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1. In the second paper of this series we proved the following two
theorems. Let 8, stand for the symmetric group with » letters, P
a generic element of it and O(P) its order. Then we have

TaEOREM A. For almost all P's in 8, i.e. with the exception of
o(n!) P’s at most, O(P) is divisible by all prime powers not exceeding

log n { 1 logloglog n w(n) }
i - L ) N =

log log n log log n log log n
if only  (n) A + oo arbitrarily slowly.

The other theorem shows that the theorem is best possible in the
following strong sense.

TaEorEM B. If w(n) o + oo arbitrarily slowly, then almost no
P’s (i.e. only o(n!) of it) have the property that O(P) is divisible by
all primes not exceeding

log n log log log n w(n)
.____{1+3 }.
log log n log log n log log n

Since the P’s in a conjugacy class H of §, have the same order,
we may denote by O(H) the common order of its elements and it is
natural to ask the corresponding statistical theorem for O(H).
The total number of conjugacy classes in §, is, as well known, p(n),
the number of partitions of n. As announced in the fifth paper
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of this series (to appear in Acta Math. Hung.) we prove the
following two theorems in the above mentioned direction.

Terorem 1.  For almost all classes H, i.e. with exception of o{pin))
classes, O(H) is divisible by all prime powers not exceeding

2 a/n {1 ﬁlug logn  an) }
48 logn log n log w

if only wln). A + oo arbitrarily slowly.

This is again best possible in the following strong sense.

Tazorem 11. If win) » + oo arbitrarily slowly, then almest no
classes H (i.e. only o(p(n)) of it) have the property that O(H) is
divigible by all primes not exceeding

2w 4m [ + lﬂg log mo T{gl } I
W6 logn log log n
The quantity in Theorems I and I1 is much bigger than in
Theorems A and B. The interest of Theorems I and ITis perhaps
enhanced by the theorems proved in the fifth paper aceording to
which the maximal prime factor of O(H) is for almost all classes

3/6 [ log logm | win) }
~ 4/l 1—2 == 4 __".c 11
= 2 i o log n +log'n (L1

and this is again best possible in the above sense.

It seems to be possible and would be of interest to prove that for
any real a's the number K{n, x) of classes H in 8, for which O(H)
is divisible by all prime powers

27 An 145 log log » w }
/6 log n { “Togn logn
divided by p(n) tends to a distribution function {z).

2, Now we turn to the proof of our Theorem I. Let, for y = 0,

o]

fly) = ]—f

pe=l n=0

P(ﬂ}-‘l_“ (2.1)

For this we have the classical functional equation
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e 4or? Ly o -
10) = vt () exp (~ & +7) 22)
and hence for y > + 0
G i e
f@%vﬂ+wﬂﬂvé;ﬂp(@)- (2.3

Let ¥ = Y (n) - co with n to be determined later and let ¢ run
through all prime powers with

g < Y(n). (2.4)

Let further p,(n) be the number of all partitions of n with the

property that no summand is divisible by ¢. Then we have for y > 0

i Py(n) e=™ = ]__I I ) (2.5)

n=0 ain YT HM)
Putting
> ) hy(n)
7<Y
we get
S —n f(y)
h V= e 2.6
2, hat 2&@) )
Using (2.3) we get for all ¢’s in (2.6)
f9) _1+o() _ [a2(, 1)1
faypy ™ “wva O { 6 ( q) y} 1)
if only
ay 0. (2.8)

Hence, if y and}]; are sufficiently small, we have

= 2
Z hy(n)e™ < 2exp {%- (1_, 1) _1} il

n=>0

Putting
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{_1‘
IEGS (Y
=
we gel
B {n) €40 = fip(n) e~ < E by (m)e—™
= i
XY xp L va— L ym)
El og ¥ L A6 v s Vit
and hence
¥ 2 .
hpln) <5 11;—-— eXp { Jb q,f"‘."f-]’ (2.9}

1.-"}" D
log YHKP{»JE (1_- EY) 1{?&}

Using the classieal formula of Hardy-Ramanujan, we have

=<0

1 2
g i 2.10
P}~ e (27 v (2.10)
which gives for all sufficiently large n,
b oy
Koy a0 M2 {“ m _.} 2.11
() <402 pynexp [ - 7V 1)
Now choosing
4+ 7 an
=% ; 2,12
B +/6 logmn ( )
the restriction (2.8) is satisfied and hence (2.11) gives
o 0 for n— oo, (2.13)
p(n)

3. Now, as is well known, there is a one-to-one correspondence
between the conjugacy classes H of S, and partitions
o=y Ty = Mg T+ e+ MRy

Lamy <mg << .o <1 {3.1)
of n; moreover
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O(H) = [ny, Rgyeve 5 W] V. (3.2)

Hence O(H) is divisible by a prime power ¢ if and only if ¢ is the
divisor of some summand »; and hy(n) is an upper bound for the
number of conjugacy classes H of S, whose order is nof divisible
by some prime power ¢ < Y. Hence (2.13) means that for almost
all classes H the quantity O(H) is divisible by all prime powers

not exceeding

4 7 a/n

= 3.3

5 /6 logn o)
4. Next we consider the divisibility of O(H) by the prime powers
g satisfying
b1 _\/n 107 +/n

e AL = i 4.1
/6 logn 4 v/6 logmn "

S|

For this sake, we need a more delicate treatment of p,(n). Taking
into account the Euler-Legendre “Pentagonalsatz” according to
which for Rez > 0 the relation

holds, equation (2.5) gives the representation
. - i k o) 3&.2 + k
B =, (= 1Pp(n— FE5g), (4.3)

where the summation is to be extended over the ks with

32k n
e (4.4)
5. First we shall estimate the contribution of the &’s with
-\/’H’ (5.1)

|k]>10 X2
q
to the sum in (4.3). Then we have
3k &
~~2—|— >k > 10 ‘% k

and thus
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ALE T . A
IIF ]l_'ﬁ' i i — JU‘VJ'HI;'.:‘:_,[\:"'H__ SL]‘&‘

since from (2.10)7
Zn = o
pln) = ¢ exp (——- M‘rw-) ' (5.2)

A b
we have for the ks in (5.1)

o R e ake 4,—!:)
p('n-— 3 i {se:{]}( =" = 'q

V6 2
< BEp [_j:f {v'n — §k) ) ;

Hence

L z._
(1t (n— it

1k == 1l 0l K]
2 10 y
{sexp(—-p"n) exp(— JL-)
’\fl‘ﬁ E}qu\:‘ﬂ.'u' \"}ﬁ

< en~" exp ( % v’ﬂ-) <en” pin)

by (2.10). Hence, from (4.3),

1 2
pyln) = 2 {—lk‘ﬁ(ﬂ— - ¥
| = 1/ nig o

1) + 0w 200 (53)

6. Next we use Hardy-Ramanujan’s stronger formula (see [2]) in
the form

exp(% -.,:‘[m—l,"ﬂi}) i 4 &
plm) = 4(1“_2_1:1) y"3_ [1“11-1';5 \.f"[m—ll"g‘i]'}-l_

+0(1) exp [_ 0, 49 ;2;% v-,_.r’m.}+ (6.1)

Noticing the elementary relation

te means thronghout this papsr an nnspeoified (explicitly calealahle) positive
eonstant.
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1
exp {o(v/(@—7) — va)} = - Vi
4 1— %+O(1)exp (— e V)

\/.
2 4
€19 ! 2 -
=exp (_ ‘)j./.’lx) { i 4::;; + 05— ;.;z "| % 3 l 5 +0[@=1) } (6.2)
where the ¢,’s are positive constants and
O<y <™, (6.3)

we obtain using (6.1) for the k’s in (5.3) and ¢’s in (4.1) from (6.2) with
2 1 3k + kq

T == \/6’ T =N — ﬁ Y = D) (64)
that
(n_ sSiP 4 & )
< 2 1 :em( 82+ & m q )
p(n) = 2 " 4/6 4/(m —1/24)
3E* + k)2 ¢ : 3+ k 1
G 1o T
(- 2_4) (“ 1] 2—4)
.2 A% 4
+ ¢4 ( L 2+ L) 7 T —{—O(-n_]"‘m)} . (6.5)
(-3
24
Putting this into (5.3), we get at once
P2(n) _ (— 1) exp (_ 8B 4k m q ) =
p(n)  k<Tovnig 2 V6" 4/(n—1/24)
qz - 3k2+k 2
D (—1) (___ X
(n— 1/24)%% i sgmq G
LYy q )
i exp( 2 4/6° /(n—1/24) iz
3 Al 3
Ll Creli, a8 4 k)
%y D, (D) ( T

k1< 104/nfg
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S 4k v i
< om (= 255 74 T )

x

qt 3k 4+ l:)'
e - n"(
(n— l@-‘ %}ﬁ%mq .
4k ow i
2 /6 4 (n—1]24)
Obviously the same error term holds completing the sum in (6.6)
to— @ < k < 4 o; pulting

R

* exp (— ) + O~ logn). (6.6)

equal to S,(n, ¢), we get

%% = 8y(n, ¢) +¢ (—q:r')—._& Sa(n. q) +
s e
24

L Syl 0) 6o Ty Bin) + O (1), (08)
(“‘ o (“'_21)

7. Inorder to investignte S (n, g) we take the reciprocal of (2.2)
and apply the functional equation (4.2). This gives fory > 0

i {— 1Fexp (- Ekﬂ;‘ ky)=.¢f?._.“' exp (E{“ :%) *

"!' cn,

k= —m J
= 3k +k 4x
x 2 (W (-5 - Vs
and hence
. (m— 1/24)114 o q -
Saln, g)=+/(2 v’ﬂ}T R { VB 4/ (n— 1/24)

_ ?"'& w}] { e omexp(_hgﬁw) } (7.2)

For our present aims it is enough to write
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u nH w4 :
Soln,0) = (1 +o(1) V(2 vE) exp( %-7). (1.3)

Differentiation in (7.1) leads easily to

8,(n, q) =0 (log!® n) exp ( — \% %Z) (7.4)
and thus (6.8) together with (4.1) gives
it
Pa) = (1 o) V(2 V) - exp (= T X )pa). (1.5)

For further aims we shall need a more exact formula for S,(n, ).
Let us differentiate the identity (7.1) v times (1 < v < 4). This is
the sum of (v + 1) terms each of the form

p) oo ) > (- 1 (B Y oxp (AT, (r)

(k)

J=0’ ]'""}v)

a0k ;
where the p;(y)’s are polynomials in 7yof degree < 20 with bounded

coefficients. In particular, for j = 0, we have

20 Yoie wz)}(") T (_ 8%k + k 411-2)
{\/;exp(ﬁ 6y Z( )" exp 5 g

(k}

whereas for the terms with j > 1, since the term with t = 0 is
missing from the sum, we have an upper bound

Oog?* wesp { — (75 + 4 v/6 ) 37},

Hence, for 1 < » < 4 we have

Sma)={ v ity
v , Q’ =% { =153 P ( ) } sy 'II'
24 by =rra '\/(nE]fﬂﬁ)

+ O(log!® n) exp {-— (7 + 4 \/6) ‘\/n} (7.7)

8. Now we may complete the proof of Theorem I. Let
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i 4/n
YI_E‘TE'IDKNI (8.1)
= Yn
Ya=27% Togn’
where A will be determined later. Putting
A SN (1) (8.2)
Tyl

gives (7.5) for all sufliciently large n's,
¥,
h*(n) < 3p(n) 't J

e (— 2 V") dow) (5.9

where B(z) stands for the number of prime powers not exceeding .
Using the prime number theorem in the form

O(x) = Lix + Ofx) exp (— +/ logz),
the factor of p(n) in (8.3) is

¥
171 - i fﬁ
{1 -+ a1} Jmmp( 78 x)da
¥
l. ~ = i—)d':
-.,flogﬂ E x ’
¥
Sinee the last integral
{54 log m
| e 1 b=
= —= , /0 -u“*a‘y—a( .n)
vié (RTEY] - log
we have
;,,-{ﬂ] b= )..
70~ logm) =
choosing

loglogan  w(n)
A2 (1+ T (8.4)

if only



PROBLEMS OF STATISTICAL GROUP THEORY 185

w(n) X + o
arbitrarily slowly. Repeating the reasoning of 3, the proof of
Theorem I is finished.
9, Next we turn to show that the theorem is best possible, i.e. to
Theorem IT. Let again w(n) A co arbitrarily slowly; further

£ i log;
1:2_@’xn (1+5]0g onn_w(ﬁz))’
' /6 logn logn log n

i e (1L~l_° R ﬂ) (9.1)
2 4/6 logn logn | logn
and
X, <<l < .. << X, (9.2)

all primes of this interval. We define the class-function k(H) by

k(H) = ZM 1. (9.3)
q,/0)
First we'investigate
B ZH) l(H). (9.4)
Obviously
] I
=> D l= 2 ).
v=1 g /O(H) v=1

Using the representation (7.5) (which can be used owing to (4.1),

= - 1 i
S, = (1—o0(1)) v/(24/6) p(n)nt Z \/_(_}- exp ( /6 W;”)

Xa ( 7 \/n)
— (1++0(1)) V(2 v/6) pln) j z ).
2 Vi log x

Since this time we need asymptotic formula for 8, we have to
proceed a bit more carefully than in 8. Now

X

8, = (1 +o(1))2 vaf”; jzaxp(—%%) dz

= (1 +0(1))8 v/ p(n) exp(E)w T o). (9.5)
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10. Next let

8, = Zm k(H)

s =Z:m Zm sz

40U gy OH)

Then

=8+ -
Lgpdral g 00H)
Gl M

(10.1)

(10.2)

Fixing pand » the inner sum is the number of such partitions of n
in which no summand is divisible either by ¢, or by ¢,. With the

notation of (4. 2) this quantity is as easy to see

s waz v SV F g %)
the coefficient =" in TEAT @2 J

Hence

l
8, = the coefficient ¢~ in f(2) { Z fla.z) E
u=1 i

fla, q.2)
N
I"é;u-s;i fa.2) flg2) }

The function in the eurly bracket is

(Zrm)+ (Era
v 7

and accordingly we split §,into Lhe parts

8, 81 8P and S,

= (i I{Qiz_}"’)+

=1

f g 9.2)
(9.2) f '[*‘J'ﬁ]

11. Since from (2.1) and (4.2)

SR ifgeas =1 | i
74,27, lZu‘“”“ g

(10.3)

(10.4)

(10.5)

(10.6)

(11.1)
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o

{i}’(ka)exp(—kggﬂq,z)}{ Z (— 1)+

ky=1 kg by=—m
2 | I bz ! k.
3k3 | < q“ | 2 : 4 gp) z}

2

o - 2

we have

1
8P = D> (= 1fRop(ey) x
kgl By

o W
% (ﬂ 18— =g — =

1gps#r<l
where the outer summation is to be extended to all (k,, ks, k)
systems with
ka1
SHE + ko
2

32 + k&,
2

qlp,gvkz_i_ q# + gvgn‘ (11'3)

Using (5.2) and (9.1) —(9.2), the inner sum in (11.2) is quite

roughly
272w 1z
<c exp ( { } )
m%g 7/ 6 3 log2n
7w (ﬁ)El (_ 23 V' )
SCeRR ( ) logZn 34/6 log?n
2 va)
: 2 @y — =, ks .4
< c¢p(n)n etp( 376 bog'n (11.4)

Since roughly k, takes at most O (log®n)-values, further %* and k4
each at most O(n* log n)-values, we get from (11.4) at once

89 =0 (p(w). (11.5)
12, Next we consider 8. Since from (10.5) and (4.2), we have

- Al (f(z)) 1
Flg,2)® fla.2)] f(g.z2)

o i By, (m) €= w e = L I‘i'nz
m=0 2 })
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we get

I
Y Ly
ggr=22m{—1}*+1pg#(nu ;’ qp). (12.1)

The contribution of terms with |k |> 10 log » is absolutely

i
312
of z z P (n— ;_km.) = O(p(n))
p=1 10logn-< k| s vnigy

as in 5. For the remaining terms in (12.1) we can apply the repre-
sentation (6.8) —(7.2) — (7.4) in the form

vy ™ pmesp(— 2 9) [1s0( L)), 2
Pym) ﬂivﬂ}vqfﬂ{ﬂ]exy( 78 g {1 'ﬂ(lﬁ } (12.2)
The contribution of the error term to (12.1) is absolutely
2 -4
nt i {:F?- ) k ﬂ+ kﬁr"
0{1] }E”:ﬂ-} exp ) =pu){-n}:|
»-Z 1 ﬁg"lklﬂamzvm (‘Vrﬁ T

using (9.1). Hence, from (12.1) and (12.2), we have

SP = olp) +VEVE 3 o >, (— 1

P | k=S 1Hogn

Bk k )*. ( Ak )
x(ﬂ- g ) Fin 5 & X

98 12
{n B “4.)
JE b - ) (12.3)
Vv T
Rough estimations show that replacing

A 1%
(n o L ;— k’gj) by nltt

4 t-.ijq:-( —

and

{n Bk 4 kg..lm
(g (- %)

the error is again o(p(n)) and hence
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i
8P =o(p() + V(2 vE)nt > \/1q x| _%%} i
p=1 # i

3;“2”“9:‘)). (12.4)

% ( (—1f+ipm —
Ekla%:logn

Completing the inner sum means again an error of o(p(n)) and
using (4.3) we get
i
P, (1)
I = 3 o B
89 =o(p(n) — V2V 6)n 2 s

T AN
V6 g,
13. Next we consider S§. Using (4.2) and (2.1)

@) (2@) {3 pm ] x

=0

9 { i i Z z N (_ 3k$; ky e 3k§;— ky 9#2) z}

=1 pe=1 k Iy

} <oont (2.5

XGXP{ —=

and hence the representation
i, .1

-3 335

wy=1 pg=1 Ky Ky

9712 , 2
s jﬂ(n— 3k ;- Iy G — ?’sz—l_kzq“g). (13.1)

One can see easily as in 5, that the contribution of k,’s with
| k5| m = 10 log n is o(p(n)) and hence using also (4.3)
T
3k3+k
S =opm) + > > > (—kp, (“— -2—9)

=1 pig=1 [k <10logn

(13.2)

To go further, we shall need for p _ (m) an asymptotic repre-
sentation which is finer than the one in (7.5) (even the onein (12.2)).

(2)
It would be easy to show [ = o(p(n)) but, for our aims, (12.5) is enough.
2
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Using (6.8) and the formula {7.7) we get

g* 2 (E _,.,:))LS_}
T = 12 (“ y P\ ey)) T

iﬂ:}l = 8,(m, ) + {c, ﬁ& (v’ %‘T exp (i_ ’f)]g-k

'k ( Dar ( 'l -rr‘)){‘”}
By e—— 1= — —= — X e —
T (in — 1/24)% v y P 24 6y y=o/y/B glvim—1/24 i

+ 0 (m=14%),

(13.8)

The contribution of the error term in (13.3) to S{* in (13.2) is seen
to be by (9.1) easily o(p(n)). Further we shall discuss in detail the
contribution of the Sj(m, ¢). p(m)-term. The others could be dealt
with guite analogously; their contribution will be o(p{n)) owing to

the factors

q* ¢ gt
(m— 124" [m— 1/24)"2" {m— 1]24)2

which are by (9.1) of order 1/y/n, if only
win) = o (log log n),
The contribution I of p (m) 8, (m. g} is by (7.2)

( 35 + ko
Pl

3 u

!
olp () + V(2 V/6) I b

=1 e=1 (Bl =10 I0g 0 ey

(13.4)
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By the elementary formula (with suitable numerical constants d,)

(z—y)t exp { c(\/(;?_ y)_‘\/(w;y)) } = atexp {G(VQE _%) } %

_]'ds 5;2 +d4 Juz +

{ 1 -{—dlym+da

3
+a L ‘|f‘ds +0(y9,§)+0(i~)}, (13.5)

q 2"
valid for
0<y=<aP®, g
Using it with
- 1 3k2+k
c=-ﬁ,x=n—ﬂ,y Equ,q 9y, »

we obtain analogously as in 6 and 7,

1\¢

U =0(pn) + V(2 V6) 2 — X
g BXP(\/S \/nqi g \/(ng—:/z‘;)) r:
s plo— M : .
B gl B o

The sum in the curly brackets is by (4.3) (or (5.3))

= ZI ?g,,l(ﬂ) =48,

ﬂn-l

and the sum with respect to y, is

T )(1+0(1))31

by (6.8), (7.2) and (7.7). Thus using (9.5), we have
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e A 1
8y = HTHUHM}ST

=1+ 0 (1) plw) {8 v'mexp (;_*') I (13.7)

Collecting (10.2), (10.6), (9.5), (11.5), (12.5) and (13.7) we get for
8, in (10.1) the inequality
#
Stﬂ:{l-l-o{l]}lpl:ﬂ}[ﬂfwaxp (‘g)} (18.8)
By Cebysev's inequality, in order to complete the proof of
Theorem IT, it is enough to show that
ik

Zd;rj%n}; [E:{H}—E-V’wexp (2)1 - =g (1) éxp w.

But this follows from (9.5) and (13.8) at once.
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