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1. Introduction 

There have been several instances where some particularly well-chosen 
symbol has enhanced the development of a branch of mathematics, and the 
partition symbol 

a + (%, air (1.1) 

invented by Richard Rado is a case in point. By definition, (1.1) means that 
the following relation between the ordinal [or cardinal) numbers ~1, aO, ai 
holds: If A is an ordered set of order type a {we shall write tp A = a) and if 
[A]’ = {X c A : 1x1 = r} is partitioned in any way into two sets K, and K,, 
then there are p < 2 and A’ c A such that tp A’ = a, and [A’]’ c K,. Erdds 
and Rado were the first to realize that a large number of seemingly unrelated 
problems in set theory could be reduced to a question of deciding whether or 
not some partition relation like (1.1) holds. In (5) and (6) they began a sys- 
tematic study of these relations and laid the foundations of what they called a 
partition calculus to serve as a kind of unifying principle in set theory. Since 
these two pioneer papers several others have been written on the subject. In 
particular we refer to the long paper by Erdos, Hajnal, and Rado (3) which 
contains an almost complete analysis for partition relations involving infinite 
cardinal numbers. Rado’s compact symbol (1. l), which reveals at a glance the 
whole content of a fairly complicated combinatorial statement, proved to be 
particularly convenient and flexible for the development of this calculus. Apart 
from the merit of compactness, the symbol enjoys other advantages. The 
negation of any statement (1 .l) is conveniently expressed by replacing the 
arrow + by a non-arrow c+. The symbol has the following obvious monotoni- 
city properties, if a’ 2 a, /I’ < p and y’ < y, then (1.1) implies that 

a’ --f (p’, y’)‘. 

The arrow in (1.1) separates the two kinds of monotonicity involved and this is 
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helpful in recognizing which relations are best possible. Finally, the symbol 
readily lends itself to a number of interesting generalizations (see (6) and (3)). 

In this paper we investigate one of these generalizations, the so-called 
polarized partition symbol. We consider only the simplest of such relations, 
namely those of the form 

(1.2) 

By definition, this means that: If A and B are ordered sets, tp A = SI, tp B = 8, 
and ifthe Cartesian product A x B ispartitioned in any way into two sets K, and 
K,, then there are p < 2 and sets A’ c A, B’ c B such that tp A’ = x0, 
tp B’ = j?,, and A’ x B’ c K,. If one considers instead, partitions of [A]’ x [B]” 
for arbitrary integers r, s, the corresponding relation is represented by replac- 
ing the exponents I,1 in (1.2) by r, s ; these more general polarized relations 
clearly include the ordinary partition relations (1.1). Since we only consider 
relations with the exponents 1 ,l, for the remainder of this paper we shall omit 
these from (1.2) and simply write 

1 
;) 4 (;1” ;f’). 

0 1 

Note that, as for the ordinary partition symbol, the negation of (1.2) is ex- 
pressed by replacing + by ++. Also, we have the same monotonicity proper- 
ties: if cI’ > c(, /Y 3 b, r,’ < up, BP’ < p, (p < 2), then (1.2) implies that 

Polarized partition relations were first introduced in (6) and in (3) a number 
of these relations involving cardinal numbers were established. As we already 
remarked, the theory for the ordinary partition relations involving cardinal 
numbers is fairly complete, but for polarized relations the situation is very 
different. There remain unsolved problems involving only the smallest trans- 
finite cardinal numbers. For example, it is not known if the relation 

is true or false. In this paper we shall establish relations of the form (1.2) 
which involve ordinal numbers. 

As a starting point for our investigation we mention the simple, but slightly 
surprising, negative relation 

(1.3) 

proved by Milner and Rado (9). This asserts that, if tp S = ,? < u,+i, then S 
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is the union of K, ‘small’ sets A, (n < o), i.e. 

S= UAn 
Pl<CO 
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and tp A,, c o”, (pl< w). If we put B, = A0 u ,. . u A,, (n -=c co), then the sets B,, 
are also ‘small’ (tp B, K w”.) and the union of any K. of these is the whole set 
S. This fact may be expressed by means of a negative polarized relation 

From (1.3), Hajnal (see (2)) deduced the following seemingly paradoxial 
theorem: If tp S = A < co2, then there are K, subsets F&I < ml) of S such that 
tp Fp i wlw+’ (i.e. the sets are ‘small’) and the union of any K, of these Fp is the 
whole set S. This is equivalent to the relation 

(1.4) 

In this paper we establish some analogous relations. We only consider relations 
(1.2) involving ordinal numbers of cardinal K, and for the special case in 
which a = wl, B = oly and rxO = 1 our discussion is complete. Some of our 
results do generahze to ordinals of higher cardinality, but new difficulties are 
encountered even in the case of K, and a discussion of these results must be 
left to a later paper. 

In contrast to (1.4) we show (Theorem 1) that 

(1.5) 

wheree c oi w+2 < tily < 02, c1 < w,andp < o,Y.Itfollowsfrom(l.4)that 
the condition c < wlw+’ is necessary in (1.5). Also, the trivial cardinal relation 
(i(21.2) 

shows that (1.5) is false when CI = wi. In general, the condition B < w  iy is also 
necessary for (1.5) since (Theorem 6) 

if t co(wIy) = w1 and y < w2. On the other hand, if co(oIy) = w, then it is 

t We write co(L) to denote the least ordinal number which is cofinal with il. Thus co(l) is 
either I or an initial ordinal. 
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possible to strengthen (1.5), i.e. (Theorem 2) 

0.8) 

if 5 < chid+ <w~~,c~~w~ and coy= cc. Note that (1.7) is best possible 
since (Theorem 3) 

(1.9) 

holds if o + 1 < y c w2. 
We shall prove (Theorem 4) that 

(1.10) 

holds for k < o, OL < w1 and y =S o f 1, This is stronger than (1.9) when 
y = CD + 1. It is not possible to replace k by o in (1.10) since it is known (3, 
Theorem 32) that 

(1.11) 

However, this raises the question whether one can replace 1 by any integer k 
in (1.5), (1.8) and (1.9). This is not possible in the case of (1.9) since we can 
prove (see (1.16)) with the continuum hypothesis? that 

I (1.12) 

if w  + 2 < y -c w2 and cu(wiY) = wl. We do not know the status of (1.5) and 
(1.8) in this connection. 

PROBLEM 1. Is the relation 

{wy21 + (w’,- ww2) 

true or false? 
There is another problem of this kind (see $4) which we cannot settle. 

t Where we use the continuum hypothesis to prove a result, we prefix the statement by [*) 
for easier recognition. 
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PROBLEM 2. Does the relation 

hold for a < o1 and C < olwf2? 
It follows as a special case of a result proved in (2, Theorem 1) that 

(1.13) 

ifcl < wl, y < ~0~ and co(&) = wi. We also showed (2, Theorem 2) that 

(1.14) 

if co(o,v> = o. The method we used to prove (1.13) is very different from the 
methods used in this paper. We shall not give the details, but with the same 
method used in (2) one can also show that 

(1.15) 

We mention these results because these three relations (1.13)~(1,15), together 
with (1.4), (1.5), (1.7), (1.8), (1.9) and (1.10) give a complete analysis of the 
symbol(l.2)forthecasea = ol,p = ~,~anda, = 1. 

In $6 we establish some strong negative results. Using the continuum hypo- 
thesis we prove (Theorem 7) that, for y c w2 and co(wly) = ol, 

04 

(i( 

1 2 wo 
(*I * V V 

WY Wl -+l f 1 Wlrn 1 ’ coly I- 
(1.16) 

Here we are using the partition symbol with alfernatitres (for the definition see 
$2). An equivalent formulation of (1.16) is the following. If tp S = oiy < u2 
and the continuum hypothesis is assumed, then there is a family of U1 sets 
Ffi c S(p<w,)such that(i)tpF,<uI”Ofl(i.e. ‘small’sets), (ii)tp FPnF,<wIW 
if I # p (i.e. the intersection of any pair is ‘very small’), (iii) each point of S 
belongs to oniyJiniteZy many of the sets FM and (iv) the union of any KO of these 
sets is nearly all of S, i.e. 

+- ,I?FN) ~4 

for any infinite set of indices N. Using a different kind of notation, we proved 
(1, Theorem 10.14) that 

1 WC0 
V (A < w2h 

Wl” 1’CB10+2 
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In Theorem 8 we establish the analogous result 

r%J l v w, w  1 @<co,). 

This last relation is also best possible since (see $7) 

2. Notation and preliminary results 

Unless stated otherwise small Latin and Greek letters denote ordinal 
numbers. Capital letters denote sets and, in particular, 

w, = (v : v < 01} 

is the set of countable ordinals. The obliterator sign h above any symbol 
means that that symbol is to be disregarded, e.g. (x0, . . . . 9,) = {xy : Y < 11. 
We write (x0, . . . . Rn} z to indicate that the set (x,, . . ., a,} is ordered so that 
xP c x, for p < v < A. Similarly, {x0, . . . . ??,I * means that xP # x, for 
p < v < 1. The order type of an ordered set S is denoted by tp S. IfX, Y c S, 
then X < Y means that x < y holds for ail x E X and y E Y. If S is the disjoint 
union of sets S, (v < 2) and S, < S, holds for p < v < d, then we write 

s = s, u . . . u S,(c) or S = u S,(c). 
Y d I 

A subset X of S is co&d with S if X < {u} is false for every a E S. We define 
cc@) to be the least ordinal fi such that tp T = p for some cofinal subset T of 
{v : v < A>. 

The cardinal of S is lSl, and [S]’ = (X c S : 1x1 = r} for any cardinal 
number r. The partition symbol 

g --, (%)‘“<A (2.1) 

means: if tp S = ci and [S]’ = U K,, then there are p < 1 and A c S such 
VC). 

that tp A = ~1, and CA]’ c K,. If CI, = /3 for all v < A we write (2.1) as 

@ + (P>d* 
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We need the following simple relations of the form (2.1) with r = 1 (see (9)): 

01” + (cm1 if A -C w1 and n < CD, (2.2) 

WIP + WY if I< 0, (2.3) 

5 ft b%Lo if 5 < w2. (2.4) 

These results generalize to ordinal numbers of arbitrary cardinality, but we do 
not use this fact. 

A set mapping is a functionf : S + (X : X c S> such that x #f(x) (x E 5’). 
Afree set in this mapping is a subset S’ of S such that x $f(y) for all x, y E s’. 
It was shown by Erdijs and Specker (7) that, if S = (Y : v K WJ andfis a set 
mapping on S such that tp (f(x)) < CI ( -C o,J, then there is a free set S’ c S of 
type o.J~. Their proof required the generalized continuum hypothesis but Hajnal 
(8) showed how to eliminate this hypothesis. In (2) we pointed out a general 
connection between the theory of set mappings and the polarized partition 
relations. We need the above theorem only for the case A = 1 and this may be 
expressed by the relation 

The polarized partition symbol (1.2) has already been defined. In @6,7 we 
use a slight extension of this by allowing alternative entries. Formally, 

u 

i,-( 

41 %2 u vh 
V v v 

P I /hl /%2 *‘- Pvk, v<l 

means : if tp A = a,tpB = Band 

AxB= UKY 
Vi2 

is any partition, then there are p < J and 2 -K k, and sets A’ t A, B’ c B such 
that tp A’ = CQ, tp B’ = &r and A’ x B’ c K,. 

If K, u K, is a partition of A x B then we define 

K,(a) = {b E B : {a, b) E K,> (a~4 

K,(b) = (u E A : {a, 6) E KP} (b E B). 

Also, ifX c A v B, then we write 

K,(X) = ku K&4 (P = 0 or 0 

A graph is an ordered pair G = (S, E) with E c [TJ2. The elements of E are 
the edges of G. G = (S, E) is a complete graph if E = [SJ2. A circuit of G of 
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length k (> 2) is a sequence xi, x2, . . ., xR of k distinct elements of S such that 
l xi,xi+i}~E(l <i< k),wherexk+i = i x . A graph without circuits is called 
a forest. 

3. Some lemmas 

We establish here some simple lemmas which will be used in the next 
section. 

LEMMA 1. Let tl c ml and let M, E [WJK1 (n c CO). Then there are p,, EM, 
(n < co) such that tp {A : PI < 10) > CC. 

Proof. It is enough to prove this in the case CI = &. For p = 0, the result is 
obvious. Now assume that /I > 0 and use induction. We may write ceb = u,, f 
u1 -I- I.. + fi,, where q = gBn c a8 (n c 0). Let (rz : n < w} be partitioned 
into K0 disjoint infinite sets Ni (i < w). Let I < w  and suppose we have already 
chosenp,EM,fornENeu . . . ufi,.ForkENr,let 

M)k = (peMk: fl > pn forall nsN, u . . . ufir>. 

Then M; is a cofinal subset of IV, (k E NJ. Since N, is infinite, it follows from 
the induction hypothesis that there are elements p,, E M’,(PI E NJ such that 

tp (pn : nENl} 2 @I. 

This defines p,, E M, for all n < w. By the construction, 

We frequently use the following result. 

LEMMA 2. I’ T c SO u S1 u . . . u s,,( <) and tp T < olru”, then there are 
v c q andn < w such that tp (T n S,) < q” (v c p < ml). 

Proof. Suppose the lemma is false. For p < w1 we may write p = ot -I- PI, 
where 5 = t(p) < w1 and n = n(p) < w. Suppose p < or and that v, < co1 
has been defmed for (r < p. By our assumption, there is vP < wi such that 
v, < sP (C < p) and tp (T n SJ > o1 “(p). This defines v,, < o1 for all p < ccl. 
From the definition we have 

tp T Z c tp (T fi SvJ > C co;@) = wim+‘, 
P<Wl P<cul 

a contradiction. 
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LEMMA 3. Let S, (n -c w) be NO disjoint sets and suppose that tp S, = w(“, 
where w  < yn c co1 and co(wlyn) = col. Let c1 < w1 and let F& < ml) be RI 
sets such that 

tp (S, n F,) < CLQ~+~ (n c w; p < ai). (3.1) 

Then there is A c WI such that tp A 2 CI and 

tp(S.--$F,) =tPK (n-=N. 

Proof By the hypothesis, there are ynv(n c w; v <: q) such that 

and 

We may write 

where tp S,, = rz~:.,. By (3.1) and Lemma 2, there are v(n, 1~) c o1 and i(n, ,Q) 
< w  (n < CO; p < q) such that 

tp (S,,, n F,,) < c.o~~(“~~) (vh 14 < v < al). 

There are sets M,, E [WI]‘* (n < w) such that MO 3 M, 3 . . I and 

i(n, CL> = i(n) (cl E Mn>- 

By Lemma 1, there are A E M,(n < c~) such that A = {k : p2 < o} has order 
type > a. Choose Iz < o1 such that v(n, p,) < L (m, n < CO) and let 

Wn> = max (i(n), i(n, flo>, .-, ib-4 bJ> (n < 0). 
Then 

tp (Fr,,, n S,,) < co;(“) (m,n<o;1<v<w,). 

Since k(n) < w, it follows from (2.2) and (2.3) that 

(n < 0; A < v < ml) 

and (3.2) follows. 

LEm4. Let o + 1 G y. < y1 < . . . G 4,, < 0, andlet 
p.c c cOp=co1y 

Y<oDl 
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Then there are a countable set N c W, and ordinals p, (v EN) such that 

and 
w  + 1 < P, < Y”, co(w,bv) = 01 

(3.3) 

Proof: By the hypothesis, there is 0 such that o + 1 < 0 < y and B < of+l. 
If 0 < y,, for some v < q, then (3.3) holds with N = {v} and /?, = 0 + 1. We 
may therefore assume that there is vO < w1 such that yV = 8 (ve < v < or), 
Therefore, y = 13 + 1 and there is 5 c wi such that j? < OJ: r. If CO(CO,“) = or, 
then (3.3) holds with N = {v : vO < Y < ve + r> and /3, = 19. Suppose, on the 
other hand, that co(ce,“) = CO. Then there are O,(n < o) such that w  + 1 Q 
e. i 8, c . . . < L$, c 0 = lim 0,. In this case, (3.3) holds with 

new 

N = (v : vO < v c vO + CO<> and &o+wp+n = mlen+l b~-=t;n<o). 

4. Positive results 

In contrast to the negative relation 

proved in (2), we shall establish the following theorem. 

THEOREM 1. If a < q, 5 < w1m’2, p c w,Y and co + 2 < y -C q, then 

(4.1) 

W) 

Proof. We first prove the result for the case co(o,Y) = ol. 
Let tp C = 01 and let W, x C = K, u K, be a partition such that 

tp (K,(p)) < 5: for all ,u E W,. We have to show that there are sets A c W, and 
B c CsuchthattpA 2 a,tpB 2 /?andA x B c K,. 

Since co(qy) = wr, we may write 

c = u Cd<>, 
Y<(r)i 

where tp C, = wlyy (v < wi) and 
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There is q < w1 such that 5 < wl@+‘q and the sets 

F(p) = (v < w  1 : tP (K,(p) n C”) 2 c%w+l) (cl < 01) 

have order type less than q. Therefore, by (2.5), there are M, NE [WJKi such 
that 

tp &API n C,> -= wWfl (REM; VEN). (4.3) 

By Lemma 4 there are a countable set No c N and ordinals j?, (v EN,) such 
that o + 1 < & < yV and co(op) = w1 (v EN,) and such that 

B < &“1”‘. 

Let S, be a subset of C, of type wp (v E N,). Then, by (4.3) and Lemma 3, 
there is a set A c M such that tp A > CI and 

This implies that the set 
B = ,go & - pA &m 

has type 2 /3 and A x B c K,. This proves (4.2) for the case co(w1y) = wi. 
The case co(or”) = o follows immediately from this. For, if coy = cc and 

fi < ory, then j? < o r’+’ for some 6 + 1 < y and (4.2) is implied by the 
relation 

The condition 5 < wl@+’ in Theorem 1 is necessary because of (4.1). Also, 
in view of the trivial relation (1.6), the condition a < w1 is necessary. The 
relation (4.2) is best possible in a third sense since (Theorem 6) 

Wl i I++( 1 w  

WIY 01 “+l+l o( 1 
if co(w1y) = 01’ (4.4) 

This shows that we cannot replace fi by WC in (4.2) when co(w1y) = wr. In the 
next theorem we show that (4.2) can be strengthened if co(wly) = o. 

THEOREM 2. Ifa < ml, 5 < COlm+’ < coly < co2 and co(y) = w, then 

Proof1 We shall prove the result by induction on CI. For a = O’er 1 the result is 
obvious. Now assume that 1 < a’ < w1 and that (4.5) holds for all CI < ~1’. 
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Since 1 c a’ < CO,, there are ordinals q, < CI’ (n < o) such that 

a’ = MO + a, + . . . . 

Also, by the hypothesis of the theorem, there are y,(n < o) such that 

w  -c y. < y1 c . . . < y = limy,. 
“<CD 

Let tp CO = wry, MO = WI, and let KO w  K, be any partition of MO x CO 
such that tp (K,(U)) < 5 (,u EMU). We will show that there are sets A c MO 
andB c COsuchthattpA > a’,tpB = @andA x B c K,. 

By the induction hypothesis, (4.5) holds for a = cl0 and hence there are sets 
A, c MO and Da c C, such that tp A, = a,,, tp D, = or7 and A, x D, c K,. 
Let 

Do = Eo u C, (-=I, 

where E,, is the initial section of DO of type wly0‘t2. We may write 

Eo = u Eo,I-=), Eo, = u Eopo(-=<), 
P<Wl .S<Wl 

where tp EOpa = wIyo(p, (r < wJ. There is 7 < o1 such that r c CII~~+~~. 
Therefore, since tp K,(p) < 5 (p E MO) and 

(4.6) 

by (2.5), it follows that there are MO’ E [&fo]ul and pO < wr such that 

tp (KoW n Eo,,) < w“‘+~ (11 E MO’). 

Therefore, by Lemma 2, for each p E MO’ there arePo(p) < o and eo(,u) < cei 
such that 

tp (K,(p) n EOpoa) < OJ~~O(~) for co(~) < u < wi. 

There is a set Ml E [Mo’lK’ such that A, c M, and such that 

PO(P) = PO (P E MA. 

More generally, suppose that n < o and C, c CO, M, c M, have been 
defined so that tp C, = oIy and tp M, = q. By the induction hypothesis, 
(4.5) holds with u = a, and so there are sets A, c M, and D,, c C,, such that 
tp A, = Us, tp D, = o( and A, x D, c K,. Let E, be the initial section of 
type rqyn+2 and let 

D, = 4 u G+, (<>. 
We may write 

En = f,j E,,(c) and E, = 
P<cOl 

(4.7) 
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where tp (En& = qyn. It follows from (4.6) that there are pn < o1 and 
A&’ E [k&J” such that 

tP &(~L) r’l Enp,) < WW+l w  EM,‘). 

Therefore, by Lemma 2, for each p E M,,’ there arep, < o and g”(p) c w1 
such that 

tp (K,-,(p) n Enpa,,) < colPn(P) for a,,@) < cr < q. 

Now choose M,,, 1 E [M”‘]‘* such that p,(p) = pn (p E M,,, I) and such that 
A, < M,+,. 

Proceeding inductively in the above manner, we define sets A,, c M, and 
E, c Co (n < o) such that (4.7) holds, tp A,, = cl,,, tp Enpa = qYn, 

A,, < A, < . . . . 

E. < E, < . . . . 

A,,, x E, c K, (m < n < Co). (4.8) 
Also, there are 

pn < w, p,, < w1 and c,(p) c q for PEA,’ = A,+1 u An+2 v .,., 

such that 

tp (KoW n %, #> < olpn for q,(p) < d < w1 and p E A,‘. (4.9) 

Since A,,’ is countable, there is tzr, < w1 such that ofi(p) < cr, for all p E A,,‘. 
Put 

4 = Enp, n,, - U*,Ko(P)* (4.10) 

Since tp (Enp, aJ = Yn 0, > w,~, it follows from (4.9) and (2.2) that tp B, = wlyn. 
Therefore, B = B. u B, u . . . (<) has type w,Y. From (4.8) and (4.10) it fol- 
lows that A x B c K,, where A = A0 u A, u . . . (<). This completes the 
proof of the theorem, since tp A = a0 + ccl + . . . = ~1’. 

As we have already noted, the negative relation (4.4) shows that the condi- 
tion placed on the cofinality type of y in Theorem 2 is essential. The next 
theorem shows that we can drop this condition if we strengthen the restriction 
onr tot < wIw+l. Theorem 3 shows that (4,4) is a best possible relation. 

(4.11) 

Prooj: In view of Theorem2 we may assume that co(wp) = q. Let tp C = qy 
and let K. u K1 be any partition of W, x C such that tp (K,(p)) -c cola+’ 
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(p < ol). Since co(o:) = ol, we may write 

where tp C, = w~~P(~ < ol) and w  < y. < y1 < . . . < pm, < y. By Lemma 2, 
there are p(p) < o1 and n(p) < o for p < q such that 

tp (F, n C,) < o:(‘) (P(P) < P < %>* 

There is A4 E [WJK’ such that n(p) = n (p E M). Let A be any subset of A4 of 
order type M: and chose p. < ol such that p(p) < p. for all p E A. By (2.2) 
and (2.3), we have 

tP (C, -2 K,(M) = Mp (PO < P < %> 

and (4.11) follows. 
It is easy to prove that, for 1 < y < w  + 1 and a < ol, 

In Theorem 4 we establish a stronger result. 

(4.12) 

Proof. We shall first prove (4.12) for the case k = 1. If y = w  + 1, then this is 
a special case of (4.11). Suppose y < o. Let tp C = qy and let WI x C = 
K. u K, be a partition such that tp (K,(p)) < w? (cl < q). Since y < co, it 
follows that there are n < o and ME [WI]” such that tp (K,(p)) < q” 
(p E M). Let A be any subset of A4 of order type c(. It follows from (2.2) and 
(2.3) that 

tP (C - iA K,(p)) = WI7 

and so (4.12) holds with k = 1. 
Now assume k > 1 and use induction. Let WI x C = K. w K,, where 

tp C = 02. Suppose that 

tP @o(X)) < a? 

holds for any X E [IV,]“. If tp (Ko(p)) < w1y for all or. E W,, then, since 
(4.12) holds with k = 1, there are A c W, and B c C such that tp A = CI, 
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tp B = oc and A x B c K1, Therefore, we may assume that tp (K,(,q,)) = 
coly for some pLg < wl. Also, we have 

tp (JWd * K&O) < wiy 

for X E [IV, - (,u~)]~-~. By the induction hypothesis (4.12) holds if k is re- 
placed by k - 1 and hence there are A c IV, - { pO} and B c K,( po) such 
that tp A = E, tp B = wry and A x B c K,. This proves (4.12). 

The cardinal relation (3, Theorem 32) 

shows that k cannot be replaced by o in (4.12) so the result is best possible. It 
is natural to ask whether Theorems 1,2 and 3 can be strengthened by replacing 
1 by k (<CD) in (4.2), (4.5) and (4.11) respectively. We know this is not possible 
in the case of Theorem 3 since we will show (Theorem 7), with the help of the 
continuum hypothesis, that 

c*> 
if w  + 1 c y < w2 and 

(::++{ij ;J cooq=ol. 
(4.13) 

However, we do not know if Theorem 2 is best possible in the sense just des- 
cribed. The first problem of this kind which we cannot settle is : 

PROBLEM 1. Is the relation 

($2) -+ (o”,- $2) 

true or false? 
We conclude this section by proving one further relation of this kind. 

(4.14) 

Proof, Let tp C = 01w+2 and let IV, x C = K, u K, be any partition. There 
is q < rq such that /3 < ~~~+‘q. If tp (Kc,(p)) < olo+lq for all PE IV,, then, 
by Theorem 1, there are A c IV, and B c C such that tp A = a, tp B = /3 and 
A x B c K,. Therefore, we may assume that there is some p,, < co1 such that 
tP (I%)> = %m+i vl. Since tp (Kd * K(d)) -< olW+Y~E ~l-{r-lo>>, it 
follows from Lemma 3 that there are A c W, - (pO) and B c K&) such that 
tpA = a,tpB = @‘+l q and A x B c X1. This proves the result. 

We do not know if 2 can be replaced by 3 in (4.14). 
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PROBLEM 2. Does the relation 

($} + {$+I ;) 

hold for CI < wi and /? < w,“+‘? 

5. Lemmas 

We need the following three lemmas in order to prove Theorem 7 in the 
next section. Lemma 5 is essentially the same as Lemma 10.5 of (1) and Lemma 
6 is a known result due to Erdiis, Kakutani and Tukey (4). We repeat the 
short proofs of these for the convenience of the reader. 

LEMMA 5. Let 0 < 111 < No, IMil = EC,, (~EI) andlet 

M = g Mi = {PO, PU,, am.3 Pm>+* 

If tp S < 02, then there are sets A,, c S (p E n/r> such that 

(9 tp& < w: (n < WI, 

(ii) I{,uEM :xEAJ c K,, for ACES, 

(iii) tp (S - ?iMiAfl) < ml0 (i E I). 

Proof. Since the sets 134, (i EI) are infinite, there are mutually disjoint infinite 
sets M;‘c Mi(iEl). Let M,’ = {,u,,~~ :j < o)+, whereRio < nil < . . . (i~1). 

By (2.4) there is a partition of S into disjoint sets C,, (n < w) such that 
tp C,, < wr” (n < 0). Let r < O. If I = nij for some pair i, j with ill and 
0 <jc o,thenweput 

A, = u Gt- 
n*,,- 1 $nCni,j 

Otherwise, if 
P,+ LJ CM,’ - {Pi,>>, 

then we put A,, = 0. In either case, tp AFv < w[ (r < o) by (2.2), and (i) 
holds. If x E S, then there is a unique IZ < o such that x E C,. But there are 
only finitely many pairs i, jwith i~1 and 0 < j < o such that nij-i < n < n,j 
and so (ii) holds. Finally, (iii) holds since 

S- u A,c u C,=D 
Hft n-=PWl 

and the order type of D is less than mini0 by (2.2). 
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LEMMA 6, The complete graph on WI is the union of KO forests, i.e. there is a 
partition [WI]” = E, u El u . . . u &, such that the graph Ti = (WI, EJ (i <co) 
contains no circuit. 

f”‘“~$ For p < m1 there is t = t(p) < w  such that (V : Y < p} = Iv,,,, vII1, . . . . 
u,> + . Thus, for v < p, there is an unique i < t(p) such that v = v,~. Put 

Then 

Suppose that Ti = ( Wi, Ei) contains a circuit. Then there are {v, v’, pL)< c W, 
such that {v, p}< E E, and {v’, ~1~ E Ei, But this implies the contradiction 
v = v’ = vpj. 

LEMMA 7. Let lNil = Ko(i < co) and let Gi = (S, Ei) (i < O) be a graph without 
circuits of length 4. Then there are disjoint sets Ki (i < w) such that 

(i) Ki~[N* UN, U .,. UNJ’ ‘+I, 

(ii) Ki n Nj # 0 (j < i), 

(iii) [KJ2 n Ej = 0 (j < i). 

Proof. We will say that a set K has property P,i (i < n < w) if the conditions 
(i) and (ii) of the lemma are satisfied with Ki = K and if 

(iii)’ [K-J2 n Ei = 0 (j < n). 

This last condition is stronger than (iii) since i < n. We will prove that for 
iixed i and it (i < n < o), there are ifinitely many mutually disjoint sets 
having property P,i, 

If i = 0, this is obvious since each one-element subset of No has property 
P,,,. Now assume that 0 < i < n < w  and use induction on i. By assumption 
there are itinitely many mutually disjoint sets with property P,,i-l and we 
choose any n + 2 of these, say LO, L,, . . ., L,, i. We claim that, if F E [Nil’ 
and t > 3(n -I- 2) (n + 1)2i2, then there are x E F and p < n + 1 such that 
L, LJ {x> has property Pni. Suppose this is false. Then, for each x E F and 
p < n + 1 there arej(p, n) < n and y (p, x) EL, such that 

This follows since (i) and (ii) hold for L, w {x> and (iii)’ holds for L,. There 
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are pi(x), p&c) < n + 1 such that pi(x) # p2(x) and j(p,(x),x) = 
j(pz(x), x) = j(x). There are at most $(n -t 2) (n + l)‘i’ different vectors 

and hence, there are xi, xa E F such that x1 # x2 and v(xl) = v(q) = 
h, p2,j, yl, 19. Note that p1 Z p2 andhen= y1 f ~2 sincey, E Lpf, y2 EL,, 
and LPI, L,, are disjoint. Therefore, (xl,yl, x2,y2)+ is a circuit in Gj of 
length 4. This contradiction proves our claim, i.e. there are x E F and p < it + 1 
such that J,, = LpU(x} has property P.i. This argument may be repeated 
choosing another set Lo’, .,., L’,,, 1 of p1 + 2 sets with property P,,i- 1 SO that 
these are mutually disjoint and disjoint from JO. As before, there are 
x’eNi - Jo and p’ < n + 1 such that J, = I!,, v {x’] has property P,:. In this 
way we construct infinitely many mutually disjoint sets with property P,i. The 
assertion of the previous paragraph now follows by induction. 

In particular, there are infinitely many mutually disjoint sets having property 
Pii (i < 0). Therefore, we can choose the finite sets Ki (i < w) SO that (i), (ii) 
and (iii) hold and so that these are mutually disjoint. 

6. Negative relations 

In Theorem 6 we establish the negative polarized partition relation (4.4) 
discussed in $4. The condition placed upon the colkality type of 02 is 
necessary by Theorem 2. 

THEOREMS. Ify < w,mdco(o,Y)= o,,then 

I 01 I ( 
1 w  

QJIY 
-I+ 

Wl w+l+l 1 UolY - (6.1) 

Proof. Let S be an ordered set of type 02. Then we may write 

s = so u s1 u . . . u S,,(<), 

where tp S, = qyV and I+, < y1 < . . . < qm, < y. By (2.4) there is a partition 
of& 

S, = u A,,, 
Y<W 

with tp A,, < wl’ (v < 0,; n < w). For v < wl, there is a mapping fv of 
{n : n < o> onto (cl : p < v}, and for each ~1 d v there is an integer IZ = n(,q v) 
such that ~1 =&(n). Now consider the partition IV, x S = K, u K, in which 
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By (2.2), tp (K,(p) n S,) < oi”@‘“) < olw if p < Y -C wl. Therefore, since 
K,(p) n S, = 0 (v < p c al), we have 

Let N E [ WJ”O. Then N contains an increasing sequence of ordinals pi (i < w). 
Let 

R. = lim pi. 
i-Z0 

For v > 1, the integers n (pi, v) (i < CO) are all distinct and therefore, by (6.2), 

Therefore 

and 
(6.4) 

The theorem follows from (6.3) and (6.4). 
We now establish a much stronger result than (6.1) by using the continuum 

hypothesis. Note that (6.5) implies (4.13). 

(*> THEOREM 7. If w + 1 -C y < o2 a&co(@) = wl, then 

-I+ 
I 01 w+1 1 

V v , (6.5) 
+ 1 OIW 2 0 1 w,y to 

Proof. Let tp S = oly. In order to prove (6.5) it is enough to construct sets 
F, c S (,u c wl) such that 

(0 tpF, < mlWfi (cl < q), 

00 tp VP n F,) < ~1~ (P < A< d, 

(iii) (p < o1 : x E FM) is finite for each x E S, and 

(iv) tp (S - ij Fp) < 02 whenever N E [lVJKo. 

LetS=S,vS,u... w  $,,( <), where tp S, = olyy < mxB. By Lemma 5, 
for each v < o1 there are sets A,, c S, (n < CO) such that 
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tP4, < w1” (n < 01, 

(n < 0 : x E A,,) is finite for x E S,, 

(6.6) 

(6.7) 

By the continuum hypothesis, [WJKO = (MO, M,, . . . . A&,},. For v < wl, 
let (M,, M,, . . . . M,), = (KoA1, .-.> R,,> (the sets N,, (n < w) are not 
necessarily different). By Lemma 6, there is a partition of [WJ2 into KO sets, 

[W,]' = E,,uE, u . ..u&. 

such that each graph Ti = (W,, Ei) (i < o) is a forest, By Lemma 7, there are 
disjoint sets K,, (n c w) such that 

K,, c L-N,,, u a.. u NJ’ ‘+l, (6.9) 

K,,nN,j Z 0 (j G n), (6.10) 

[K&J" nEj = 0 (j < n). (6.11) 

We shall define the sets F,(p < ol) by describing the intersections F, n S, 

(p, v < ol). Let p, v < o1 be fixed. Since the sets K,, (IZ < o) are mutually 
disjoint, there is at most one integer y1 such that fl E K,,,,. If p E K,,,, then we 
define F, n S, = A,,. If, on the other hand, 

P tf nym Kn, 

then we put F, n S, = Iz(. This defines the sets F,, (,u < wi) and we have to 
verify that (i)-(iv) hold. 

Clearly (i) holds since tp (FcI n S,) < wlw (p, v < o,). Let p < A < wl. 
There is a unique integer 1 such that (,Y, A), is an edge of T,, i.e. such that 
(cl, A> E E,. Therefore, by (6.1 l), if y i w1 and I < n < o, then ~1 and 1 are not 
both elements of K,,. It follows from this and the way F,‘ n S, and FL n S, 
are defined, that 

FpnF,nS,cA,,u...u& 

for all Y < wl. Therefore, tp (Fp n F, n S,) < olr by (6.6) and (2.2). Thus, 
tp (F,, n F,) < ol”i < wl@ and (ii) holds. 

If x E S, then there is a unique v < w1 such that x E S,. By (6.7), there is a 
finite set of integers N(x) such that x $ A,, if n $ N(x). From the definition of 
the sets FG n S,, it follows that x $ Fg unless 

This proves that (iii) holds since the sets K, are finite. 
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Finally, let N E [IV,] Ko Then N = M, for some CJ < wi. Let 0 < v < q. . 
Then there is an integer j(cr, v) such that N = NV,j(,,,j. By (6.10) there is an 
element 

IJ~ E Kw n Nv,j(o,v) 

forj(g, v) < n < w. Therefore, by the definition of FPn, 

4, = Fp, = u Ffi (j(0, v) < n < 0). 
PEN 

Therefore, by (6.8), 

<co; (a < v < 01). 

It follows that 

This proves (iv) and completes the proof of Theorem 7. 
We proved in (1, Theorem 10.14) with the continuum hypothesis that 

02 
(*I 

(1 L 

1 w  w  
f, v 9 (6.12) 

1 al* 1 w+2 
01 I 

holds for all A < 02. This result is best possible in the sense that none of the 
entries on the right side of (6.12) can be decreased (see $7). We shall use (6.12) 
to establish an analogous result for (wr, A)-systems. 

(*) THEOREM 8. IfA < w2, then 

*1 
0 I 

1 w  OJ 
f, v 5 (6.13) 

Iz w+2 01 1 0+2 01 I- 
Proof. It is enough to prove (6.13) for the case when A = qy, y < w2. 

For y < o + 2, the result is immediately obvious. We shall, therefore, 
assume that y > w  + 2 and use induction on y* 

Let tp S = 03. We shall construct sets Fp c S (cl < 0,) such that 

and (iii) tp (S - iM Fp) < cc?+2 whenever NE [ WIIKo. 
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Case 1. co(y) = Q. In this case S = S, u . . . ScO( <), where tp S, = wrya < wly. 
By the induction hypothesis, there are sets F,, c S,, (PL< o1 ; la < w) such 
that,forn < w, 

tp Fnp < CO~~+~ (P -c f-l), 

lb < OJ 1 :xMljJl < %I (x E SJ3 

tP S” - u F”, 
( 1 

c co?+’ for NE [WI]“‘. 
WN 

It is easy to verify that the sets F, = U F,,, satisfy all the conditions (i), (ii) 
and (iii). I!<03 

The next case is less trivial. 

Case2. co(oly) = ml. 
In this case, 

s = u %(<I, 
Y~W1 

where tp S, = wlyy < oly (v < co& Therefore, by the induction hypothesis, 
there are sets Fip t S, (p < w1 ; v < ol) such that 

tp F& < qmf2 (PT v < WI), (6.14) 

lb < OJ 1 :x~Fj,}l <No (xESv;v < WI), (6.15) 

tP 
i 

S, - 
u 1 

F;, <co?+’ (NE [W,]‘“; v < ml). (6.16) 
iEN 

By the continuum hypothesis, [WI]“’ = {N,, N,, . . . . a@,)+. From Lemma 
5 it follows that for each v < ol, there are R0 sets F& c S, (p EN, u . . . u NJ 
such that 

tp Fy”, < co;” (CENT u . . . u N,; v -= d, 

I(,QEN~ u . . . UN, :xEF&}I <Ho (xES,;v < (i-4, 

tp 
( 
S,- u F& 

PEN, 1 
<co;0 (p < v < WI). 

By (6.12)?, there are sets F$ c S, (p < v < ol) such that 

tp FY:, < co;” (P G v -= 4, 

I{p < v : XE F;‘,}l < K, (xEs,;V < WI), 

< CII~~‘+~ (NE [(O, 1, . ..) v}IRO; v < q). 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

(6.21) 

(6.22) 

j- Note that we can only properly apply (6.12) when w < v  < wl. However, for Y < w, if 
we put F3,, = 0 (p < v), then (6.20), (6.21) and (6.22) are all satisfied, the last vacuously. 
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Now define the sets F, (cl < wl) by putting 

85 

We shall verify that (i), (ii) and (iii) hold. 
By (6.14) and (6.17) we have that 

tp (FB n S,) < CO~~+~ (v < A 

and by (6.17) and (6.20) 

tp (F, n S,) < q” (P G v>* 

This implies that tp F, < o,*+~(/J < CO,), i.e. (i) holds. 
Let x E S. Then there is a unique v < cul such that x E S,. By (6.15), (6.18) 

and (6.21) it follows that x is a member of only finitely many of the sets 
F$(p = 1,2 or 3) and hence (ii) holds. 

LetNEIWIIKo.Thenthereisp < w,suchthatl\r, = &,,,q, #..,&,,}< cN. 
Let Iz = lim p,,. If v < A, then N’ = {p,, : II < w; v < /A~} is infinite and there- 

W-X0 
fore, by (6.16), 

tp (s, - ,I? Fp) G tp (s, - ‘&Ftp) < u?+~. (6.23) 

If p G v < q, then by (6.19), 

tp sv - u F, ) G tp (s, - QoF$) < ml”. (6.24) 
BEN 

Also, if,? < v < p, then NP E [{0, 1,2, . . . . v)lKo and 

S, - u “:,, < %05+2 (6.25) 
BEN, 

by (6.22). Let rc = max {A, p>. Then (6.23), (6.24) and (6.25) show that 

tp S, - u F, 
( 1 

< CO~~+~ (P < 4 
PEN 

and 
tp 

( 
S, - u F. 

) 
< ol”. (n < v < 01). 

WN 

Thus (iii) holds. 
Theorem 8 now follows by induction on y. 
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7. Conclusion 

We conclude by showing that ~.I;O+’ in (6.13) cannot be replaced by any- 
thing smaller, i.e. 

[::?I + (:; v ‘: ’ 1) (7-1) 

holds if 5 < ,y+2 < w( < w2. We remark that the situation is rather dif- 
ferent with regard to the relation (6.12). For we have proved (1, Theorem 
10.13) that 

[:J + [L: v : ’ :) t7a2) 

holds for 5 < OILY+’ < qy < ti2providedthat 

co(y) # w  and co(y - 1) # o. (7.3) 

Here y - 1 = y’ if y = y’ -I- 1 and y - 1 = y if y is a limit ordinal. If (7.3) 
holds, then (7.2) is stronger than (7,l). However, if (7.3) is false, then (7.2) is 
also false (see Theorems 10.11 and 10.12 of (1)). 

Proofof(7.1). In view of the remarks above, we can assume that (7.3) is false, 
i.e. either co(y) = cu or co(y - 1) = o. 

Let tp S = wz and let WI x S = K. u K, be a partition such that (i) 
tp (K,(p)) < ory(~ < wl) and [ii) tp (K,(x)) < o for x E S. We have to show 
that there are sets A c WI and B c S such that tp A 2 w, tp B > 5 and 
A x B c K,. 

Case 1. co(y) = o. In this case we may write S = S, u S, u .,. u S&c), 
where tp S, = CU,~~+’ and w  < y0 < y1 < .‘. c % < y. For each /J < w1 
there is an integer la(p) such that 

tp (K,(p) n Sncp,) < wiy”““++. 

There is A4 c WI such that tp M = o and n(p) = rz (p EM). Since (7,2) holds 
with y replaced by yn -I- 2, it follows that there are A t M and B c Qpj such 
thattpA = o,tpB = CandA x B c K1. 

Case 2. y = y’ + 1 and co(f) = o. We may write S = SO u ,. . u s,,(c), 
where tp S, = wIy(v < ml). Let r,(n < o) be a sequence of ordinals such that 

cc G y. < y1 < . . . c % c y’ = limy,. 
ll<Cd 
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For p < w1 there are n(p) < o and v(p) < o1 such that 

tp (F, n S”) < W1%fi) (V(P) < v < Ul). 

There is M c WI such that tp M = w and n(p) = n (p E M). Choose v0 < cul 
so that v(p) < v0 (p E M) and let S’ be a subset of S, of order type wIyn* 2. As 
in Case 1, there are A c M and B c S’ such that tp A = w, tp B = L$’ and 
Ax BrK,. 
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