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Complete prime subsets of consecutive integers

P. Erdos and J.L. Selfridge

Denote by n(z) the number of primes not exceeding &
A well known conjecture states that for 1 <y ¢ z,

(69 iz + y) < niz) + n(y)
The proof of (1) unfortunately seems to be hopeless at present.
No methods seem to be available to prove it. Conceivably a counter-
example could be found by using computers, but we believe that the
conjecture is true. It has been proved for small values of y

Also for z =y it is a classical result of Landau when =z 1is

large, and recently was proved for all =z by Schoenfeld.

Hardy and Littlewood observed that Brun's sieve method

gives
eL Yy
nix + y) - nlz) < =
log ¥

and Selberg proved by his improvement of Brun's method that
nE+y) - @ < 2+ o)) —H—
log v

This result was recently strengthened by Montgomery to

It would be very interesting if 2 could be replaced by a smaller

constant in the Montgomery-Selberg result.
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Bardy and Littlewood put

py) = lim sup (vlz + y) - =(z)) .
w

Presumably

pE) - ly) + - =
but it seems to be very hard to get any result on p(y) . In view
of this unsatisfactory situation P. Erdos [3) introduced the
following related functions which probably are easier to investi-

gate. Let {a'i} be a sequence of integers, prime in pairs, with

() Osncap .. ca entk, @a)=1,129<jst.

The sequence is called complete if for every & 1in n < 8 s 7 + & ,
(8, ai) > 1 for some 1 . Put

Fin,k) = max t, Fln,k) = oin t,
where the maximm and minimum are taken with respect to all
complete sequences satisfying (Z). Clearly F(n,k) and fin, k)
are periodic functions of n (the period is a divisor of the product

of primes less than k ).

Now we shall consider the four functions

(3} max F(n,k), min F(n,k), max f(n,k), min f(n,k),
n

L mn n
and try to cobtain some non-trivial results on these functions.

(In what follows max and min are always taken over all n ).
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Trivially
(4) min f(n,k) = 2,

for it suffices to put n = P - k , where P 1is the product of all

primes less tham % , and take ay =n+ k - 1, az =a; + 1.

Erdos thought that perhaps max F(n, k) < =(k) + 1 , but
this conjecture is clearly wrong. We show first of all that for

infinitely many k ,
A
log k

(5} max F(n,k) > n(k) + (G + o(1))

It immediately follows from the prime number theorem that
for infinitely mamy & ,
k!i
log k

(6) nwlk + kD > 10 + (% +o(1))

This inequality almost certainly holds for all k but even
n(k + k%) - n(k) » 1 seems hopeless at nresent, though it seems

certain to hold feor all & 3z 117 .

Let k& be an integer for which (6) holds, and put
n = [kkl . The a's are the primes in (kH, k + k%) , together

with one power (in this interval) of each prime p ¢ k®. Thus for

every k ,
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wk + K% ¢ max P(n,k) ,
and (6) impltes (5).

We now prove a sharper result.

max P(n,k) > 1(k) + (log 2 - 3 - o(1)) —X—
n (log %)

Proof: Let b= n+ [3k] +1 . Ve take b= 0 (mod p) for all

P <Pn» where P, is the least prime for which

Zpr +r > v(-;-k) + 1(-%3( = -;'*J + 3. Now the set of a's will

consist of b - 1 and b + 1, together with every b - p for

which ps%k, and every b +p for which p‘_sps%k-%‘

The total number of such a's is * = 2 + n(%&) + ni%k - %} - (r - 1).
So if p3p, , then 2p >t (by choice of Pr)‘ and there must

be some residue class (mod p) which contains at most one of the

a's . Thus we can choose b (mod p} so that p will divide at

most one of the a's . Then these a's are clearly pairwise

relatively prime, and their number is greater than 27 (%k) -r .

Using
7z) = =E— 4 (1 +0(1)) —F—
log = (log x)
we obtain 1
¥ x (E + leg 2)k P
max Fin,k) > 21(-2—) -r > + - of )
log k (log k)2 (log k)
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1
(log 2 - E)k X

w(k) +

B of
(log k) (1og *)°

vhich proves hecrem 1.

By Selberg's sieve we easily obtain

max F(n,k) < (2 + o(1)) —— .
log k
It appears likely that
™ max F(n,k) = (1 + o(1)) —— ;
log %

a proof of this seems a very difficult probler.

Theorem 2. For every ¢ > 0 and k > ko(t) F

¢ k (loglog k)2 .
(log k)2 logloglog k

Kre

< min Fin,k) <

First we prove the upper bound. By a well known theorem
of Rankin, for every k there is an 7 so that for every 1 ,

l<igck,n+1 has a prime factor not exceeding

2
¢ k (loglog k)
log k logloglog k

-t

For this n clearly F{n,k) £ L , so the prime number theorem

immediately implies the upper bound in Theorem 2.

An unpublished result of Rosser (see the forthcoming book



on sieve methods by Halberstam and Richert) implies that for every

€' > 0, there is a constant ¢ = c(c’) such that at least

e 5 integers between n and n + k have all their prime
log k

!
factors greater than kH_E . Let these integers be u; < ... < LI
vhere 2 3 ¢ —X— ' Then, 1f €' <%, u 1is divisible by at
log &

most two primes not exceeding * and these are both greater than
KrE Hence for fixed u, there are at most 2T 42

integers j for which (ui,nj) > 1 . Thus clearly

F(n,k) » y e

s

2kh+€‘ + 2

which completes the proof of Theorem 2.

We would guess that the true order of magnitude of

min Fn,k) is -——5——-3 for some a but this seems hopeless at
(log %)
present. It would be very interesting to prove
win F@r,k) > K¢

Clearly both functions ain F(n,k) and max F(n,k) are
monotonic in % but max f(n,%) is certainly not monotenic,
since
max f(n,6) = 3, max f(n,5) = 4 .
Possibly this is the only case where max f{n,k) 1is not monotonic.

We computed max f(n,k) for k ¢ 45 . Perhaps
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max f(n,k) - n(k) + - =,
but we have no nontrivial upper bound for max f(n,k) . Denote by
¢(n,k) the number of integers & in n < 8 £ n + k with no prime
factor less than k . Clearly
Fln,k) 2 ¢(n,k)
and
F(n,k) < n(k) + ¢(n,k) .
More generally for every £ s k,
Pln,k) < n(2) + ¢(n,1) .
A simple averaging argument gives
T fnk) = 1ip 22K ln 2 I Pink) = e .

lip 20X 54y 1
e T op=] Ko e T mel

]

This follows from the well known theorem of Mertens,

Y

1 e
il 1=-=)=(1 1 v
ptk( P) (1 + of ))m

By the method used in {4, Thm. 3] we can prove

2y

£ z
lin (1-°-§—")? s 2 [ Ff(n,k)? = Un (-1-"{—;5)2 lind I Fr)2a=e
x T

e e T opm] ke o= " n=]l

Thus as k + = , for almost gll n
e Tk

fin,k) = (L + o{1))F(n,k) = (1 + o(1}))

log ¥



We thus have
e 'k
max f(n,k) 2 (1 - o(1)) —— ,
n log k

snd we have not been able to improve this.

Finally we remark that there are several problems connected
with min f{(n,k) . The first is to determine or estimate the
smallest positive integer m;, for which Ffln, k) = 2. Trivially
n s P - k, where F is the product of all primes less than ¥k .
We have found that k = 99925854 gives strict inequality. For
this value of % , take m to be the smallest positive integer

satisfying the congruences
9 (mod pyPaPal ,

"

m+ k

m+ 120 (mwod P/p1PoFP3)

Take P; = 10061, P; = 20123, p; = 35281 and notice that k - 1
is prime. Since k < plz, the only numbers between m + 1 and
m+ k which have no prime factor in common with m + 1 are
m+ 2, m+py+1l,m+p;+1l, and m+ p3 + 1. But

m+ 2Zm+py+ 10 (modpyj,m+p; + 120 (med py), and

m+ p3+ 120 (wod pz). Then obviously nk$m<.’-k.

How let nk’ be the smallest integer for which there are
two integers a and b , nk’ <a<bsnk'+k , 8o that

(n+j,ab) >1 for 1< 3jsk. The difference between nk'
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and 7, is that we do mot require (a,b) = 1.

Theorem 3. For all sufficiently large k ,

1
r
(8) ' < EP <P -k,

where P is the product of all primes less than k .

A recent theorem of Motohashi [5] states that there are

infinitely many primes P such that the smallest prime

g = Limod p) is less that p''°" . This immediately gives (8)

for every k, p+q <k g p? . To see this, let m be the smallest

positive integer satisfying the congruences

m+p+g+1z0 (med pg) ,
m+ 1= 0 (mod P/pg)
1f ag=m+1 and b=m+p+g+ 1, then clearly (m + j,ab) >

2
for 1< <p . Then obviowsly n, ' <m . Let m* =P -m-k-

From the construction of m it is easy to see that m* > 0 and
that nk' ¢ m% . Since either m or m* is less than %{P-k) .

the theorem is proved.

A simple modification of this proof shows that the
intervals (p + g, pz) cover every integer for % » ko . In fact
probably Theorem 3 holds for every k > 34 (34 = 11 + 23) . For
the proof of this one would have to obtain explicitly given

constants in Bombieri's theorem [1].

1
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The smallest value of k for which (8) holds is given by

k=17, n, ' = 21B3, a = 2184, b = 2200 . Perhaps nk' =N p-k

x pek

for 25 < k £ 34 but we did not investigate this.

A well known theorem of Pillai and Szekeres [3] states
that for k € 16 , every set of X consecutive integers contains
one which is relatively prime to the others. (A theorem of A. Brauer
and Pillai [2] states that this theorem fails for every k z 17 .)
The theorem of Pillai and Szekeres easily implies that if
1 <b-a< 16 there is always a ¢ between g and b such that

(a,e) = (b,c) = 1 . This easily implies that m' =1 p -k for
p<k

k £ 16 . We leave the simple details to the reader.

Finally we state & few more unsolved problems:

1. For which k& is it true that if (a,b) = 1,
1<b~-a=k, then there always is a ¢ between g and » such
that (ab,e) = 17 Perhaps for every sufficiently large % one can
find integers b - a = k¥ so that for every a<ec <b , (ab,e) > 1,

but we do not know if this holds for every sufficiently large Kk .

It is easy to see that if 1. is true for a given & |
then

m= I p-k.
pek

=18-



It seems certain that
"=of{ T p).
% AL
On the other hand nk' certainly increases very fast. From Rosser's

result used in the proof of Theorem Z it follows that

n' o> ex'p(k;rt) . Very likely

(9) ¢(n, n+ k) > e
log k

holds for every n < k% . This is probably very deep.

2. 1Is there a k 8o that for some set of k consecutive

integers n+ 1, ..., n+k ,
k
n+i1, I (+J))=4(n,i)
=1
J#t

is composite for all 1, 1 € 1 £ ¥ ? Perhaps every sufficiently

large k has this property.

The following problem is probably much more difficult: 1Is
there a k so that A(n,7) has more than r distinct prime
factors for all %, 1 €1 ¢ X ? For r =0 this is the Brauer-
Pillai-Szekeres result, but for r = 1 it is probably quite
difficult and the answer may very well be 'yes' for r =1 and

'no' for r > 1.

We attach a small table of values of max f, min F and max F
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and some indication of values of n 4+ 1 for which these are attained.
In the table of min F, one choice for n+ 1 is P - [«;—'&],

except when %k = 38 or 39, for which n + 1 = 2162 may be
chosen. HNotice the overlap with the Pillai-Szekeres example [2] of
17 consecutive numbers, none relatively prime to the product of the
others. In the table of max F, the #n + 1 column is left blank

if one choice for n+ 1 1is P - 1 .

We wigh to acknowledge the assistance of E.F. Ecklund,

R.B. Eggleton and R.K. Guy.
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