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SOME PROBLEMS IN ADDITIVE NUMBER THEQRY
P. Enpis; Israel Institute of Technology, Haifa

L. Let 1 Say<C -+ - <@ =x be a sequence of integers for which the sums

k
(1) Z &0, a =10 or 1

=1
are all distinct, Put max & =f(x) where the maximum is taken over all sequences
satisfying (1). It is easy to see that
logae  loglogx

— A e - (1),

%) <
&) log 2 log 2

and Moser and I proved

) ) < lopx  loglogx

log 2 2log 2

+ 0(1).

This is the best-known upper bound for f{x).
Is it true that

) f(2) = (log x/log 2) + O(1)?

Moser and I asked: Is it true that f(2*) Z k+2 for sufficiently large k? Conway
and Guy showed that the answer is affirmative (unpublished).

P. Erdés, Problems and results in additive number theory, Collogue, Théorie
des Nombres, Bruxelles 19535, p. 137.

2, Let1=m< + -« <ap=x be a sequence of integers so that all the sums
e T gy, i SR SN S 1=s5sr
are distinct. Put max £=g.(x). Turdn and | proved
(4) gal2) < 2112 + Ox119),

This was recently improved by Lindstrim to g(x) Sx"Y*4+xV¢4-1. The lower
bound glx) = (1 Fo(1))x? easily follows from a classical resalt of Singer on
difference sets. Turdn and | conjectured

(5) gula) = al* 4 O(1).

Bose and Chowla proved that g.{z) ={14e(1))=V for each r= 2, and they con-
jectured

(6) gr(x) = (1 4 o(1))atr,

This iz known only for r=2.

R. C. Bose and 5. Chowla, Theorems in the additive theary of numbers, Com-
ment. Math, Helv., 37 (1962-63) 141-147.

H. Halberatam and K. Roth; Sequences, Oxford Univ. Press, Oxford 1966.
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P. Erdés and P. Turdn, On the Problem of Stdon in additive wumber theory
and on some related problems, Journal London Math. Soc.; 16 (1941) 212-215
and 19 (1944) 208,

J. Singer, A theorem in finite projeciive geomelry and some applications lo
number theory, Trans. Amer. Math. Soc., 43 (1938) 377-3835.

B. Lindstrim, 4 n wequality for By sequences, Journal Combinatorial Theory,
6 (1969) 211-212,

3. Let 1sg:< + + » be an infinite sequence of integers. Denote by h(n) the
number of solutions of #=a;+a; Turdn and I conjectured that if A{n) >0 [or
n >y then

(7) lim sup A(n) = oo,

Another stronger conjecture states that if a.<<ck* for every k then (7) holds,

These conjectures seem very difficult. It is a curious fact that the multiplica-
tive analogues of these conjectures are not intractable.

Let 1<<ly<< « + + be an infinite sequence of integers. Denote by H{n) the
number of solutions of 7 =bb;. Assume H(n} >0 for n#>n,. I proved

lim sup H{n) = =.
f— 2

Turdn and I further conjectured that the number of solutions of a;4-a;=x
cannot be of the form cx4+0(1), where ¢<< =. In other words

(8) 3 hn) = ex + O(1)
fim]
can hold only if ¢=0 and the sequence, ay=< - - -, i5 finite. Fuchs and | proved
a very much stronger result than (8}, We in fact showed that if ¢> 0 then
i Pt
9 filn) =cx 4o (—-—)
(9 E (n) log D1

is impossible. Jurkat showed (unpublished) that (9) is impossible even with
oz}, Perhaps Jurkat's result is best possible and

> k(n) = ex + O(x214)
et
can hold for a suitable sequence a;< +« - .
Is it true that the number of solutions of @&y +-a;4a. =x cannot be of the form
e (117 Our method used with Fuchs does not apply here.
I have several times offered $250 for the prool or disproof of any of the
conjectures (3), (3}, or (7).
Paul Erdis, On extremal problems of graphs and generalised graphs, Israel
Journal of Math., 2 (1965) 183-190, and On the mulliplicalive representation of
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tntegers, thid., 2 (1965) 251-261.

Paul Erdés and W. H. J. Fuchs, On o problem af additive number (heory,
Journal London Math. Soc:, 31 (1956} 67-73. See also the well-known book:
H. Halberstam and K. Roth, Sequences, Oxford Univ. Press, Oxford, 1966.

A. Stohr, Geloste und ungeliste Fragen diber Basen der matiirlichem Zahlen-
reshe, 1 and 11, Journal reine u. angew. Math,, 194 (1955) 40-65 and 111-140.

CLASSROOM NOTES
Epiten 8y Davio Deasmy

Muanuscripts for this Department should be sent to David Drasin, Division of Mathemabical
Sciences, Purdue University, Lafayette, TN 47007.

AN EXISTENCE THEOREM FOR NON-NOETHERIAN RINGS
Ropewt Giumer, Florida State University

In developing the theory of Noetherian rings, it is desirable to have at hand
some examples of non-Noetherian rings. One such example is the ring of poly-
nomials in infinitely many indeterminates over any nonzero ring. A second ex-
ample is R[X |, where & is any nonzero commutative ring without identity [1],
but in this case, R[X ] is also a ring without identity. We present here a theorem
which provides a method for constructing, as subrings of a polynomial ring in
finitely many indeterminates, a wide class of commutative rings with identity
which are not Noetherian, It should be noted that the proof of the theorem given
uses only one result (Lemma 1) outside the basic theory of Noetherian rings,
namely, that a finitely generated idempotent ideal of a commutative ring is
principal and is generated by an idempotent element. Anexamination of the proof
of this result reveals that even it is obtained as a direct application of Cramer's
Rule for determinants over a commutative ring with identity.

TaeoreM 1. Suppoese thal R 45 o nonsero commultative ring, that 4 45 c nongero
wheal of R distinct from R, and that | X, };E 1 15 @ seb of indelerminales oper R. The
subring S=R+A[| X, ] ] of R[{ X,} ], consisting of those polynomials over B hav-
ing each of their nonconstant coeficients in A, 15 Noetherian of and enly if these three
condtiions hold: (1) A 45 finite, (2) R 45 Noetherian, and (3) the ideal A is idem-
polent,

Proof. Suppose that 8 is Noetherian. Tt is clear that A must be finite, for if
not, the ideal A [{X; ] ] of S would not be finitely generated. The mapping on S
which sends each polynomial fES8 onto its constant term is a homomarphizm
from 5 onto R, so that R is Noetherian. If ¢ is a fixed element of A and if £ A4,
the ideal (0X,, aXZ, -+ -, aXT, - - - ) of 8 is finitely generated, so that aX™"
E(aX,, - + +, aX}) for some positive integer m:
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