
On Some Applications of Graph Theory, II 

P. ERDOS, A. M&R, VERA T. S6s, AND P. TURIN 

1. In the first paper of this sequence we dealt with applications of graphs in 
the Michigan sense; in this paper we are dealing with m-graphs, i.e. structures 
in which the fundamental elements beside the vertices are not edges P, P, (1 < 
,u < v < n) but m-tuples 

pm PP2 * * * p!h (= ‘m-edges’), 

For m = 2 we get the graphs. n is again the order of the m-graph; the meaning 
of m-subgraphs, complete m-graphs is obvious. We shall deal especially with 
the case m = 3, i.e. with the case of trigraphs, though the geometrical prob- 
lems we are dealing with have natural analogues (and also problems of new 
type) for higher dimensions, and these involve m-graphs with general m’s, 

Let A,, A,, A, be three distinct points of the plane and let 

f&t A2~ A3), g(& A,, 4) 

two non-negative triangle functions which are continuous functions of the 
vertices. Such choices offand g are e.g. 

f = perimeter of the AA, A, A, 

or 

g = radius of the inscribed 
circle of AA, A, A3 

or 
f = g = areaofAA, A,A, 

f = g = perimeter of AA, A, A,. 

Let D be a constant such that 

f (A,, A2, Ad < 1 implies &A,, A,, A31 < D; 
89 

(1.4) 
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here D = f co is also admitted. We shall deal with finite sets of points 
&4, *a’, Ak in the plane subjected to the restriction 

maxf(b,, Ai*, Ai,) = 1 (1.5) 
where the max refers to 

1 < i, < i2 < i, < k; 

we shall call them normalized point sets. Suppose that, for a certain integer 
I > 3, there is constant D, < D such that for all normalized point sets 

min g(Ai,, Ai Ai,) < D, (1.6) 

(where the min refers to 1 < i, < iz < i3 < I) holds. Then we are going to 
prove the 

THEOREM I. Ifn 2 I, then for al/ normalizedpoint sets (PI, P,, . ..) P,) at least 

triang1e.T Pi, Pi, Pi, (1 < il < iz < i, < n) satisfy the inequality 

S(pi,, pi2, pi,) G DI* (1.7) 

In other words, in all normalized point sets (PI, P2,. . . ,P,,), at least 
0 

I -‘th 3 

part of all Pi, Pi, Pi, triangles satisfies (1.7). 
In very general cases (to which (1. l), (l-2) and (1.3) belong) 

max min SCAi,, Ai AiJ 
1 < it < iz < i3 4 1 

exists, even for all I 2 3; here the maximum refers of course to all normalized 
systems of I points in the plane. These can be called-by analogy with paper I 
of this sequence of papers or with the lecture of one of us in Proceedings? of 
the Combinatorial Colloquium in Calgary held June 1-14, 1969-the ‘packing 
constants’ 6, of the problem; in such cases D, in (1.7) can be replaced of course 
by 6,, As it was shown l.c. in the case of problems concerning distances, the 
packing constants defined there lead to several best possible inequalities. This 
is not so much the case with triangle problems though, as will be indicated in 
some cases later, our graph-theoretical method can also lead to best possible 
results here. Nevertheless this method is perhaps the only one available at 

7 In course of publication. 
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present which yields estimates in general problems of the combinatorial geo- 
metry of triangles; and it is possible that the use of more appropriate theorems 
on trigraphs will considerably improve present results. Ifphysicists should ever 
introduce potentials depending on the interaction of three (not two) particles, 
then results of the above type would gain an additional interest. 

In the case of I = 5 the value 
I -l 

0 
3 is &. A better result in this case is given 

by the 

THEOREM II. Suppose the inequality 

min gCAi,? Aip AiJ G D5(< D, U-8) 
l<il<iz<i365 

holds for all normalizedpoint sets (AI, A,, A3, A,, AS). Then for all n > 7 and 
normalizedpoint sets (PI, P,, . . ., P,) at least 

1 n 
73 0 

trianglespi, Pi, Pi, (1 < i, < iZ < i, < n) satisfy the inequality 

In other words, for n 2 7 the inequality (1.9) holds with a probability > + 
in all normalized point sets (PI, P,, . . ., P.). 

2. In order to give Theorem II effective geometrical applications, let us con- 
sider first the case (1.2). Then ~5~ = 1 and choosing the four vertices of a square, 
we obtain 6, = 1. As we shall see in the Appendix 

thus Theorem II gives the 

(2.1) 

COROLLARY I. Having on the plane n 2 7 points P,, ..,, P,, so that the maximal 

area of all Pi, Pi, Pi, triangles is 1, then at least 3 
n 

0 3 
such triangles have an 

area < 4 - ’ 1-a 2 
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In other words if, for n > 7, the maximal area of 

APi, pi2 pi, (1 Gil -=i2 <r3 G> 

is 1, then the inequality 

J3 - 1 
area APi Pi, Pi, d - 

2 

holds with a probability 2 +. Since this does not depend on n, a trivial passage 
to the limit gives the corresponding theorem for bounded closed measurable 
point sets in the plane with a plausible interpretation of the probability. 

Putting m points ‘near’ to each vertices of a square (m large) we see at once 
(with n = 4m) that in the Corollary I the constant f certainly cannot be re- 
placed by any constant > 3; the same example shows that the ‘bad’ triangles, 
(4m3 in number, with area > (,/S - 1)/2) are actually ‘very bad’, i.e. with area 
> 1 -a. We conjectured that this is best possible in the following sense. There 
exists a constant 

O<B,<l 

with the following property. Having n = 4m points P,, . . . . P,, on the plane 
such that 

max area APi, Pi, Pi, = 1, 
lbil<iz<i36n 

then, taking any (4m3 -I- 1) triangles P;, Pi, Pi, out of these, one of them at 
least has an area 

< 8,. (2.3) 

This special problem was solved by a special argument by B. Bollobas;t he 
did not specify the value of a1 (though this would be of interest}. 

On putting m points near to each vertex of a regular hexagon (m large) one 
can see after a little reflection that in the Corollary I the constant 3 cannot be 
replaced by 3. In order to push the constant down from # it would be 
reasonable to study the distribution of triangle areas generated by the point 
system of a regular n-gon. 

What does Theorem II give in the case (1.3)? Whereas in this case we have 
again 6, = 6, = 1, we can only show that S5 < 1. Hence this theorem gives the 

COROLLARY II. There is a constant 6* < 1 such that, 8 the points PI, P1, . . ., P, 
(n 2 7) have theproperty 

max perimeter of BP,, Pi, Pi, = 1, 
14il<h<is$n 

1 n 
then at least - 

0 7 3 
triangles have perimeter < S*. 

t Oral communication. 
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It would be of interest to determine 6*; probably it is 

(2.4) 

which occurs in the case of a regular pentagon. Again, as before, Corollary II 
implies that we may assert with a probability > 3 that the perimeter of a ran- 
dom triangle with vertices in a given bounded closed measurable point set does 
not exceed the 6*-th part of the maximal possible perimeter value of such 
triangles. 

3. Concerning possible improvements of our theorem, we make the follow- 
ing observation. The applications of graph theory in the first paper were partly 
based on the following theorem (see (1)). If 3 d I < ra and 

n G h mod (I - l), O<h<I-2, (3.1) 

then the maximal number of edges in a graph of order n and not containing 
complete subgraphs of order lis 

1-2 
2c1 _ 1) b2 - h2> + (3.2) 

equality being attained if and only if the vertices are distributed into (I - 1) 
disjoint classes ‘possibly uniformly’ so that two vertices are connected by an 
edge if and only if they belong to different classes. The problem to generalize 
the theorem (3.1)-(3.2) to m-graphs was already raised in the same paper; the 
partial reason for the imperfection of our theorems is the fact that such a 
generalization does not exist up to now for 3 < m < 1~ n, even asymptotic- 
ally. A conjecture in this direction asserts for the case 

Cm - w  - 1) (3.3) 

that an ‘extremal m-graph’ can be obtained by distributing the vertices into 

I- 1 
m- l (3.4) 

disjoint classes ‘possibly uniformly’ and taking all m-edges with not al/vertices 
in the same class. If this were true our proof of Theorem Iwould for E > 0 
and n > no(s) yield the quantity 

(3.5) 

in the place of i 
0 

-1 

. Hence the constant + would be replaced by ($ - E) in 
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Corollaries I and II. However, in the last case if A and B are two points with 
AB = + and if k points (k large) are taken close to A and B, then the maximal 
perimeter of the triangles is 1 while the number of such triangles whose peri- 
meter is less than 6* is 

Moreover 

for k -+ 00. 

Hence if the m-graph conjecture (3.3)--(3.4)-(3.5) is correct then the graph- 
theoretical approach can lead to results, which are in a sense best possible in 
triangle problems too. As to this particular problem, B. Bollob&P succeeded 
in proving by a special method without conjectures that there is a constant 
a** < 1 such that for arbitrarily small E > 0 and n > n,,(c) having n points 
Pl,P,, ‘a*, P, on the plane such that 

max perimeter of APi, Pi, Pi, = 1, 
lail<ir<is<n 

at least (a - 6) 
0 

i of these triangles have a perimeter < S**. Again, nobody 

knows at present which one is greater, 6* or F*. 
Not having the theorem corresponding to (3.1)-(3.2), we could use only 

the strongest existing theorem in the required direction due to Gy. Katona, T. 
Nemetz, M. Simonovits (see (2)) according to which in an m-graph of order n 
the existence of more than 

1-L n 

( )(I 
1 m 

0 m 
(3.6) 

m-edges implies the existence of a complete m-subgraph of order 1 if only 
3 < m < I < n. But for m = 3, I = 5 we shall need a slightly stronger result; 
we shall use the 

LEMMA, If in a trigraph of order n > 7 we have more than 

6 n 
13 0 

(3.71 

triedges, then the trigraph contains a complete subtrigraph of order 5. 

jOra1 communication. 
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4. We shall prove only Theorem I; the proof of Theorem II goes through 
analogously with (3.7) in place of (3.6). 

Let 1 > 3 be fixed and let our (normalized) point set P consist of the points 
p,,p,, -.*, P, in the plane (n B I). We attach to this point set P the trigraph G 
with the vertices PI’, P2’, ..,, P,’ SO that the triedge Pi,’ Pi2’ Pij’ occurs in G if 
and only if 

g(Pil’, Pil’, Pig’) > DI. (4.1) 

Suppose that the number of our triangles with the property (4.1) is greater than 

(4.2) 

Then the trigraph G would contain more than U triedges and hence, owing to 
(3.6), it would contain a complete trisubgraph of order 1. But this means again 
the existence of 1 points in P such that all triangles from these points satisfy 
(4.1). But this contradicts (1.6). Hence (4.1) holds for U triangles at most, and 
thus the inequality (1.7) holds for at least 

1 n 
-0 1 3’ 

triangles. 0 3 

5. We have to prove the lemma. Denoting the maximal number of triedges 
in a trigraph of order n not containing a complete trisubgraph of order 5 by 
N(n), we see at once that N(6) < 18 (since if the triedge P, Ps P, were the only 
missing one then (PI, P,, P,, P,, P5) would be a complete pentagon). The in- 
equality N(6) Z 18 is clear by removing from the complete trigraph of order 
6 the triedges PIP, P, and P, P, P, and evidently this is the only type of tri- 
graphs of order 6 with N(6) = 18. As to N(7), we assert that 

N(7) = 30. (5.1) 

That N(7) 2 30 is again evident by considering the trigraph obtained by omit- 
ting from the complete trigraph of order 7 all triedges from (PI, P,, Pf, PJ 
and the triedge (P,, P6, P,). Let Ni stand for the number of triangles in the tri- 
graph obtained from our given graph of order 7 by omitting Pi. Then from 
N(6) = 18 we have on one hand 

i N, < 7.18 = 126 
i=l 

(5.21 

and on the other hand 

(5.3) 
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since any fixed triedge occurs in exactly four Ni’S. Hence 

N(7) < 31 

and, ifN(7) = 31, we have 
,& Ni = 124, 

def 
i.e. N, = maxNi > 18 

i 

and hence 

N, = 18. (5‘4) 

But then the structure of N, is given above and the number of triedges con- 

taining P, as a vertex is 13, i.e. from the 6 
0 

2 = 15 triedges only two are mis- 

sing. This gives altogether six configurations and one can check easily that 
each contains a complete trisubgraph of order 5 which is a contradiction, and 
hence (5.1) is true. But, as remarked in (2), 

is monotonically non-increasing; hence we have for n > 7 

as required. 

Appendix 

6. We shall show that if P,, P,, P3, P, and P5 are 5 points in the plane so 
that 

max area pi, Pi, Pi, = 1, 
l<i14h<i3<S 

then def 
v= min area pi, Pi, Pi, < 

JS - 1 
2 * (6.1) 

lbi~Ci)<i3$5 

This inequality is best possible as is shown by the regular pentagon. (Some- 
what longer proof would also show that all cases of equality are given by affine 
regular pentagons but we shall not go into details of this,) 
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Case I. The smallest convex polygon K of the P,‘s has at most four vertices. 
If K is a triangle, we have at once V < ); if K is a quadrilateral then the area 
of K is < 2 and hence 

Hence we may suppose that our .five points form a convex pentagon. Let 
AP, P, P, be one of its triangles with 

area API P,P, = 1. (6.2) 

Case II. Two sides of AP, P, P, are on the perimeter of the convex polygon. 

Let the point Q be such that 

i.e. 
PsQllPif'z p,Qllp~p, (6.3) 

area AP,P, Q = 1. 

p, 
FIGURE 1 

Owing to the maximality of API P, P3 both points P4 and P, are in APz P, Q 
and owing to the convexity of P, P, P3 P, P, the line P, P5 does meet within 
the triangle P, P, Q the sides P, Q and P, Q only (see Fig. 1). Since the tri- 
angles P, P, P5 and P, P4P, are disjoint and the sum of their areas is < 1 
owing to (6.3), we have in this case 
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Case III. Only one side AP, P, P3 is on the smallest convex polygon; with- 
out loss of generality let this be P1 Pz. 

FIGURE 2 

Let (see Fig. 2) 
PlBIIP2P3 P,AIIP,P, 

i.e. 
AP,=P,B. 

Owing to (6.2) and the definition of Case III 

P4 E BP, P, B, P5 E AP, P, A. (6.4) 

Let C be the point of intersection of P, B and P2 A further 
~ 

CD 1 P,P,, CD=+CE=m. (6.5) 

Let 0 < 8 < 1 to be determined later and F be such that 

DF = 8m and GFIIP1Pz. (6.6) 

Let finally the points R, J and H be defined as the points of intersection of GF 
with P, P3, Pz P3 and CA respectively. If P4 is between the parallels PI P2 and 
GF, then 

area AP1 P, P, ES area AP, P, G 

= 0areaAP,P,P, = 8 (6.7) 
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and analogously with P, instead of P,. Hence we have to investigate only the 
case when 

P4 E BGRP, and P5 EP~ JHA. (6.8) 

In this case let us investigate the area of AP, P, P,. If P, is not on the broken 
line BGR then, shifting it along P, P4, the area of AP, P, P, is increased; and 
analogously for P5 ; hence we may suppose that 

P, is on the broken line BGR 

P, is on the broken line AHJ. 
tw 

Suppose that P, is on the segment BG, but not at G. We move P4 parallel to 
P, P5 to a position P,’ inside BGRP,; this process preserves the area of 
AP, P, P,. P.+’ may be chosen to lie on P, G. If, next, P, is moved along P, G 
from P4’ to G, the area of AP, P, P, is increased. Performing an analogous 
operation on P,, we see that 

But 
area AP, P4 P, < area AP,GH. (6.10) 

E=(l +6)P1P2, i% = (1 - 6)E 

and thus from (6.2) 

area AP,GH = (1 - 13’) area AP, P,P, = 1 - 8’. 

Hence, in the CaseIII, (6.7) and (6.10)-(6.11) give 

V < max (0, 1 - 6”) 

for all 0 < 0 < 1. Choosing 8 so that 

e = i - 82, 
(6.1) is proved. 

(6.11) 
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