or o{n) and the ¢ are integers, a; = 2, which satisfy suitable
grawth conditions,

- This note consists of two rather separate topics. In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a maximal set of residues
{mod p) such that sums of different numbers of elements from this
set are distinet. We show that the correct order is cp'” although we
are unable to establish the correet value for the constant e.

Section 2 consists of irrationality results on series of the form
Efin)jaa.---a, where f(n) iz one of the number theoretic functions
d(n), o{n) or @(n) and a, are integers = 2. For f(n) = din) it suffices
that the a, are monotonie while for #(n) and ®(n) we needed additional
conditions on their rates of growth.

1. Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums, In an earlier paper
[4] one of us has given a partial answer to the guestion:

What is the maximal number » = f(x) of integers a,, «++, a, so
that 0 < o, € @, < <+« < ¢, = # 4nd 2o that

Qiy + **+ F B, = @y + v+ 4+ 8y, for some 1=4; < «++ < 4,
1=, <+ <4,

implies & =7 it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 21« integers of the interval (1, z).
We were indeed able to prove that f(z) < eV 2 for suitable ¢ (for
example 4/1°°3) by using the fact that a set of n positive integers
has a minimal set of distinet sums of t-tuples (1 = ¢ = n) if it is in
arithmetic progression.

It is natural to pose the analogous question for elements of cyclie
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5]. Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p*".
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Conjecture 1.1, Let f{p) be the maximal cardinality of a sst
of residues mod p so that sums of different numbers of residues in
this set are different, then fip) = (4p)'" + o(p'®) where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)'" + o(p'™) containing the residue [(p/2)'"].

It is easy to see that we can indeed get a set of about (4p)"”
residues by taking the residues in the interval ([(p/2)"" — (4p)'"],
[(e/2)"]). Here sums of distinet numbers of elements are distinet
integers, and since all sums are < p it follows that they are distinct
residues,

The observation which let to the upper bound in [4] is much less
obvious (mod p):

Conjecture 1,2, A set 4 = {a,a, ++-, a;} of residues {(mod p)
has a minimal number of distinet sums of subsets of ¢ elements if A
is in arithmetic progression.

Conjecture 1.2 would give us a simple upper bound for f(p):

CorornarRY 1.8, If Conjecture 1.2 holds then

Fip) < (6p)"™ + o(p'™) .

Proof. The sums of t elements from the set of residues
{1r2r "':k_ 1! k}
fill the interval ((*{'), tk — (%)) that is to say there are tk — £ + O(f)
such sums. Since for different ¢ we get different sums we must have

p= ;:{ﬁc — 8+ ) = % + O(k*)

and hence k < (6p)'" + o(p'?) .

Using methods employed by Erdos and Heilbronn [2] we can show
that f{p) = O(p"*). We use the following lemma from [2].

LEMMA 1.4, Let l<m=1<p/2 and let B=1{b, +++, b}y 4=
{a, +++, a,} be sets of residwes (mod p). Then there exists an a,éA
such that the number of solutions of a; =b, — by b;, bye B iz less
than 1 — m/6.

We now ecan get a lower bound for the number of distinet s
of ¢ elements from a set of residues.

LEvMMA 1.5, Let A ={a, ---,a) be a set of residues (mod .
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A =ty + o o |1 Si < ooe <H Sk} then for 1=t k/4

(t—1ym  tHt—1)
| A | =1+ B 5

[ []
2 2
Proof. We divide the set A into two disjoint sets

A= Iair L *“,ﬂ-;i,B = {'E‘u by, ==+, b}

‘and prove the inequality (1.6) for the subset of A, consisting of the
‘sums

AF ={a; + By + b, + o0 + byo,, ey =000 1},

where the b, are a suitable ordering of the elements of B.
The inequality holds for ¢ = 1 since
A*={o}=Aand |A|=1.

Now assume that (1.6) holds for A4,* with ¢t = (m/2) — 1. Then the
set A,* + b,c A%, and according to Lemma 1.3 there exists a
bJ'E [bﬂi-h Bartas * =4y b’}f say bi = by, 80 that the eﬁ“ﬁm
i bﬂ+1—b=:=ﬂf—ﬂ?1 at, G?EAT
has no more than|A?| — §(m — 2t) solutions. Hence the set
((Bsess — o) + (AY + b)) N (AT + by)
containg no more than A — }(m — 2{) elements and
|A!*-||| = HA: + by U (AT + b:]l
= |AT| + Hm — 2¢)
=1 o A [ ee e O R R
=1+ g B + 5 m -
tm (¢ + 10
6 6

i Tk
This completes the proof.

THEOREM 1.7. The mazimal number f(p) of a set A of residues
(mod p) so that sums of different nwmbers of distinet elements of A
are digtinet satisfies

(1.8) (4p)" + o(p'") < f(p) < (288p)"* + o(p"") .
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Proof. According to Lemma 1.5 there are at least
k2 + k(t — 1){12 — )6 + O(t)

distinet sums of ¢ elements (and hence, by symmetry, sums of bk — ¢
elements) for ¢ < [k/4] out of a set A with k elements. Thus if A
has the desired property we must have

P2 i (k/2 + k(t — 1)/12 — t/6) + O()

— 2k _._3;4 = _;. 'E;T + O() = J'/288 + Ok) .

Thus
J(p) < (288 p)'" + o(p'") .
The lower bound for f{p) was established above.

2, On some irrational series. One of us [1] proved that the
series 3,7 d(n)t—" is irrational for every integer ¢,|¢| > 1. In this
section we generalize this result to series of the form

: _ < _ dn)
(2:1) e
where the a, are positive integers with2 = o, = @, =-+- . It is clear
that we need some restriction, such as monotonieity, on the a, since
the choice a, = d(n) + 1 would lead to £ = 1.
We divide the proof into two cases depending on the rate of
increase of a.. The first case is very similar to [1].

LeMMA 2.2, The series (2.1) 48 drrational if there exists a d > 0
g0 that the ineguality a, < (log n)~" holds for infinitely mony values
of n.

Proof. Let n be a large integer so that e, < (log n)*~°. Then
by the monotonicity of a, there exists an interval I of length =n/logn
in (1, #) so that for all integers iel we have a; =¢ where ¢ is a
fixed integer, ¢ = (log n) %

Now put & = [(logn)"'] and let p, p, +--be the consecutive
primes greater than (logn)®. Let

A = liitilr[l}'l"[l.l! p{}t

A < (2(log n)f)t ks o ghesaii=Hlog s 118

< gliogmiii |

then

(2.3)
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By the Chinese remainder theorem the CONETUBNCES

z=p,'(mod p,')
z+ 1 = (pp)' " (mod (pg))

t+k—1= [Iﬂ.?.-."'ﬁ..;—;]'_’ {Md [ ""P-ih—;jr’

here = 1+ k(k — 1)/2, have solutions determined (mod 4). The
interval I contains at least [n/(A log )] solutions of (2.4).
- Now assume that § = a/b and choose xe/l to be a solution of
{2.4) so that (x,z + k)c I. Then
ba’lll‘! ._'_E = intﬁm - ﬁE—{T—“
10 i
sps dztk+s)
'2:"‘ o PR T

‘But (2.4) implies that d{z + ) = 0(mod £'*') for [ =0,1, «++, k— 1.
Thus (2.5) implies that

e s b o diz+ k + a)
2.6 ba, w»riig ¢ = integor + — 3, — " ——_L,
{ } l!1 5 g t. |E=|:| ax—}-j"’a|+i+i
We now wish to show that for sultable choice of @ the sum en
the right side of (2.6) is less than 1 and hence b5 eannot be an integer.
We first consider the sum

b diz + k + .5)
£ >0Taes Gprin o Ousas,
b z+ k4 a a4
oy ——uu—ﬂ:btx+k}n§ o

axitage i

(2.7) <
2hn

1
—— — for 1 .
< o {2 or large

Next we wish to show that it is possible to choose » so that

(2.8) dlz+k+a)<2 for0=s<10logn .
We first observe that

{2.9) @+ k48 A)=1foral 0=as<10logn

since otherwise

(210) z+k+as=0(modp,) for some 1 = 7= k(k+ 1)/2
and
(2.11) @ + 1= 0(mod p,) for some 0 5 i < k.
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But
0<k+s—i<1l logn < (logn) < p,

so that (2.10) and (2.11) are incompatible.
Let @ =, @, + A, --+, &, + 24 be the solutions of (2.4) for which
(w2, + k) = I. From (2.9) we get

[3 o W
,E:‘.od(m,-,+1c+s+wn<2§(-ﬁ+1)

{2.12)
n logn :

A

Thus the number of y's for which d(x, + &k + s + yd) > 24" is less
than e¢n logn/(A4.2%), and the number of %'s so that for some
0=s<10logn we have diz, + k + 5 + yA) > 245 less than

10c n log® nf(A.2") < 12n/(Alogn) < z .

It is therefore possible to choose » = 2, + yd el so that (2.8) holds.
For sueh a choice we get

i;l|lu=n[:ﬂ;1:+—fmj_{:£2h“i_l.
=

th = e G, i 5

<

(2.13)

1
b2= o — |
< < B

Combining (2.7) and (2.13) we see that £ is irrational.

LeEmma 2,14, If there exists a positive constant ¢ so that |a,| >
eflog n)'" for all w then the series (2.1) is drrational.

Note that in this lemma we need not assume the monotonicity
of a, (or even that they are positive, however for simplicity we give
the proof for positive a, only).

Proof. We use two results. The Dirichlet divisor theorem
(2.15) 5 d(m) ~ Nlog N

and the average order of din), [3] I
(2.16) din) < (log n)"=*** for almost all # .

From (2.15) we pet the following.

LEMMA 2.17. Given constants b, ¢ > 0, then for almost all §

tegers
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d{z + ¥) < b(2e)*(log z"'; v = 3, 4, +»+

Proof. If we choose x large enough so that logz > (2bee)'®
en the right side of (2.18) is greater than ¢ which exceeds = + w,
‘hence d(x + ), whenever y > 2log #. Thus, if (2.18) fails to
for sufficiently large x then it must fail to hold for some y with

; }Hnw i!therem e, N integers x below N so that (2.18) fails to hold
then we have more than e N integersz with "N sz N—-2log N

d(z + ¥) > b7 (2e) " (log 2)™"* = b~(2e) (3 log N )"
= b-'(do) Ylog N)"* = c;(log N)*™* ,

-E_Idhﬂ E{'IN‘——E—N—-

= o, N{log N
which contradicts (2.15) for large N.

Combining Lemma 2.17 with (2.16) we find that there exists an
infinite set S of integers x 80 that

¢ (log Ny

(2.21) dix 4+ 1) < (lﬂg ) die + 2) { {lua' i

and (2.18) both hold.
Now assume that ¢ = a/b is a rational value of (2.1) and choose
neS, Then

{2-22] @ ===a, be = intagur 4 ai d!ﬂ -+ F}
il ﬂ“_._-.-a_“'
where

0 d(n + y) & (2e)log n)™! '’
T e Y - el

in contradiction to the fact that the left side of (2.22) is an integer.
Summing up we have

THEOREM 2.23. The series (2.1) is irrational whenever
2E M SO S S S e

With considerable additional effort one can weaken the monotonicity
condition on the a, to a./a, = ¢ >0 for all m > n.
We have not been able to prove the following
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Conjecture 2,24, The =erjes (2.1) iz irrational whenever a,— =,
If we consider series of the form

(2.25) Py ff’f“} o 5 L0
oy (L, TR RO

then we cannot make conjectures analogous to 2.24 since the choice
ay = @{n) + 1 o ¢(n) + 1 would make these series converge to 1. It
is reasonable to conjecture that the series (2.25) must be irrational if
the a, increase monotonically, however we can prove this only under
more restrictive conditions.

THEOREM 2.26. If {a,) iz a monotonic sequenmve of integers with
a, = #% for all large n thew the series in (2.20) are trrational.

For the proof we need the following simple lemmas,

LEMMA 2.27. Let {m,) be o segitence of positive integers with
a, = 2 and {b.} a sequence of positive integers so that b,., = o(@.desi)s

If
(2.28) f=3

is rational then a, = O(b,).

Progf. Assume § = a/b and choose N so that for all # > N we
have bb, < @, ,a./4. If there existed an n > N so that a, > 2hb, then

we would have

bty =+ + @y & = @ity =+~ a1,, = intager + EL
o SRR S

but

“ {ﬁ 'Elbi-l-i = b'bn + i Mn .4 - I-
= Gyttt g T, gl RN E S RN LS E

<3+EZEF=1,

a contradiction. Thus a, = 2bb, for all large =.

Lemma 2,29, If the series (2.28) iz vational, say &= a/b,
by = ola,,.,), then there exists a sequence of positive integers {e,) 80
that for all large n we have

(2.30) 0b, = €u0 — Cutrr 0 < Cpsy < Gy GRA Cupy = ola,) .

Conversely, if these eonditions hold then the series (2.28) is rat
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Proof. Choose N so that for all » > N we have bb, < a.a..,/d.
_Ifﬁr-‘llgﬁchmm:.,n..,mthat

bb, = c.. — €aiy s ¢y >0

A ﬂ ] TR
ﬂ'.‘-. v Cabs

bb-r*l = “'-"--'.a-H. = :-: 1 C:,.-l =0

0{el;-l {uir:-

bﬂu"”aqu:f = Qi+,

= integer + e 4 Bhusy | 5 by
., a.4,.. LR SR - S
= integer — Gati 4 ooy _Cuus
a, a. ally sy
;‘; bb, .,
ﬂl* "'ani-i'
= integer — =i o Cast _ _Cosy +i.
i, a, a,m,.. i,
0<t<h.
1 aten
—| = Cuys + 44y ==L 4 0] = integer
EI 'a"ll"rl

and since 0 <e,, <0, 0<c,,, S 0./4] +10< e, Ja,.. <1,

D<y {éf thiﬂ' is Pﬂﬂﬂib}& DII]Y if Caty = E:ﬂ*
Now choose N so large that bb, ., <éea, a,,, for all > N, then
from (2.31) we have

a . bb,
mtmr:___hl__'_ (2 ] |+|+‘
'Zﬂ-'“- 1'““-&1 ; "‘"'a-t-l-l
< — e
@,

Thus ¢,., < 2ea, for all w> N.
If condition (2.30) holds for all n = N then

T bb, =5 60— uny
=N @eead, ==X @ e,
iy .c"fri-i(

L 4 @yerelly Oy By,

iy
Oy vn= iy
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is clearly rational.
Finally we need a fact from sieve theory. We are grateful to
R. Miech for supplying the correct constants.

LEMMA 2,32, Given an integer a and >0 then for large y the
aumber of integers m satisfying

m=0,m=a(mod p)
for all primes p, with 2 <p<y" excoeds 3.

Proaf of Theorem 2.26. Let fin) stand for either a(n) or @(n)
and assume that

$ S a

=

=iaeeran b

Since a, > n'"'™ for large n the hypothesis of Lemma 2.29 is satisfied
and we get

(2.33) bf(n) = e.a, — e,y for large = .
Bince fin) = o(n'**) for all £ > 0 we get

{2.34) e, < n''v for large n .
From Lemma 2.28 we get

(2.35) a. = 0(f(n)) = O(n'"")

and hence the number of integers n = x for which

R

a,

is O(x""), since otherwise we would have

a 1
a,= [ 22> +27' >
TN

for large @, in contradiction to (2.35). From now on we
attention to integers m for which

(2.36) Bari ] 4 '8,
a,

For such integers we get from (2.93) and (2.95) that
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o e U LS

= %{1 + O(n=1) (1 4+ O(n—11%+4))

= Ban + O(n-+7)
i

Now consider a prime ¢, 4 " = g = 2", then according to Lemma
- 2.32 there exist more than y'~ integers m < y = 2" g0 that

(2.38) m# 0, m = — 2q (mod p)

for all primes p with 2 < p < '*. We may even assume that m is
odd. The number of integers n = 2gm where m satisfles (2.38) exceeds
2= > ¢ and hence we can pick such an u that satisfies (2.37)
with #/2 < n < =z,

Now
S(n) = f(2q)f(m)
where
MtV gpra0
fl2e) _ ) 24

in either case
{(2.39) f(2g) = Alg, A an integer not divisible by ¢.
Since m has at most 5 prime factors all exceeding ¢ we have

1=y < ﬂ—ﬂ:‘] <@+

(2.40) F{m) = m(l 4+ O(") = m (L + O(x")) .
By the same reasoning we get
(2.41) fin + 1) = n(l + O@="")) .

Substituting (2.39), (2.40) and (2.41) in (2.37) we get

{2-42] f{“ + 1} _ {1 e mz—!ﬂl}} — -H + O'{ﬁ"”’":l
Fim) Cy

But since g > '™ and ¢, < &' we get

(2.48) ._Ls|£ _fLan

{: ﬂ'—ljll + N
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Since ge, < xV/" 0 = g% this leads to a contradiction.

We eould get similar irrationality results if the funetions a(n) or
@(n) are replaced by o n)(k = 1) or products of powers of a,(n) and
@(n). In each case we would need the assumption that the a, are
monotonic, inereasing faster than a certain fractional power of the
numerators.

From Lemma 2.29 it iz clear that there is a set of power 2% of
series (2.25) which are rational even if we restrict the integers ¢, to
the values 1 or 2 since for ¢, =1 we can choose o, = a(n) — 1 or
ag{n) — 2 to get ¢, =1 or 2 respectively and for e, = 2 we choose
a, = [(o(n)-1)/2] to get .., =1 if o(n) is odd and ¢,,, = 2 if a(n) is
even, For the series with numeraters @(n) we would have to use
e, = 1,2 or 3 since all @(n) are even for n > 2,
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