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1. INTRODUCTION 

In this note we shall discuss mostly without proofs, some recent results 
on graph theory, It will be almost entirely restricted to problems on chromatic 
graphs and to those problems on which I worked myself. Many of the 
questions which we shall discuss are joint work with Hajnal. 

First we introduce some notations. G, denotes a graph of n vertices, 
G(n; t) denotes a graph of n vertices and t edges, and x(G) denotes the 
chromatic number of G (i.e., the smallest integer [or cardinal number] such 
that the vertices of G can be colored by x(G) colors and such that two vertices 
which are joined never have the same color). I(G) denotes the maximum 
number of independent vertices of G (i.e., the largest number of vertices of 
G no two of which are joined by an edge). K(G) denotes the number of the 
vertices of the largest complete graph contained in G. G(x,, . . . , x3 denotes 
the subgraph of G spanned by the vertices x1, . . . , x,. G - R is the graph 
from which the edge R has been omitted. The number of edges of G are 
denoted by R(G) the number of vertices of G by v(G). K,, will denote the 
complete graph of n vertices, C, will denote a circuit of Y edges and K(u, UJ 
will denote the complete bipartite graph with ui(i = 1,2) vertices of each 
color, where any two vertices of different color are joined. 

We evidently have 

In the second section we will discuss problems and results on chromatic 
graphs and in the third we will mention a few miscellaneous problems. 

* Dedicated to the memory of Jon Folkman. 
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2. PROBLEMS AND RESULTS ON CHROMATIC GRAPHS 

G. Dirac [Z] calls the k-chromatic graph G critical if for every edge R 
of G, x(G - R) < x(G). For k = 3, the critical graphs are the odd circuits, 
but for k = 4 it seems hopeless to characterize all the 4-critical graphs. 

Denote by fk(n) the largest integer for which there exists a G(n;f,(n)) 
which is k-chromatic and critical. I asked whether fk(n) > c&. Dirac [2] 
proved 

f,(4n + 2) 2 4n2 + 8n -I- 3 (4 

To prove (2) consider a graph, G(4n + 2; 4n2 + 8n + 3) which consists of 
two different CZn+ 1, any two vertices of which are joined by an edge, It is 
easy to see that our graph is 6-chromatic and critical. Perhaps in (2) the sign 
of equality holds. 

Dirac’s construction easily generalizes to give 

fdWn + 1)) 2 
Perhaps the equality sign holds in (3) also. I conjecture 

lim f&(n)/n2 = lim f3k+I(n)/n2 = lim f3k+2(n)/n2 = +(l - l/k), 
il=m lt=aO lt=M 

but could not even provef&) = ($ + o(l))n2. 
A plausible guess cannot even be made about lim,,,,&(n)/n and 

lim,,, d&)/n. Th e inequalityf,(n) 2 2n + O(1) is known [19]. 
A well-known theorem of de Bruijn and myself [l] states that if k < K, 

then every k-chromatic graph contains a finite subgraph which is also k- 
chromatic and from this result it is easy to see that if 1= K,, then every 
Z-chromatic graph contains an I-chromatic subgraph which is denumerable. 
A first guess might be that every graph which has chromatic number K, 
contains a subgraph G of power K, with x(G) = Ki. Hajnal and I proved [15] 
that this not true. We show that for every k < NO there is an K,-chromatic 
graph each subgraph of which, of power less than Kk, has denumerable 
chromatic number. In [15] several unsolved problems are mentioned. Here 
we mention only two of the simplest ones. Is it true that there is an K,- 
chromatic graph of power K2 such that every subgraph of power K, has chro- 
matic number N,? Is there a graph of power K,+1 of chromatic number 
K1 such that every subgraph of power K, has chromatic number NO? For 
other problems of this nature we refer to L-14, 161. 

Let G be a graph whose vertices form a well-ordered set and for which 
x(G) 2 NO. Babai proved (oral communication), using the theorem of de 
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Bruijn and myself Cl], that one can find a subsequence x1, x1, . . . of type w 
of the vertices of G so that x(G(x,, . . .)) = KO. 

It was first thought that this theorem could be generalized to higher 
cardinals, but Hajnal and I showed that this is not true. We construct a 
graph G with x(G) = K1 whose vertices are a well-ordered set of type wl’, 
but every subgraph whose vertices are of type less than wi2 has chromatic 
number less than or equal to No. Let the vertices of G be (x, , ya}, 1 I o! < w1 ; 
1 5 fi < wi ordered lexicographically ((x,, ua} < (x,, , yB13 if ai > M or if 
a = a, and & > ,!J). This is a set of type wi2. Let (x,, , ysl> < {x~, , yp,}. 
These vertices are joined if and only if ui < t(2 and a2 < &. It is not difficult 
to see that x(G) = K1 but for every subgraph G, whose vertices have order 
type less than wl’ we have x(G,) I No. 

On the other hand we can not decide the following questions: Does there 
exist a graph G whose vertices form a set of type wz2, x(G) = Kz , and for every 
subgraph G’ of G whose vertices form a set of lesser type we have x(G’) I No ? 
We can not solve this question with x(G) = K, and x(G’) I; Cc,. (The case 
x(G) = K2, x(G’) I K, can be solved easily by an obvious modification of the 
previous example.) 

Tutte [25] and Zykov [27] were the first to show that for every k there is 
a G with X(G) = k which contains no C3 . 

Denote by &n) the largest integer for which there exists a graph G with 
K(G) < 1 (i.e., not containing a KJ satisfying v(G) = y1 and x(G) = g,(n). 
The term g(‘)(n) denotes the largest integer for which there is a G not con- 
taining a C, for 3 I I I I and for which U(G) = n, x(G) = g”‘(n). Clearly 
g&l = d3’(4. 

Graver and Yackel [20] proved that 

g&2) < q(n log log n/log n)+-2)(~-1) (4) 
In fact Graver and Yackel 1201 proved that if u(G) = n and K(G) < I then 

I(G) > c(n log n/log log n)l’(‘- 1) ; (5) 
but (4) is an easy consequence of (5). 

I proved by probabilistic methods [4] that there is a G, with K(G,) < 3 
for which I(G,) < cn’/’ log n, hence by (1) 

Very likely the same method will give for I > 3 
c2 n~‘-2v~‘-1) 

a(n) ’ (log n)c3 ’ (7) 

but the details of a proof of (7) seem to be formidable. 
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The estimation of g*(n) is clearly connected with the estimation of the 
Ramsey numbers, i.e., the smallest integer n for which every G,, either contains 
a Kr or 1(G,) 2 k. We do not discuss here these problems but refer to [4,20]. 

It is not at all obvious that 

lim g”‘(n) = cc (f-4) n-+.x 

holds for every 1. Equation (8) was proved by probabilistic considerations 
[4] and in fact the stronger result was shown that there is a G, which does 
not contain a C, for 3 1 r I 1 and for which 

Z(G”j < n1 -(c’1) (9) 

By Eq. (l), Eq. (9) implies 

g”‘(n) > n=” (10) 

It is easy to see that if G,, does not contain a C, for 3 I I I 2Z+ 1 then 

Z(G,J > c~&~‘(‘+~) (11) 

Equation (11) gives 

gw+lqn) < C2nw+l)* (12) 

Equation (12) is almost certainly close to being the best possible since the 
method used in [4] will probably give that there is a G, which contains no 
C, for 3 I r < 21+ 1 and for which 

Z(G) < n wu+qog $3 or gw+yn) > c,n’l~‘+l)/(log q3. (13) 

The technical difficulties of a proof of (13) seem to be great. 
A good guess for an asymptotic formula for logg(2’)(n) is not at hand. 

Undoubtedly 

log g@“(n) = (c “t- o(1)) log n where l/(2 + 1) I; c < l/1, (14) 

but I cannot even prove (14) for I = 2, and I have no good guess for the value 
of c (if it exists). 

Hajnal and I generalized (8) for set systems [l&J. We also used prob- 
abilistic methods. Lovdsz [Zl] proved our results by an ingenious but com- 
plicated direct construction: thus he showed (8) by a direct construction. 
His method does not give (9) and does not even seem to give I(G,) = o(n) 
instead of (9). I would like to call attention to the following question: I 
proved by probabilistic methods [3] that there is a G, satisfying 

210gn 
WG,,) I -2 

210gn 
log 2 Z(G,) < -. 

log 2 (15) 



CHROMATIC GRAPH THEORY 31 

It would be desirable to prove (15) by a direct construction. I cannot even 
construct a G, for which 

max (K(G,), I(G,)) < d2. 

It would also be interesting to determine 

lim min max (KY(&), I(G,))/log n. (16) 

I cannot even prove that the limit in (16) exists. We have trivially x(G) 2 K(G). 
I proved [lOI that 

c,n/(log n)* < max X(G,)/R(G,) < cz n/(log n)2. 
Gn 

Very likely 

exists, but this I have not been able to prove. 
In [S, 61 it is shown that for every k there is a c, such that if G, has no 

circuit of length less than ck log n, then its chromatic number is less than k. 
Also, this is the best possible apart from the value of c,. Thus we have the 
result that there is a c such that if G, has no circuit of length less than c log n 
then it is at most three-chromatic. One could have guessed that if G, does not 
contain an odd circuit of length less than et log n, then G, is three-chromatic, 
but Gallai [19] constructed a G, which is four-chromatic and the smallest 
odd circuit of which has length greater than n1j2. Gallai and I conjectured 
that for every k there is a G, with x(G,,) = k the smallest odd circuit of which 
has length greater than cln 1’(k-2). but that there is a c2 such that if the smallest 
odd circuit of G,, has length greaier than c2 nl’@-‘), then x(G,) < k. I proved 
this for k = 4 (unpublished). 

Rado and I proved [18] that for every m 2 K0 there is a G satisfying 
x(G) = v(G) = m which does not contain a triangle. Hajnal and I proved 
[la that for every I there is a graph with x(G) = a(G) = m, the smallest odd 
circuit of which has more than 21+ 1 edges. On the other hand we proved 
[16] that every graph with x(G) > K,, contains a C,, in fact it contains for 
every n a K(n; K,). We also show that every G with x(G) > No must contain 
a two-way infinite simple path. On the other hand, we show that there is a G 
with x(G) > No which does not contain a K(K, , K,). Several further results are 
proved in [16] and there are many unsolved problems; here we state only 
two of them. Is it true that, for every G with x(G) = K1, there is an rz such that, 
for every I > n, G contains a C, ? We can prove this if.we assume x(G) 2 K2 . 
Is it true that every graph with x(G) = K0 satisfies 2 l/n, = co where 
n, c n2 < * ‘ * is the sequence of integers n for which G contains a C,, (perhaps 
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it even follows that the ni have positive upper density) ? A finite form of the 
above problem may be stated as follows. Put 

u(k) = min C l/ni 
G 

where the minimum is extended over all graphs for which x(C) = k. Is it true 
that u(k) --f co as k + co ? 

As an application of one of the results given [la Hajnal and I observed: 
Let G be a graph whose vertices are the points in n-dimensional Euclidean 
space. Let S be any countable set of real numbers. We join two points in G 
if their distance is in S. We show x(G) I KO. 

For simplicity’s sake we assume y1= 2. We show that G does not contain 
a K(3, K,) and thus by our theorem with Hajnal [16] we obtain x(G) I NO. 

Let us assume that there are three points in the plane x1, x2, x3 and a set 
(JJ,) so that d(xl, y,), is always in S [d(x, v) is the distance between x and y]. 
Since S is denumerable, only denumerably many y’s can lie on the three lines 
joining the x’s. Let ya be a y not on these lines. There are only countably 
many choices for d(y, , xi) - d(y, , x1) and for d(y, , x1) - d(y,, x3). Thus 
the y’s are the points of intersection of countably many pairs of hyperbolas, 
or (JJ,) is countable, which proves our assertion. 

A similar but slightly more complicated argument shows that in the case 
of the n-dimensional space, G does not contain a K(n + 1, K,) and thus as 
shown by ErdGs and Hajnal [16] x(G) I NO. 

Hajnal and I [17] proved that for every c < 3 there is a G with x(G) = R,-, 
such that for any set x1, . . , , x,, of vertices of G we have 

I(G(x, , . . . , x,)) > cn. (17) 

We can show that there is a G satisfying (17) for c < 4 with x(G) = K1, 
but we could not show the same for c -K +. 

If for every choice of the vertices I(G(x,, . . . , x,)) 2 n/2, then trivially 
X(G) I 2. We conjectured that if for every n and every choice of x1, . . . , x, 

ICG(x,, . . . , x3) 2 (n - W/2, 

then x(G) I k + 2. We did not even prove this fork = 1. 
An interesting conjecture is due to M. Kneser. Let S be a set, IS/ = 2n -I- k, 

to each S1 c S, IS, 1 = n make correspond a vertex. Two vertices are joined 
if the corresponding sets are disjoint. Is it true that this graph has chromatic 
number k i- 2 (trivially it is less than or equal to k -t 2) ? 

Another problem of Hajnal and myself states: Let G be a graph with 
x(G) = KO . Is it true that G has a subgraph G’ with x(G’) = NO such that G’ 
contains no C, (or more generally no C, for 3 < k I n) ? 
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A finite version of this problem may be stated as follows. Is it true that to 
every k there is anf(k) such that if x(G) >f(k) then G contains a subgraph 
G’x(G’) 2 k, and G’ contains no C3 ? 

One final problem of Hajnal and myself: IS it true that for every I 2 3 
and k 2 2 there is a graph G not containing K,,, such that if we color its 
edges with k colors there is a Kr all of whose edges have the same color? 
Folkman [26] settled this conjecture for k = 2. Hajnal and I recently ob- 
served that the following question seems to be relevant here. Let G, be a 
graph whose edges can be colored by two colors such that there is no Cs 
all of whose edges have the same color. What can be said about Z(G,) ? It is 
very easy to show that Z(G,) > ~n’/~; but perhaps Z(G,,) > CKZ(~/~)+~ also holds. 

3. MISCELLANEOUS PROBLEMS IN GRAPHTHEORY 

A well-known theorem of Turan [24] states that every G(n; [n2/4] + 1) 
contains a triangle. Turan raised the following questions, which seems very 
difficult. 

Denote by g(n; k, Z) the smahest integer such that if in a set of n elements 
there are given g(n; k, I) k-tuples, then there are always I elements all of 
whose 

k-tuples are among the given ones. Turin determined g(n; 2, I) for every I, 
but the problem is unsolved for every 3 I k -K I. It is easy to see that 

lim g(n ; k, Z)/nk = ck, [ 
“=m 

exists for every k and 1. Turan [24] proved c,, I = $(l -l/(1 - 1)) but for 
k > 2 the VdUe of ck, 1 is unknown. 

Turan also conjectured that 

g(2n; 3, 5) = n2(n - 1) + 1‘ w 

The proof of (18) is probably not easy; there are several ways of con- 
structing n2(n - 1) = triples of 2n elements so that there are no five elements 
all of whose triples are chosen. 

I proved [S] that there is a constant c3 such that every G(n; c3n312) 
contains a subgraph of 7 vertices x1 ; y,, y2, y3 ; zl, z2, z3 with the edges 
(Xl, Yl>, (Xl> Y2), eG9 Y3h (Zl, VA h Yz), (z2 3 YA b2 > Y3h (23 9 Yz), (z3 5 Y3). 
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More generally, I conjectured that for every k there is a ck such that every 
G(n; cka3”) Contains a graph having 

k 
l+k+ 2 

0 

vertices 

Xl;Yl,...,yk;Z1,...,Zk (2) 
where x1 is joined to all the y’s, each z is joined to two y’s, and no two z’s 
are joined to the same two y’s I have not proved this even for k = 4. 

Moon and Moser [22] posed the following question: Let G, be a graph 
of n vertices. Denote by g(n) the maximum number of different sizes of 
cliques that can occur in a G, . They proved 

n - [log n/log 21 - 2 log log n < g(n) 5 n - [log n/log 2-J 

I improved the lower bound to n - (log n/log 2) - H(n) + O(1) where H(n) 
is the smallest integer for which logH(,,) y1< 1 (log, n denotes the r-fold 
interated logarithm). I expect that the lower bound is essentially the best 
possible, but I cannot even prove that g(n) < n - (log n/log 2) - C for every 
C if n > n,(C) is sufficiently large [9]. 

Recently several papers have been published on extremal problems in 
graph theory (see [7, 11-13, 231. Here I would like to mention one such 
question. Pdsa proved that every G(n; 2n - 3) contains a circuit with at least 
one diagonal and that 2n - 3 is the best possible here. I had thought that 
every G(n; kn - k2 + 1) contains a circuit one vertex of which is the end point 
of at least k - 1 diagonals. Using P&a’s idea I proved this for k = 3 and 
k = 4, but Lewin proved (oral communication) that in general the conjecture 
is incorrect. I do not have any plausible conjecture to replace my original one. 
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