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Let a, < n2 < . . . be a sequence of integers denoted by A. Put 
A(x) = xCniCs 1. If no ai divides any other then A is called a p&m&e 

sequence. It is well known and easy to see that, for a primitive 

sequence, max A(z) = [3(x+ l)]. B esicovitch (1) constructed a primitive 

sequence of positive upper density and Behrend and Erd6s (1) proved that 

every primitive sequence has lower density 0. Davenport and Erdijs (1) 

proved that if A has positive upper logarithmic density then there is an 
infinite subsequence (ni,)j,r,. of A such that CZ,~ j aij+l. Erdijs (2) proved 

that’, if we assume that no ai divides the product of two others, then$ 

where the maximum is to be taken over all sequences no term of which 

divides the product of two others. 
These results led us to consider the question: assuming that no ai 

divides the sum of two others, how large can max A(x) be 1 In this form 

the question can be reduced to an old problem. Denote by TV the 

maximum number of integers not exceeding x which do not contain an 
arithmetic progression of 1~ terms, Then it is easy to see that 

r3([Jx]) < max A(z) ,< TJX) < 3r3([3x]) + 1. 

Further, a well-known result of R’oth (3) states that 

These facts lead us Do modify our condition slightly. We say that a 
sequence A has property P if no t,erm ui divides the sum of two larger 

terms. We believe Oha.t if A has property P then 

(1) maxA = [Qx]+l. 

t Support.ed in part by NSF Grant, No. GP-9661. 
z a(z) denot(es t,he number of primes not exceeding z and C, c, cl, cp, . denot(e 

sukable positive a,bsolute constants not, necessarily the sa.me at each occurrence. 
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It is perhaps surprising that we could not prove (1). To show that 
max A(x) 2 [+x] + 1 is easy-it suffices to let A be the [Qz] + 1 greatest 
integers not exceeding x. Szemeredi has proved (oral communication) 
that if A(z) > [&I + 1 then there are three distinct terms ai, aj, al such that 
ai 1 (aj + aJ but (aj + ar)/ai # 2. We do not give the proof of Szemeredi. 

We prove the following 

THEOREM. Let the in&mite set A satisfy property P. Then A hcts density 0. 

Before we prove our theorem we make a few remarks. Our theorem is 
best possible in the following sense. Let f(s) be an increasing function 
tending to infinity as slowly as we please. Then there exists a sequence A 
having property P such that A(xJ > z,/f(x,) for a sequence x, tending 
to infinity. 

To see this, let yi < yz < . . . be a sequence tending to infinity sufficiently 
fast. Our sequence A consists of all integers a satisfying yi < a < $yi and 
a z l(mod(2yi_r) !), i = 2, 3, . . . . It is easy to see that A has property P 
and, in fact, that a,+aj = 0 (moda,) implies a, +aj = 2a,. Further, if the 
sequence (yJ tends to in6nity fast enough we evidently have 

A(-y ) 234 
Yi 

’ 2.(2y& ! >f%? 

which proves our assertion. 
Despite this counter-example it seems to us that our theorem can be 

improved. Probably, if A satisfies P then x l/ai is convergent and in fact 
x l/ai < c where c is an absolute constant. Also, probably, A(x) < x1-cl 

for infinitely many 2. 
Let a, = pia where pi is the ith prime congruent to 3 (mod 4). This 

gives an example of a sequence A with property P for which 
A(x) > cx*/logx for every x. We have not been able to do better. 

A similar situation prevails with a different problem. Let A have 
property P’ if no ai is the sum of distinct terms of A. Erdos proved (4) 
that, if A has property P’, then A(x) = o(x). This result is best possible, 
but x l/ai < 103 and A(x) < x I--C for infinitely many Z; further, there is a 
sequence with property P’ such that A(z) > x1-cl for every Z. 

Denote by p(n) the least, and by P(n) the greatest, prime factor of n. 
To prove our theorem we need two lemmas. 

LEMMA 1. Let 1 be an integer, x > x,,(l), a, < . . . < ak < x, k > clx. There 

exists cl, where d < 1~2, P(d) < 1, c, = c2(cI), such that the number of a, of the 

form dt with p(t) > 1 is greater than c3x/d log 1 for Some suitably small 

positive constant cs. 
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Proof. Put7 
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flh> = I-I (Pa: P” II m> P G 0. 

We evidently have, by the theorem of Me&ens, 

(2) fi J(m) = p-plPltls/P*l+... < rj pm-1) 
m=l Pa 

= exp(xzls) -c exp(c,xlog I). 

Denote by N the number of integers m less than x for which fi(m) 2 P. 
From (2) we have 

@N < ~MC , 
or 

(3) N<C$<y 

for sufficiently large c2. 

From (3) and the inequality k > c,x it follows that, for at least &x 
indices i, we have 

(4) flw -=c P. 

Thus, if our lemma were not true, we should have (by (4) and the 

theorem of Mertens) 

which is false for sufficiently small c,. This contradiction proves the lemma. 

LEMMA 2. Let 1 > i&c, k), and let t, < . . . -C t, G y be a sequence of 
integers satisfying 

p(tJ > 1, r > cy/logl. 

Then there are k terms t, which are pairwise relatively prime. 

The proof is very simple. Denote by q the least prime greater than 1. 

Clearly, for any x, the ti satisfying z < t 6 x+q are pairwise relatively 
prime. Since T > cy/logZ there is a z for which there are at least [cZ/‘logZ] 

terms ti in (z, z +q) (and these are relatively prime). Further, for 
1 > I,(c, k), cl log 2 > k, which completes the proof of the lemma. 

One could pose here the following extremal problem. Denote by 
f(y ; I, k) the largest value of r for which there is a sequence t, < . . . < t, < y, 

with p(ti) > 1 for each i, such that no k of the ta are pairwise relatively 

prime. Our guess is that f (y; Z, k) is obtained as follows. Let 

1)1+1? .--Y Plfk-1 be the first k- 1 primes greater than 7, and let A(y ; I, k- 1) 

7 loa 11 m means pa / m, pa+lX m. 



100 P. ERDiiS AND A. SiiRKijZI 

denote the number of distinct integers not exceeding y of the form 

p,,,t, with 1 < i < k- 1, p(t) > 1. We conjecture that 

(5) ,f(y; k4 = A(y; hk-1); 

but this has been proved only in a few special cases. 

Now we are ready to prove our theorem. We show that if A has 

property P it must have density 0. For if not, there are infinitely many 
integers zi satisfying 

(6) A(XL) > clxi. 

Now let I= Z(c,) be sufficiently large but fixed and independent of the 
xi. By Lemma 1, for every xi there exists d, such that 

(7) a, < ~2, P(dJ < 2, and the number of terms in A of the form 

aits, with t, K Xi/ai, p(t,) > I is greater than c3ri 
dilogl’ 

Since the number of xi is infinite and the number of d, is finite (in fact, 

less than 2~2) there are infinitely many xi for which the same di satisfies (7). 

We now show that this leads to a contradiction. 

Choose two values xi, xi’ for which the same d, satisfies (7) and which 
satisfy 

(8) Xi’ > xi 2k 
. 

Apply Lemma 2 to the integers t, in (7). If Z > Z,(c,, k) then we can assume 

that there are k integers t, (1 < s < k) which are pairwise relatively prime 

and for which 

(9) d&,EA, t,<2, p&) >I (s= l)...) k), P(d$) <z. 
i 

Now observe that di satisfies (7) for xi’. Thus there are integers Tu 
(1 < u < r) satisfying 

(10) d,T,EA, r>cszi’, 
di log 1 PVJ > 1. 

Now we show that (S), (9), and (10) lead to a contradiction. Since A 
has property P we have 

(11) T,,+T,,$O (modt,) (l~uu,<u,fr,l-I:s<k). 

From (11) it follows that the T, lie in at most at, residue classes mod t,, 
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and, since (fi, ti) = 1 (1 ,< i < j 6 k), the T, lie in at most 
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residue classes mod l$ t,. It immediately follows from the sieve of 
S=l 

Eratosthenes that, for sufficiently large xc, there are at most 

s=1 s=1 

T?, in any residue class mod h t,. Thus, by (8), the number of TU is less 
s=l 

than 

1 oxi CQXi 

d,2klog1<dilog 

which contradicts (10) and hence our theorem is proved. 
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