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SOME RESULTS AND PROBLEMS ON CERTAIN
POLARIZED PARTITIONS

By
P. ERDOS, member of the Academy and A. HAJNAL (Budapest)

§ 1. Introduction. Notation

1. 1. A short list of general notations

o, B, 7, 0 denote cardinals. ¢, ¢, i, p, v, 0, ¢ denote ordinals. |4 | is the cardinality
of the set A. a* is smallest cardinal greater than z. w; is the sequence of infinite
cardinals wy,=w. 1, j, r, 8, I, k denote integers (cardinals <w). « is a strong limit
cardinal if 2f <« for every f<u. For x=w cf(x) is the least cardinal cofinal with «

[APF={X: XcA A |X|=0}, [A]"*={X: XCAA |X|<a}.

For the convenience of the reader we recall the definition of some of the partition
symbols defined in earlier papers [1], [2], [3].

DErINITION 1. 1. 1. The ordinary partition symbol. o —(f,)}., denotes that the
following statement is true.
Whenever [¢]°= |J I, then there are 4 C«, v<y such that |[4|=§,, [APCI,.

vezy

Here and for all other symbols to be defined 2-~(8,)i_, denotes the negations
of the corresponding statements, « —(f)3 denotes 2 —(B,);_, where ,=p for v<y.

We use some other self explanatory abbreviations which are defined in detail
in [2].

Note that the ordinary partition symbol and some of the other symbols can
be defined for types instead of ordinals in a natural way. If «; f,, v<y are types,
a—(B,)} means the following:

Whenever 4, < is an ordered set, tp(<)=« and [4]°= | I,, then there

vy
are A”C A, v<7 such that tp A(<)=p, and [4PC],.

Since we do not investigate these problems here, we will give all the definitions
for cardinals.

DerINITION 1. 1. 2. The polarized partition symbol. Letr,s<w;r=ry+---+r,_ ;.
Let «;, fi; , be cardinals for i<s, v<7.

o ﬁ . POs-oaFs—1 ) )
[-?- ]*[ 1 ] means that the following statement is true.
o 1 ﬁs— 1, v/v=7

Whenever

5 —

oo X -+ X[otgqJo-1 = U L,

vy

then there exist sets A4;C;, i<s and v <y such that
[AofoX -+ X[A,_Js-1c I, and |4, = B, for i=s.
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370 P. ERDOS AND A, HAINAL

DEerINITION 1. 1. 3. o —(#)7° means that the following statement is true:
Whenever
[ =UI" for r=w

then there are A« and f€y such that |4 =f and [} < I, for r =w.

DEfINITION 1. 1. 4. a—[f,]0_, means that the following statement is true.
Whenever [2]°= |J /. then there are 4 Ca, v, =y such that

B |4 =g, and Ac U I,
V==, WY
If B,=8 for v=7y, we write o—[f]. ’

DEFINITION 1. 1. 5. 2 —[f]5 . means that the following statement is true:
Whenever [¢]’= U 1, then there are Ac—a and CCy, such that [A]=F,

[C|=7y, and Ac U 1 The symbols defined in 1.1.4, 1. 1.5 are the “square
vEC
bracket” symbols corresponding to the ordinary partition symbol. Quite similarly

two square bracket symbols

{‘10 ] [BO i ]ru'.,.,r 1 lxo ] [ﬁﬂ ]ﬂ),---sﬂr—l
ﬁs 1,v zs-—] ﬁs—l You 71
can be defined corresponding to the polarized partition symbol.

The symbols defined in 1. 1, 1.2, 1.3 were defined in [2], where we gave a
detailed discussion of the ordinary partition symbol and the special case. s =2,r =2,
ro=r; =1, y=2 of the polarized partition symbol.

The aim of the present is to consider the special cases

[ao] ﬁo,\-]l’r s
Ijlll ﬁl.\' g -

of the polarized partition symbol, mainly in case r=2, y=2 and some related
problems.

1. 2 A new notation for the main problems considered

L.r
1. 2. L ( ] g‘: ‘] is obviously equivalent to the following statement:

y<y

Let [o,]'= U I} for E<u,. Then there are AgCoqy, A, Ca,, v=7y such that

=7

!Aoi:ﬁo‘ v, JAi!:ﬁl.l‘ and . )
[4,'c ﬂ Is,

§edo
If #,={[Al:Aca, Al|4|=p,,} then 1.2.1 can be expressed as follows:
There are A, Ca. v<7y such that [4,/=pf, , and there is an X €4, such that
Xc B
&< do
We will consider the more general problem when #, can be more general classes.
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ON CERTAIN POLARIZED PARTITIONS 371

DEerFINITION 1. 2. 2. Let oy, o,: f,, v=<7 be cardinals r<=w, and let 4, v<y
1,r

be a sequence, where %, C #([«,]"). Then (:i’]—-— [gg"] means that the following

vIvey
statement is true. Whenever

[, =U L5 for ¢ <a

v
then there are A, Ca,, v =<7 such that |4,|=p, and there is X €2, with
¥z NI

£E Ao

[10] [ﬁo 51]"’ 4 [9‘0] [ﬁv]"’
%y - By’ B o oy - By )v=2

Note that an X c[«,]* can be considered as a graph {a, X) whose vertices and
edges are the elements of x and the elements of X, respectively, We will sometimes
use graph terminology for expressing certain properties of such classes.

We will sometimes use the v (or) sign in the symbol; e.g.
%o ﬁévﬁﬁ Bi o [

By By By B

has the following self explanatory meaning.

Whenever

We will write

&y

[o,]y = U I¢ for & <a,
y=2

then there are 4, o, v<2 such that either '4,|=p, and there is an X¢ 2, for
which
Yo i}
EEdo
or |[A,| =p, and there is an X €2, for which

X 1) 5.
£cdo

1. 3 About the results

Though we have defined above a general symbol which can be used to express
the results and problems we are going to state, it will be clear to everyone familiar
with the subject that a systematical discussion of all the problems involved is
hopeless presently (and perhaps would not even be worth while). We came across
the special cases of these problems when working on ordinary partition problems.
Some of the results are ten years old, some are new and give the solution ot several
porblems stated in our paper [3].

We will consider different instances in different chapters and we give short
summaries there,

Though most of the results will only interest those who know the basic results
un partition relations in detail, there will be some simple unsolved problems which
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372 P, ERDOS AND A. HAINAL

seem to be fundamental. Trying to clear these problems up we will prove some
obviously not final partial results too.

We mention that Theorems 4.1, 4.3, 6.1, 6.3 give solution of Problems
61, 59, 60 stated in [3], respectively.

§ 2. A positive result for measurable o

DemnNITION 2. 1. 2, , 5 will denote the class of complete y, d even graphs
with set of vertices x i.e.

By s={XC[a]?:3C, D(CcanDcanCND=0 A|C|=
=yA D =6A({S n}eX = (cCaneD))}.
If X4, , ; we write X=[C, D].

2.2, Let a=w and B ={Xc[«]*: (¢, X) contains an odd circuit}. Then

[oc] [l o 1,2
-x+522’5€,_1,¢ ’

PrOOF. Put I§={{{,n}€[0]*:{=¢&<n} I}=[a]?—I§ for ¢ <a,. Then I$¢ B2
IfX€B, (.16 X=[{{,}, D], |D|=2then XNI§#0 for £ =¢&,.
Note that if 2! ={XC[«]*: X contains « edges} then one can prove e.g.

53 @ o o 2
ol m_'k’s?}n for k= o,
which shows that in 2.2 2, , ,(C#}) cannot be replaced by 1. We omit the routine

proof.
2.4, Let a=w. Put B2={XC[u)*: X O}. We have

o 1 o L2
a]+ B @2)

ProofF. For ¢ <a put I§=[¢3, I} =[]~ I§.

Then |7§| <o, hence I? ¢ B} and if X 20 then there is £, <o such that XN 150
for £=¢,.

The above negative results suggest the formulation of the following property:

1,2
2.5. P(x) & for every B, y=u, [:) —-[’Igvl@ :i] .
;- A~

Our main, result in this chapter is

THEOREM 1. 1. Let a=0 be 0, 1-measurable. Then for every f, y<a

o o 1 o) 12
[a] - [B v @a,y,;a] '
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ON CERTAIN POLARIZED PARTITIONS 373

As a corollary of this, P(x) holds for measurable x. Before proving the theorem
we mention

ProBLEM 1. a) Can one prove Theorem 1.1 under some weaker hypothesis
than the measurability of a? (E.g. «—~(2)3 ?)

b) Is P(x) true for the first strongly inaccessible cardinal?

Note that we wili prove that P(«) is false for cardinals not strongly inaccessible.

ProoF oF THEOREM 1.1. By the definitions 1.2.1, 1.2.2 it is obviously
sufficient to prove the following statement.

Let I:, & <o be a sequence of type %, where [; C[2]>. Assume that the following
conditions (1), (2) hold:

(1) If 4, Bca, ANB=0, |A|=7, |B|=u then [4, B]¢ I for & <u.
(2) If A4, BCa, [4|=p, |B|=x then [A2¢ U I.
SEB

Then there are C, Dca, |C]=|D|=a such that
[CPNI;=0 for (<o

Let p denote a non-trivial a-complete 0, 1-valued measure on «. For each
Pefa]? put
3) N(P)={tca: Py}

Put
4 I={Pe[u]?®: W(N(P))=1}.

o being strongly inaccessible we have o —(f, o)? (see [1]). Applying this for the
partition [x]?2 =7 ([¢]> —I) and using the assumption (2) we obtain that

(5) There is an AyCua, |dg| =0, [4,]* NI=0 i.e.
H{(N(P))=0 foreach P¢c[A4,]>.

Let now p’ be a non trivial a-complete 0, 1-valued measure on 4.
Put

(6) Udx)={y€d,: {x, y}€l;} forevery xcA,, &<«

M(x)={¢<a: ' (Udx))=1} for every x€4,

T= {xedo: p(M() =1}

T:={x€A,: EEM(x)} forevery &é=<ua.

We prove
(7) |T;|<y for every { <o In fact it T'c T, |T’|=y then u’[xQT’U;(x)] =1 and
[T ’,x Dr Uglx) — T’] < I, which contradicts the assumption (1).

It follows that
(8) |T|<y, for if T"C T, |T’|=7 then there is a c_fEx[E']T,M(x) and T"c T, for
this .
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374 P. ERD(IS AND A, HAJNAL

Put 4, = A,—T. By (5) and (6) and (8)

) wid,)=1, f(N(P))=0 for every P€[A,]*, u(M(x))=0 for every x€A4,.
We define the sequences {x,},.,<A4,, {{,},..C by induction on ¢ as follows.
Assume that ¢ <2, X, and £, are already defined and & ¢ M(X),) for 7, c<p.

Then by (8) and (9)
w(U U Us(x) = 0

hence by (7) there is an X,€A4,, X,# X, for ¢ <g such that
(10) %4 U UUgGx)U UTs.
T=g

By (9) the set P el
U N xhU U Mix,)
¢ g=g

T=g=

has p measure 0, hence there is a {, <2, £,#¢, for T =g such that
(11) s U Nix, x,hU U M(x,).
T=g=0 o=¢

By (10) and (11) &.4 M(x,) holds for 7,6, =¢+1 as well. Thus the sequences are
defined. Put C={X,},.00 D ={{,},<o- By the definition |C|= |D|=a. Let 1<o=<a,
o<o. We prove {x,, x,}¢I,,. We distinguish two cases: (i) ¢=o, (ii) o=o.
By (10) x,4 Ug(x) if (i) holds. By (11) &,4 N({x,, x,}) it (ii) holds.

Hence by (3) and (6) {x,, x,}4Z;, in both cases. This proves that [C]* (1 /;=0
for every £€D.

Now we prove a number of negative results which show that P(x) is false for
not strongly inaccessible cardinals.

2. 6. Assume cf(o0) <o and o =w. Then

o 1 1 a2
a) cf(oc)v.@},’a )

We give the (trivial) proof in § 7 (Theorem 7. 1) where we discuss singular
cardinals.

+ 1 1 +31,2
2.7 §+]+[wvﬁl+’£+ , for B=w

Proor. Foreach &<f* let <. be a well ordering of ¢ such that tp {(<;) = B+

Put
B={{C n}elEP: {<nan<L}), =[] —15.

Obviously 7§ does not contain a complete @ graph, and 7§¢ #}. . On the other hand
if Xca, tpX(<)=p+1 then there is a &, <8, X &, and XNI§= O for E=¢,.
With a similar idea one gets

2. 8. Assume x=w, B-(y, 1) for every f<uo, cf (a)Zcf(y) then

o 1 1 a2
" -+ _}’V‘@;,y.
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ON CERTAIN POLARIZED PARTITIONS 375

PROOF. For each & =g, let 1§ —[£]? be such that the partition [£]2 =15 v ([¢]? — I§)
establishes the negative partition relation |&|-+(p, 7)?. Put If =[u]? — I§. Obviously
154 B! and 1§ does not contain acomplete y-graph. Assume X Ca, |X|=17. Then
by the assumption cf(y)=cf(x), there are YCJX, |Y|=% and &,<a such that
Y &,. But then by the construction I N[Y]? for £ =&,.

2.9, COROLLARY. Assume 2=t =w. Then

o [1 1z 2
U*’ ﬁ*”’é&l’ﬁ"] '

PrOOF by 2.8 considering that 2 — ()3 .
2. 10. CoroLLARY. P(x) is false if 2 =w is not strongly inaccessible.

Proor. By 2.6 and 2.7 we assume that « is regular, 2 =« for some f<u,
and B+ <a. Considering 2% 4 ()3 the statement follows from 2. 8.

Without using G.C.H. we could not prove stronger negative results. Assum-
ing G.C.H., much stronger negative results will be proved in § 3.

It is obvious that many quantitative questions can be asked here; we point
out one.

PrROBLEM 2. Can one prove without assuming C.H. that

w, [l I w)"?
+ |,V ?
@, 37 4., w,

This should be compared with 2. 7 and Theorems 3. 1 and 3. 2.

§ 3. Stronger counter examples for P(x"), assuming G.C.H.

DerINITON 3. 1. Let #3={XcC[a]?; (, X} contains a circuit},
B =Yt X =ak

THEOREM 3. 1. Assume G.C.H., x =w. Then

at 1 1 O€+ 1,2
o) Tl V@3]

Proor. First we prove

(1) Assume {Y,},_, is a sequence of type « of elements of #5,. Then there
is a set /c[x*]?, |I|=a, such that the graph (a*, ) does not contain a circuit,
and INY,#0 for p=<a.

First we define a sequence {P,},., of elements of [«*]* by transfinite induction
on u. Assume P, is defined for every v <y for some g <o. Then | U P‘,! <, hence
Y,—[ U P,]*#0 and let P, beanelement of it. Put I={P,},.,. Then 1 obviously

v=p

satisfies the requirements ot (1).
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376 P. ERDOS AND A, HAINAL

By G.C.H., there exists a well-ordering {X:}:..- =%, of type a* of ;..
By (1) for each ¢=a* there exists an I§¢ 4L, U3, such that I§NX,#0 for
each { <& Put I{=[a*]? —I§ for E<a*.

If Xc%%,, then X=X, for some { <« and XNI§#0 for { <&<a™,

DeAniTioN 3.2, Let #i={Xc[«]>: PNQ = for some P#=QEX).
BS = {X[«]*: X consists of « disjoint edges}. Our next theorem is incomparable
with Theorem 3.1 since #). U%2. cBL. U%B]. but BL. CH}..

THEOREM 3. 2. Assume G.C.H., o =w. Then
G!+ l 1 0£+ 1,2
N P

Proor. First we prove

(1) If {¥,},<. is a sequence of type o of elements of & then there is an
Ic[a*]?, |I|=«, which consists of disjoint pairs such that ¥,M/##0 for every
u=<a.

To prove this we define a sequence {P,},.,C[x*]* by transfinite induction
on . Assume P, is defined for every v<p for some u<a. Then | U P,|<a.

v=g
Considering Y, €4%¢, there is a P,€Y, such that P, U P,=0, I={P,},.

V=p
satisfies the requirements of (1), By G.C.H,, there exists a well-ordering {X:};,+ =
= B8, of type a* of #.. Applying (1) for {X,}, . for each { <u«™ we obtain that
there exists an I§c[a*]?, |I§|=2 I5¢BL.UAB2, such that

IsNX,#0 forevery {<¢.
Put I{=[a*]?—I§ to E<a*. If X€ B, then X=X for some {<at and
IENX#=0 forevery ¢&=(.

QOur next theorem shows that Theorems 3. 1 and 3. 2 do not have a common
generalisation.

THEOREM 3. 3. Assume a=wm, y* <o, Then

a] 1 « 1,2
a) @3,

Proor. Let [¢]2=I§UI$ for &=<a.

Assume I§4 #; for every é<o. Let Cca, |C|=7.

Put B = a—C. For each {<ua let

(1) B:={y€B: there is an x€C such that {x, y}€I3}.

Considering I5¢ #3, we have |By =1y for every & <o

By a theorem of G. FODOR [7] then there exist D € B, A C« such that [D|=[4|=«a
and D B;=0 for £€A.

Then [C, D]€4,,,, and by (1) [C, D]CI{ for every €A,

As to the counterexamples in Theorem 3. 1, 3. 2, it is obvious that assuming
G.C.H., neither of the classes #:., %S, can be replaced by a class containing
graphs with fewer than o edges since then ot graphs coincide on a set of power
7 (where y <2) and the problems are reduced to ordinary partition problems.
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ON CERTAIN POLARIZED PARTITIONS 377

§ 4. Further counterexamples (assuming G.C.H).

In this § we consider problems of the type

at 1 o )12
) o)

where the complement of B, consists of very small graphs and the graphs in %,
have o™ edges.

Though most of the results are negative and technically complicated to prove,
they are surprisingly sharp. That is why we think it is worth to give them in detail.

DerINITION 4. 1. #] = {X C[0a]*: (o, X) contains an infinite path}.

THEOREM 4.1, Assume G.C.H., a=w. Then

()bl

i.e. in g set of power 't we can define a* forests not containing infinite paths so that
given o™ edges all but less than o of the forests have an edge among the given edges.

Note that { ] [Q £1+] could technically much simpler be proved.

Proor. We will define a sequence J,c[a*]?, ¢ =a™ with the intention that
the partitions
(€)] L=1I§, I{=[a* =1, [ 2 =LU I}

should establish the required counterexample.
For each g<a™ we will define a function f, and its domain D,C g, f§,¢€ Peg
and we will put

@ L={{B%), ¢}: ¢€D,ng<ar} forevery ¢=<u™.

We will define §,, D, and a one-to-one mapping ¢, of D, onto an ordinal =«
by transfinite induction on g.
By G.C.H., there exists a well-ordering {R,},_,: =[a"]* of type a* of [a*]%
Assume g<at and B,, D,, ¢, are already defined for every a<op.
We want f,, D,, and ¢, to satisfy the following conditions (3) and (4)

(3) For every o< and for every v<g R,C o there is a £ € R, such that
B&)=0.
4 If ¢eD,ND,, c<¢ and B({)=0 then

?o(8) =0().

We define ¢, !() by transfinite induction on u. Let #={R,: v<¢ A R,Co}.
If #=0 put D,=¢,=p,=0.If ##0, ¢, (u) will be defined for every u—<uo.
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Let {(P,,0,)},.. be a sequence containing all elements of #X¢ (may be with
repetitions) and suppose that ¢, !(z) is defined for every 1<y for some u <.

(5) If |P,ND,|<u then let ¢, '(1) be an element of P,—D, —{p;'(r): T <=p}.
(6) If |P,ND, =2 then ¢, being one-to-one P,ND, —{¢;'(1): t<p} has

an element & such that ¢, ()=pu. Put @7 '(u) =< for this ¢. Thus ¢g (1) is defined
for every p=o. Put

(7) #(¢7 (1) =D,.

Then if ##0, @, is a one-to-one mapping of D, onto .
Put

®) B&)=c if (€D, E=0; ' (n), 6,=0.

This defines §,(¢) for £€D,.

Assume o=p, v=g, R,Cpo. Then R €, hence there is u<o« such that
P,=R,,0,=0. Put {=¢; (). Then by (7) and (8) £€D,, B,({)=0. By (5) and (6)
EER,=P,. Thus (3) is satisfied. Assume (€D, D,, f,()=a. Then by (5) and (6)
E=0; (1), 0=0,, ¢, (5)=p=0 %). Thus B,, D, and ¢, satisfy (4) as well.

It remains to show that the /; defined by (2) and the 73, /5, defined by (1) satisfy
the requirements of our theorem.

By (2) for every pair £=<ua*, g<a™ there is at most one ¢ =g for which
{0, 0}€1;. This means that the I, are forests, i.e. I§§#2. for { <=a*. Using the
above property of the 7, if it contains an infinite path, then there is an increasing
sequence {0,},.. of type w of ordinals <«* such that {g,, ¢} €/ for every
n<w. Then by (2) €D, ., B,,.,(£)=¢, for n<w. Hence by (4) ¢,.(3)= 9, (&)
for n <, a contradiction. It follows by (1) that 1$¢ #]..

Let now X€BL. ie. XC[a']?, | X|=at. Put T={p<a*:3a(c <o A {0, 0} €X)}.
Then |T|=a*. Let CCua™, |C|=x. Then there is a v=<a™ such that C=R,. There
is a g=a* such that v=g, R,Co and g€ 7. There is o =g such that {o, o}€X.
By (3) there is a £€ D, such that ¢€C, f({)=0. By (2) that means {o, 0} €1,
hence

XNI;#0 for Z€C.

By (1) that means Ccat, |C =a*, X€ B}, imply
X¢ N1
fec

This proves the theorem.
Our next theorem shows that the forests defined in Theorem 4. 1 can not be

edge disjoint.
THEOREM 4. 2. Let a=w, f<a. Then

at 2 at 1,2
[*+] ” [§3+ ,-gv,,s,v] ’

Proor. Let [¢*)?=I§UIf for {<a' be arbitrary. Put briefly I§=1;. We
assume that the I are disjoint.
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ON CERTAIN POLARIZED PARTITIONS 379

Let Bcat, |B|=§ be arbitrary For each (€at—B put V,={{<at:
I,N[B, {{}]0}. By the assumption V//=p for each [€a4™ —B. By the result of
G. Fopor [7] already mentioned there are Cca*, Dcat—B, |C|=!D|=
such that V.M C=0 for every {(€D. Put X=[B, D]. Then X6£a+_g,,+ and
XNI=0 for £€C ie.

XN 4.

§eC
However one can prove a theorem corresponding to Theorem 4, 1 for edge
disjoint forests as well.

THEOREM 4. 3. Assume G.C.H., n=w. Then

CC+ + 1,2
[ ] [_@3 V‘_’% .’-a*,;v.‘:t*] ’

We postpone the proof to p. 384, where we are going to state two more
general Theorems.

DerNITION 4. 2. Let #8  ={XcC[x]*: (x, X} contains a path of length k}
for 1=k =o.

Note that %8 , =22, #; ,=2;. Forests not contained in %5 ;. are usually
called stars.

We will briefly write 2% for %42 ;. Obviously %2 c %3.

We turn back to the problem considered in Theorem 4. I.

A very strong negative result holds still if we assume that the forests defined
in Theorem 4. 1 are even smaller,

THEOREM 4. 4, Assume G.C.H., x=w. Then

35+ l o 1.2
a) ['1+] * [@E+ ‘33_.“ 1,3+] Jf Cf(a) -

. ot 1 a 12 ) .
b) [a*] s [$§+ ’@w,a,r] where & = min[x*, w,] if cf(z) = w.

We mention
ProBLEM 3, Assume G.C.H. Let x=w,,. Does

ot 1 o 1.2
- hold?
[“+] ['@3* ’ﬁa".w..w] ©

Proor oF THEOREM 4, 4. Theorems of [2] say that if G.C.H. is assumed
then the following relations hold:

6t at o 1 )
[ +] -+-[ S Y +] for cf(a) = o.
o a e w

1-{- a+ wz 1 151
- 5 i for cf(a) =w,, 2= w,.

v
% o o
@, w, o, 1 "
~+ , v ;
@, w W
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Note that we do not know if @, can be replaced by @, in the second negative relation
(see [2]). This explains why we have Problem 3 unsolved.
By definitions the above results mean the following:

(1) There exists a sequence {S,},.,+ of subsets of a*, |S,|=« for ¢<u satisfying
the following conditions:

(a) If Eca*,|E| =«* then la*— U §,| <=
o€k

(b) If Fca then | S,] =« provided one of the following conditions holds.
F

€
(i) |Fl=onA cf%a)::—w, (ii) [Fl=o,acf()=0, Aa=>w,
(i) [Fl=w; A=,

Let {R,}, ..+ =[2"]* be a well-ordering of type a™ of [x*]%
We will define a sequence I, ¢ <a®, I;C[a*]* with the intention that

2 =1, Ii=[*P-1I

should establish the required counterexample.
Similarly as in the proof of Theorem 4. 1 we will define a function f, for every
o=<uat(B,€P0, D, S,) and we will put

3) I; = {{B,(&), ¢}: for ¢ < a*, £€D,} for every & <at.

We want f, to satisfy the following condition:
(4) For each o<g and for each v<g for which [R,NS,—S,| = a thereis a
E€(R,NS,)—S, such that o=f,(¢). To do this we need the following lemma.
Let H be a set, H, 0 =g, [0 = be a sequence of subsets of A, and let #, C[H,],
|#,| =« for ¢ <g. Then there exists a sequence T,CH, 6<g such that the T,
are disjoint and each T, meets each element of #,. This is an easy generalization
of a well-known theorem of F. BERNSTEIN. The proof is left to the reader.

Put H=S,, H, = §,— S,

H, = {(mesa)_sa:v{Q"\l(RvﬂSQ)_SoI =C¢} for o<o.
We obtain the existence of T, and we put B,(¢) =6 for &€ T, (hence D,= D(B,)= U T,).

o=

Then the f, satisfy (4). The /¢ 23, since by (3) for each g there is at most one
o <p for {0, ¢} €I:. Using this property it is easy to see that if an /; contained a
path of length 3 then there were t<g <g such that both {r,c} and {o, ¢} would
belong to ;. By (3)then B,(&)=0, B,(§)=1 hence by (4) £€(S,—S)N(S,~5,)
a contradiction. Thus I.¢ 28.. Hence the I are stars.

Let now X=[F, El€®,+;,: where =0, d=w,, d=0,, I cdlg)>o
cf ()= A x=>w,,x =0, respectively, and let Ccat, |C/|=«. Then there is a
v<ua™ such that C=R,. By the assumption (1),b we have

) [Ry(1 (] 8ef <2
g€ F’

1,1
for every F'CF,|F'|=4. Using cf(d)#cf(x) and the theorem: [g} —»[ﬁ,;]
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for cf (8) =cf (x) of [2] it results from (5) that there is a ¢ € F' for which |R, — S,|=a.
+ + l 1,1
Applying (Z ] - [2 e again it follows that there is a g€ FE, ¢=max[v, 6]
such that
}(Rv m SQ)"' Scri =4

By (4) there is a £€ R, such that o=p,(¢). By (3) that means {o. ¢} €[F, E]NI;.
By (2) this means
Xd& N I-
gec

Our next theorem shows that except for the case stated in Problem 3,
Theorem 4. 4 is best possible of its kind.

DeFINITION 4. 3. Let 87, ={XC[x]*: there are gy=- <g,<a' such that
{0/, 0;.1}€X for i<k} for 1=k=<w, i.e (o, X) contains an increasing path of
length k. Obviously #; .2, and we have

THEOREM 4. 5. Assume G.C.H,, x =w. Then
o 1 o 1,2
Ry for every k=uw
ak 2+ §,&7
and for 6 <=w or d=o if of (¥) > or cf (2) =w respectively.

Proor. We prove the statement by induction on k. For k=1 it is trivial
Assume k=1 and the statement is true for k —1.
Let [x*2=15UI} for ¢ <=« Put briefly I§=1; for { <« Put

(1) Ti={{<a*:{ is the greatest point of an increasing path of length k —1
contained in 7.}. Theorems of [2] say that

o o o)t
i gl for d<=w

o A A R
[ ]-a-[ ] for =0 if cf(z)=w.

and
ot at’o
It results that one of the following conditions hold:

(2) Thereare Cca, Dcat, |C|=a, |D|=a™ such that D T; =0 for every {€C.
(3) There are CCu, Dcat, |C|=o such that

De N I;
gep
and |D|=6 or |D|=w if cf(@)#w or cf(2)=w respectively. If (2) holds then
I§=[DP NI, If=[D]*—I§, ¢ € C are « 2-partitions of a set of power «*, and by (1)
156 93« _1; hence the result follows from the induction hypothe31s
Assume (3) holds. Let E be an arbitrary subset of a* such that D<£, |[E|=a™.
Then again by (1) [D, E]NI;=0 for every £€C; hence [D, E]lC ﬂfg Note
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@ w

that in case x=w G.C.H. is not used since [ﬂh] - (w,’w

without any hypothesis.
DEFINITION 4. 4. #.° = [ 45,.

1=k=w

1,1
] can be proved

Note that 4. is a proper subset of Z,°. Assuming G.C.H. Theorem 4. 5 implies
trivially for x = that

a” 1 o b2
gif BB, .. for d=<=w

o 1 o 1,2 .
ot+l “\aroa,. . for d=w if cf(d) # o

and

However the following improvement of Theorem 4. 1 is still possible.
THEOREM 4. 6. Assume G.C.H. cf(a)=w. Then

o 1 I o 1,2
o) T la Vo g

Proor. We will define a sequence I, =I{c[x*]? Ifi=[a"]?—1§, { <a with
the intention that the partitions

(1) PR=KUI, {<a

should establish the required counterexample. For each (<u«* we will define
a function f, and its domain D,Ca, f8,€Pep and we will put

Q@ IL={{B,0), 0}:{€D,, o<a*} forevery (=u

Similarly as in the proof of Theorem 4. 1, we will define 8,, D, and a one-to-one
mapping ¢, of D, onto an ordinal =a, by transfinite induction on g.

By G.C.H. there exists a well-ordering {R,},.,.=[]* of type a® of [a]"
Considering that cf () =® we may assume that
(3) a= U 4, where |4,/ <o and the A4; are disjoint, |do| =... <|4]=....

k-=w

Put k&(Q)=k if {cA,.

Assume ¢ <«* and §,. D,, ¢, are defined for every 6 <¢. We want §,, D,
and ¢, to satisfy the following conditions (4) and (5):

(4) For every 0 =g and for every v =g, there is a {€ R, such that B({)=g0.

(5) I 16D, ND,. A0) =0 for o< then klo,©) =k, and Kodb) <k0)
or { <.

We define ¢, !(x) by transfinite induction on u. Let #={R,: v=g}. If

H=0 or g=0 put D,=f,=¢,=0. If #7#0, 0=0, ¢;'(¢) will be defined for
every jt=<a.
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Let {(P,, 0,)}.<. be a sequence containing all the elements of #X o (may
be with repetitions) and suppose that ¢, '(z) is defined for every t <y for some
=

(6) 1f \P,ND,|<2, then |[P,—D, —{p;" (1)}, <,/=0a. It follows from (3) that
there exists a {€P,— D, —{p; (1)}, <, such that k({)>k(x). Put {=¢;'(y) for
this .

(7y I |P,ND,,|=u, then ¢, being one-to-one by (3) P,ND, —{p;'(D}.<u
has an element { such that k(g, (0))=>k(u). Put @7 *(u)={ for this {. Thus ¢; (1)
is defined for every p-uo. Put

g)t A(p;')y=D,. Then it ##0, 0=0 ¢, is a one-to-one mapping of D, onto .
u

©) B)=0 if {cD,,{=0¢;'(1), o,=0. This defines f,({) for {€D,. Assume
o <g, v<g. Then R, € hence there is a u<a such that P,=R,, 0,=0. Put
{=¢; (). Then by (8) and (9) {<D,, B({)=0. By (6) and (7) (€R,=P,.

Thus (4) is satisfied.

Assume { € D, D, for some 6 <g, and f,({)=0. Then by (8) and (9) { =¢,(1)
for a p<o, o=0, for this u and by (6) |P,ND,|=a, hence by (7) k(¢,()=
=k(p,(0) = k(). This proves the first statement of (5). To prove the second statement
we use transfinite induction on ¢. Assume that k(¢,({))<k(() for every (€D, for
every o <g. Let {€D,. Then by (8) and (9) there is a u <o such that {=¢; }(¢)
and (&) =o,. If |P,N D, |<a« then by (6) k() =k()=k(p D). If |P,ND, |=a
then by (7) (€ D,, and by the first statement of (5) already proved we have

k@, (0) =k(0,0);

hence the statement follows from the induction hypothesis.

It remains to show that the , defined by (2) and the I§, I{, defined by (1)
satisfy the requirements of our theorem.

By (2) for every pair { <a, ¢ <« there is at most one ¢ < ¢ for which {0, ¢} €1;;
this means that the I, are forests, i.e. I§§ B2, for { <a.

Using the above property of the Z; if it contains a path of length 2k —1 then
it contains an increasing path of length k. We will show that if k({)=k, then I,
does not contain an increasing path of length k. Assume gy~ .-+ <g,<u* and
{oi, ;1) €1, for i<k. Then by (8) and (9) we have g;=f, () for i<k and
{eD, ND,,, for 0<i-<k. Then by (5) k=k(¢,,(0))="+->k(@, ({))=0 a contra-
diction. Hence /§¢ %7, ; and then by the above remark I§€ %8, ,,_, for k=k(),
hence 7§54 BL? for every { <a.

Let now X€#., Ccu, |C|=a the statement that X'¢ |J I: follows from (4)

secC

literally the same way as in the proof of Theorem 4. 1.

Now we turn to the investigation of the case of edge disjoint forests
THEOREM 4. 7. Assume G.C.H. Let a=w. Then

ot 1 1 2 o 1,2
at) T\ VLV B m, L)
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THEOREM 4. 8. Assume G.C.H. and 2 =w. Then

«y (1 1 2 at L2
o) BV B B, L)

Both theorems are generalizations of Theorem 4. 3. Theorem 4. 2 shows that
on the right hand side in B,. , ,+ « can not be replaced by anything smaller.
Theorem 4. 8 is sharper than Theorem 4. 7 but for = it is false by Theorem 4. 5.

We describe here the proof of Theorem 4. 3. The proofs of Theorems 4. 7 and
4. 8 can be obtained from this proof with a sligth medification using the tricks
of Theorem 4. 1 and 4, 4 respectively. We will omit this.

ProoF OF THEOREM 4. 3. As in the preceeding proofs we will define a sequence
Iy, é<a™; I.c[«*]?* with the intention that the partitions

(1) I§UIi=[a*?, I=I, Ii=[*P-I§ (<ot

should establish the required counterexample.
For each a=g¢<u* we will define a function f,€% and we put

0 I§={{ﬁn(§),9}1C<9,¢§Q<0ﬁ+} for every ¢=a®.

Let {R,},.,+ =[x"]* be a well-ordering of type a* of [x¥]* For every fixed g,
a=g=<a* we will define f, so that it should satisfy the following requirements (3)
and (4):

(3) Assume v, p<g, R,Cg, R,Co. Thenthereisa ¢ <g suchthatf,({)eR,, (ER,
(4) B, is one-to-one.

Ta do this we need the following lemma. If His a set of power a =w, #,, #, c[H]*;
|#5], | #,| =2 then there is an f€¢¥H such that f is one-to-one and for every
Hye#,, H €, there are hy€ Hy, h, € H, such that f(hy)=h,. The proof can
be carried out by an easy transfinite induction; we omit it.

Applying this for H=p, #,—#,={R,: R,CoA v=<p} we obtain an f and
put f=p,. We prove that I§, I} satisfy the requirements of our theorem. If 0 <g,
by (4), there is at most one £ <a* for which o = f (&), hence by (2) the [; are disjoint,
i.e. there is no X€#2,, Xcl, NI, for {,#&, <u*. By (2) for each &, o <u*.
There is at most one o < ¢ for which (<) =g. It follows that the 7; are forests, i.e.
1.4 8B2..

Let now X=[B, D€ %,+ , .+, Cca’,|C[=a. Then there are v, u<a* such
that B=R,, C=R,. There is a ¢>max [v, g, o] such that o€ D, R,, R,Co. Then
by (3) there is a £€R, such that B(£)€R,. Hence there isa {€C such that
{B,8), 0} C[B, D) i.e. by (2) XN I, 0.

By (1) this means

XTI
feC
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§ 5. A remark on matrices of sets of Ulam type

50 0 ﬁﬂl

Whenever we have a negative relation [ ] ()61 o’ ] " there are at least
l 1

three natural ways to obtain matrices of sets having certain properties.
We give one example. As a corollary of Theorem 4. 1 we have

(1) Assume G.C.H. x=w. There exists a sequence /., { <a*; I, C[x*]* satisfying
the following conditions.

(2) For each o, ¢ <a* there is at most one o <¢ for which {o, ¢}€/;.
(3) Whenever Xc[ut]?, Ccat, |[X|=a, |C|=u then there is a &€ C such that
XNI:#0.

We define a matrix {4 ,}s,+ <. Of subsets of «* by the following stipulation:
@) A, ={lin<({=a* A {n, YL}

We obtain

COROLLARY 5. 1. Assume G.C.H., x=w. There exists a matrix

{AeYecns y<ar Of subsets of ot
satisfying the following conditions.
(5) For every E<u*t the sets Ag,, n<at are disjoint.
(6) For every Ccat, |C|=a, f€Ca®
o™ _ngJcA“@’| et

sars'sﬁlgsf?;)t i};;g(’é‘i{rg.:pe‘gggf i G then Beshansar et iy )

Corollary 5. 1 has been stated and proved in a paper of P. ERDOs and S. ULaM [4]
independently.

§ 7. Positive results and some further counterexamples

In [3], Problem 59, we stated in an other notation the following problems:

_ w, 1 @)is2
® i I PO

w 1 w)'-?
® (o) - (e

We mentioned that if 4 is replaced by 3 we can prove a positive result.
Both problems are solved now.
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As to (2) one can prove the following:

THEOREM 6, 1. Assume a=w and o is 0, 1-measurable, f<a. Then

o {a: 1 o)t
b | = B L
In fact one can prove the following slightly stronger result:

THEOREM 6, 2, Assume a=w, a is 0, 1-measurable. Let I, { <a be an arbitrary
sequence I,C[a¥]?, E<u. Then one of the following conditions (3), (4), (5) holds.

(3) There are Xcat, Cca, | X|=§, |Cl=a such that
XPc N L.
gec

i.e. there are o I; whose intersection contains a complete .
(4) There are Xca*, Ccua, [ X|=at, |C|<ua such that

[X]ZC U If}
feC

i.e. there are fewer than o I whose union contains a complete a* (and as a corollary
one of them contains a complete «) (note that o— ()} for y<uo if a is measurable).

(5) There are Xcat, Ccua, | X|=|C|=ua such that
XPN U I =0,

Zec
i.e. there are o I such that the intersection of the complement of them contains a
complete o

As to the problem (1) we proved

(6) Assume x=w, « is 0, l-measurable, f<u, then

il o) 2
)=
F. Galvin proved the following generalization of (6) for a=w:
THEOREM OF GALVIN.
w, w)bT
- for every k,r = w;
3] )i

but this method of proof breaks down for « = « 0, 1-measurable.
One can prove the following generalization of Galvin’s theorem.

THEOREM 6. 3. Assume ao=w, o« is 0, 1-measurable. Then

(I+ al,r
[ ]-v[] Jor r=w, §<a.

o olp
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. o 1,=w
DeriviTION 6. 1. Let oy, %, B, f1. 7 cardinals. [a?]—»(gol denotes that
17¥

the following statement is true. Assume that for every r < «,X[x;J'= JII. Then
=y

there are 4, Cu, A, Co, fe“ysuchthat |4y|=f,, |4,/=F, and
Ao X4, <lfy,y, for r=wo.

The symbol defined above is a common generalization of the symbols defined
in 1.1.2 and 1. 1. 3.

Galvin conjectured that as a generalization of the author’s results [3] that for
a=aw, o 0, I-measurable o ()7 (f <o) the following result will hold.

THEOREM 6. 4. Assume o=>w, o is 0, l-measurable. Then

-

This was proved by the second author. The proofs of the theorems 6. 1, 6. 2,
6.3, 6.4 will appear in a forthcoming paper [6] in the Fundamenta Mathematicae
containing the results of the lecture given by the second author on the symposium
held in Warsaw August 27—September 2, 1968.

We now give some counterexamples to show that Theorems 6. 1, 6.3 can-
not be improved in certain directions.

THEOREM 6. 5. Assume a=w, o is a strong limit cardinal. Then

)"

PrOOF., We define a sequence [, {<u; I;C[’Z]2 as follows.
(7) Assume f=g€*2. Put

{/, gtely iff min {¢: f(E) #2(O)} <L

Assume [X]? C 7, for some X ©*2, { <a. Then, by (7), for f€ X f: —~f}{ is a one-to-one
mapping of X into ‘2. Hence, o being strong limit, |X|=2F <« That means
none of the ; contains a complete .

Assume now that {f, g}€[*2]2. Then f(¢)=g(&) for some & <o and by (7)
{f. g}€l, for every { <{ <. This proves the theorem.

1,2
Assuming G.C.H., Theorem 6.5 says that [z J-+~ i,;] if o 18 a limit

cardinal.
Strangely enough this very weak counter-example cannot be proved if « is
a successor cardinal.

THEOREM 6. 7. Assume G.C.H., a=w. Then

ot 1 at)i2
-L0)

and ot * —~[x*]2, , are equivalent.

a ¥,z
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Note that a** —~[a*]2 , is known to be independent of the axioms of set
theory and the G.C.H. (see e.g.[7]).

PROOF OF THEOREM 6. 7. Assume o* ¥ - [x¥]Z, , and let [r<[a™*]%, é<a™
be a sequence establishing this negative relation. Put [§= U I, If=[a" P - I}

for £ <a*. Then I§ obviously does not contain a complete a* and ﬂI* =0 for
Ccuat, |Cl=a*since |J I,=[x"*"*]%. Hence the partitions [oc**]Z:IgUIf E=gt

E<a™
at 1 aty12
)<z )"

On the other hand let [o*t*]2=15U1, ¢ =2* be a sequence of partitions
establishing the negative polarized partition relation.

Then for each X€[a**]? there is a &(X)=u™ such that X€Z§ for E(X)=
=¢<at. Put L={Xe[at1]? é(X){c} for ¢<a*. Then I,cI§ and the I,
obviously establish «** - [27]2. ,.

We think it is relevant to mention here the following negative result.

establish

THEOREM 6. 8. Assume G.C.H., x=w. Then

a1 2 Y12
at L E§E+,ﬁ+33§3+ ’

This is a trivial reformation of Theorem 17/A of [2] saying a% —~[%,+ ,.+]i-
where this is a self explanatory modification of the symbol defined in 1. 1. 4.

The following theorem shows that assuming G.C.H. in Theorem 6.1 the
cannot be replaced by 4., ,- even if f=2.

THEOREM 6,9, Assume G.C.H., a=w, a—(x);. Then

« ) fx 1 2)1:2
ot s 2V@a+__a,“+,a :

Proor. By the assumption z is a (strong) limit cardinal. Hence by Theorem 6. 5

" . . 1 1,2
there exists a sequence I¢, /9% & <o establishing [;+]+[g,a . By Theorem

. _ 2 1,2
6. 8 there exists a sequence I3'¢, 1]:%, ¢ <o establishing [g ] B [l@ ,_@‘zJ y

ataat

Put IG=1I5*N1p¢, If=[a"] —I§. It is obvious from the construction that each
{¢,n}€[x*]? is contained only in less than « 7§, and that none of the I§ contain
an X€ B+ 40+

Assume XcCuf |[X|=o and let ¢#{<a« Considering that I{¢NI{*=0
it follows from the assumption o —(x)3, that there exists a ¥ X, |Y|=x« such that
either [Y]?CI{¢ or [Y]*CI}-¢. Hence [X]?CI; N I§ would imply either [Y]? CI{¢
or [Y]2c I{*%, a contradiction. Thus X Ca, |X|=« implies [X]2I{ NI} for every
pair & #{ <« and the theorem is proved.
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§ 7. A result for singular strong limit cardinals

DEFINITION 7. 1. Let o =(4:): ., be a sequence of disjoint sets. Put A= |J 4.

=8
Let X, YCA. Put X|-,Y if |XNA/=|YN4, for each {<B. Let HCP(A).
H is said to be canonical with respect to < if for every X, Y 4 we have

XeH iff YeH.

Let I=(l,),., be an r-partition of A. I is said to be canonical with respect to o if
I, is canonical with respect to &/ for every v<y.

CANONIZATION LEMMA. Let o be a singular strong limit cardinal, Put f=cf(2).
Let r<=w, y <o and let [x} = U I, be an r-partition of type y of a. Let further (By)s .z

v{?
be a sequence of disjoint subsets of x such that the cardinality of By increase rapidly
enough e.g. satisfies the following conditions.

1) ZIBl=o and |B]=exwy (UB)

where exp o{0t) = o, exp,, (6)=2%Ps\%} 5 <. Then there exists a Sequence o =(Ag)e.p
of subsets of u such that

AsC B, A=A for E<({<=B, Al=a for A= gUgA':
and the r-partition is canonical with respect to .

The canonization lemma is proved in [2] assuming G.C.H. for every singular «,
but the proof yields the result as stated above. A detailed proof will appear in a
forthcoming book of the three of us. As a corollary we will prove the following

LEMMA. Let x be a singular strong limit cardinal. Put B=cf(x). Let r<=w and

I,, v=a be a sequence such that I,C[a]" for v~<a. Then there are sequences < =

=(Ae)iop, € =(Cp)ecp of disjoint subsets of o satisfying the following conditions:

For A= U4:, C=UCy, |4d=|4,], IC|=C,| for ¢<(=a, |A|=|C|=a. I, is
£=p 5=f

canonical with respect to o for every veC and I,N[A) =1,N[AY for u, veC; for

every E=f.

Proor. Considering that « is strong limit there is a sequence (B;):., of type
B of disjoint subsets of « satisfying the cardinality condition (1) of the canonization
lemma. Put B= |J B;. Then |B =«. We define an r+ 1 partition J of type 2 of
i=p
B as follows.
Let X<[BF+!'. Assume first that the following condition (2) holds:

) X=YU{} Ye[ U B, veEB; and & is odd.
E=f, Eeven
Put XeJ,iff YelI,. If (2) is false we put X€J,. J; = [B]* —J,. By the canonization
lemma there is a sequence &/ =(A4),., of disjoint subsets of « satisfying the follow-
ing conditions: [ U A§| =u, |[Af|=|A4;| and A;c B, for £ <{<w, and the partition
i<p

J is canonical with respect to &/’ Put A;=A},, Cy=A}, ., A= U4, C=UC;.
i<p =
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Considering that the cardinality of the A increase we have |4|=|Cj=ua.
Assume X, YE[A], XY and let v, u€C, for a E<f. Then XU {v}, YU {u}€
E[AT+, XU {v}—la YU {u}and XU {v}, ¥ U {u} both satisfy (2). By the canonicity
of J we have XU {v}eJ, iff YU{u}€J,. Hence by the definition of J X¢I, iff
Y¢el,. Applying this for v=pu we get that /| is canonical with respect to 2/ for
vé C. Applying the aboveresult for X=1Y we get that 7, N[A]" =1,N[A} for every
v, u€ C; for every E<§p.

Using the Lemma we can reduce a number of problems concerning singular
strong limit cardinals to problems for regular cardinals already discussed. Before
doing this as a converse of the Lemma we describe a construction for definings
partition canonically.

DermiTION 8. 2. Let a be a singular limit cardinal ,Bucf (0)<ea. Let (oc,) <p
be a sequence of cardinals less than « tending to o, x= U A§ is a disjoint partltlon

of o where |4, =ua, for é{ﬁ
Let further [B]? =15 UI{ be a sequence of type § of 2-partitions of f. We define
two sequences of canomcal partitions of « as follows:

(1) The sequence [x]*=1I3¢UIF¢ E<fF of type B is defined by the following
stipulation. For every o, o<«, E<pB {0, o} €13¢ iff 6€d,, 0€A4, and {n,{}€]5
{o,0}eIPéiff c€ A, o€ A4, and {,{}€1f or {=n.

(2) The sequence [a]?=Ig*"UIT*" v=o of type 2 is defined by the stipulation
I =IM for i<2, vEA,.
THEOREM 7.1. Let o be a singular limit cardinal, ct(x)=Pp. Assume that
(§]+[‘1; v‘l@i ,g)l’z holds for some 7. Then

o 1 1 o)b2
2] yvﬂi’d
holds as well.

ProoF. Let [BI?=I5UI; ¢ <f be a sequence of 2-partitions of f establishing
the assumed negative relation. Then the second canonical sequence I3*, I7*”
defined in 8. 2 satisfies the requirement of the theorem.

Considering that [g]—k[}; v '1@3 ; g] holds trivially e.g. by 2.4 for every f=w.

Theorem 7.1 yields a proof of 2. 6.
The following theorem is the main result of this §.

THEOREM 7.2. Let a be a singular strong limit cardinal. Put cf(a)=f. Let

y<cf (&), <o, Assume
(6= va,)
B ?V*@ﬁ.l.ﬁ,ﬁ )

[a] [ l 1 rx] )
— AV N
X ¥ ‘@1,8,05 x
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Proor. Let [2]?=I§UlI}, v<a be a sequence of type a of 2-partitions of «.
We may assume IJNI}=0 for v<w«. By the Lemma there exist sequences
o =(Ap:.p, C=(Cp)sp satisfying the requirements of the Lemma. Put A= |J 4,
g=p
C= U C;. Considering that the cardinality of 4, is increasing and tends to o we
i<p
may assume that |4,/ =max [y, d] for every &<f. Assume that
(1) XZa, | X|=y implies [X]*c]y and Y [§ implies that Y¢ B, ;, for v=uo.

By the canonicity for every v€C, & <f we have either [4:]2C I} or [4,]*C I},
hence by (1) we have

(2) [4:)?cI} for every veC.

Using again the canonicity we define a sequence []2=I5UI;, £ <p of type B of
disjoint 2-partitions of f by the following stipulation. For every {,n,¢<f i<2

() {Ln}el? iff [4;, A,]cI} for every pu€Cs.

Considering that |4 >4 it follows from (1) that X € By , ; implies X ¢ J§ for &<,
On the other hand (1) and (2) obviously imply that J$ does not contain a complete
y for £<§.
Thus it follows from th i [‘B] (1 ] ﬁ}l’z that th
us it follows from the assumption |p)—|gv By B at there are
U Vcp, |Ul=IV|=p such that

@) [UPcI; forevery (V.
Put
X= U Ag, = U Cg-
gel ZEV

Then [X|=Y¥|=a, (2) and (4) imply that [X]*> 1} for every v€ Y. This proves the
theorem.
We obtain from Theorem 1. 1 and 7.2 the following

COROLLARY 7.3. Assume cf(%) is 0, 1-measurable and % is a singular strong
limit cardingl, y<cf(%),d<o. Then

o 1 1 AR
4 - }'V‘@ﬂ,ﬂ,a,a .

We mention one more (very easy) positive result

THEOREM 7. 4. Let « be a singular strong limit cardinal, y<uo. Then

WS P
2 Byyy @)

Using the same as in the proof of Theorem 7. 2, Theorem 7. 4 follows trivially
from the lemma. We omit the details.
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A short list of special notations

The ... symbol is defined on page

By s p. 372 (Definition 2. 1)
734 p. 372

A} p. 372

B2 p. 372

B3 p. 375 (Definition 3. )
B p. 375 (Definition 3. 1)
B3 p. 376 (Definition 3. 2)
B p. 376 (Definition 3. 2)
B] p. 377 (Definition 4. 1)
RBE,, B2 p. 379 (Definition 4. 2)
Bl p. 381 (Definition 4. 3)
BLe p. 382 (Definition 4. 4)

{ Received 22 January 1969)
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