On the sum >d,(n)

By P. ERDOS and I. KATALI in Budapest

1. Introduction

Let d(n) denote the number of divisors of #, and d(n) be the k-fold iterate
of d(n), i.e. d,(n)=d(n) and d(n)=d(d,_(n)) for k=2. Let
(1. 1) Dy(x) = X d(n).

BeLLMAN and SHAPIRO [1] conjectured that Di(x) = (1+o(1)) ¢, xlog, x
for all k=1, where log, denotes the k-fold iterated logarithm.

This conjecture was proved for k=2 and 3 by KAtar [2], [3]. The aim of this
paper is to prove it for k =4. The cases k=4 seem to be essentially more difficult.

Theorem 1. We have
D(x) = (1+o(1))c xlog, x
as x —~o=, where c is a positive constant.

2, Notations and decomposition of the sum D,(x)

The letters p, py, ..., ¢, g1, ... stand for prime numbers. Let w(n) denote the

number of the different, and Q(n) the number of all prime factors of n, ie. for
n=p{..pr let on)=r and Qn) = a;+...+a,. Let A(n) = (—1)?7) and let
p(n) denote the Moebius function. (|u(n)| = 1 or 0 according as n is square-free

or not.) Let a,(n)= >d".
din

The letters ¢, ¢, ... denote suitable positive constants, and ¢, &, ... are arbitrary
small positive constants not necessarily the same in every place.
We use the symbol =< in VINOGRADOV’s sense.
For the sake of brevity denote x, =log x, x;4, =logx;, y, = logy, y;+,=log y;
(i=1) and set
loglog x)/ 1 .
@1 a;(x) = (—%—f,)),— (
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Denote by %" the set of integers all whose prime factors occur with an exponent
greater than 1. Clearly every integer can be uniquely written in the form

2.2 n=Km with (K,m)=1, K€, m square-free.

K will denote the quadratic part, m the square-free part of n. &/ is the set of integers
whose quadratic part is K.
For K€" let the numbers k, k;, k,, o be defined as follows:

2.3) k=d(K), k=2%,, k, odd, k,=d(k,).
Then for an » in (2. 2) we have
(2.4 dy(n) = (a+1+wm)k,.
Set
(2.5 Iy = ;' dy(m).
néo/x
Then
(2.6) Dy = 3 Zx.
RKEx
Furthermore

where in Y% we sum over those »n for which w(m)=r (see (2. 2)). Let further
2.8-2.9 Z(» K1) =, g:li,u(n)[; Z(nK)y= 2 ().

e (n K)=1

n=y
So by (2.4) we have
(2.10) Ek = dz(kz(ﬁ'}'l“[—r))z ['%, K, f’].

For a general natural number # let 4, denote the set of those positive integers
all prime factors of which occur in n. Let further

@2.11) :(n):]][1+1]_ = Z@.
pin P ved, U

Let m,(x) be the number of those integers not exceeding x which contain exactly
r prime factors.
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3. Lemmas

Lemma 1. For all r=1 we have _
X(xy+e) !
x(r=D!

(3 ]) K,.(X) =&

This is a known theorem of HARDY and RAMANUIAN [4].
Hence we easily deduce the well-known

Lemma 2. For all constant 6 =0 the inequalities
(3.2)-(3.3) > 1 < Y(log¥)7e, 5 1< ¥(logY) s
Q(n) <(,l'f§) logz ¥ D(n)> (TT_: & logz ¥
hold with a suitable positive constant y;. Further we have y,=2 in (3. 3).

Lemma 3. Ler h(x) denote an increasing function of x, tending to infinity

with x. Then
x

(3.4) =~ 2 _a®=(+oM)x
N1 | j—xal =k V2

and consequently

(3.5 2 _af(x) = o(x,), 2 _“j(x) = o(x,).

J=x2—hx)¥x2 izx2+hx)Vx2
Lemma 3 is well known and can be proved by a simple computation.

Lemma 4. Let B<1 be an arbitrary positive constant, Y, =Y, =Y%. Then

(3.6) 2> A{o@m~—log, Y}}* <Y, log, ¥,.

Yi=n=Y+Y2

This lemma can be proved by the method of TURAN (see [5]).
Let
(3.7 Dyx,t)= 22 1

x<mni=x+h
n>t

Lemma 5. For 0<t=x'"? and 0<h=x%*3 we have
(3.8 D(x, 1) < X +ht=1  with 9, = 023,
Lemma 6. We have
3.9 Z(x,1) = %x+ 0 (x'72).
Furthermore, for 0 =h=x37,
(3. 10) Z(x+h1)—Z(x, 1) = %H O(h!/2) + O (x*)
holds. :




316 P. Erdés—I, Kitai

For the proof of (3. 8) and (3. 10) see RicHERT [6]. (3. 9) is well known.

Let I(y, ¢) denote the interval [y, —cVy,, yo+¢Vy,]. Let further 4 be an
arbitrary but fixed constant and

(3.11) yyrid=yr=y

Lemma 7. For a suitable increasing function g(y) with limg(y)=o we have
yroo

6
(3.12) ZOM 1) = 5 (1+0) £ a0) (r==)
‘1
uniformly in I1(y, 4g(»)). '
This is a slightly modified form of a result of P. ErRDSs [7].

4, Further lemmas

Lemma 8. Let by<K*: Then we have

@ 1) z % wu B (o),
Kex

Proof. This is an immediate consequence of the simple and known fact that

Z’ ] = xl;"2+a‘
K=x

Kex
Lemma 9. For fixed =0 we have

4.2 S =<dpn),

Surthermore v

4.3) vezs‘.,v-ﬁ < d@u?

v=u

when y<p and 7y is constant.

Proof. Since

Zv-3=1][l 1]_ =pﬂ- Il =c@dm
=2 pf=2

vE#n mh 2
which proves (4. 2). Now (4. 2) implies (4. 3) since v~ f=u~?~#+7 for v=u.
Lemma 10. We have

4.9 20.K7) = s (L+oM)i®) Z-6,0) (r-)

uniformly for K=y4, rcl(y, 2g(»)). [g(y) as in Lemma 7.]
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Proof. The identity

4.5 Z(y, K, r) = 2 ‘(0Z [—“E-, i P—Q(L‘)]
vEBx :
can be proved elementarily or by using the uniqueness of Dirichiet series expansions.
Suppose that K=y%, rcl(y, 2g(»)). Let 4=)8. For v<4 we have Q(v)<
>clog2v<cys=g(y)y¥% Hence r—Q(v)€l(y, 2g(»)), if y is sufficiently large.
From (4. 5) we obtain

(4.6) Z(, K, r) = EZ,; A(b)Z[} Lr— Q(z,)]

+0[ Zz[J 1, r—Q(v)]]=El+O(ZZ).

v=4
vERK

Using Lemma 7 we deduce

) 6 /
@.7) 5= (o) 2 L
Vi z€£dx v

Since @,_quw(¥) = (1+o(1))ay) in rei(y, 22(y)) we have

5= S +o)e 0 W) L oya L 10+0[—a(y) > 1]
Y1 Y1 veax ln?;.x v

Hence by > v~ '<<1(K) and (4. 3) we obtain

vE K
6 “,.‘ar r
- I :'P(I-FO(I))T(K) ) ‘_(J}.
Y
Now we estimate the sum X,. We have by (4. 2) that
=y vl <yd(K) A~ 12 <« yy;2
v=4

and so X, =0(Z). Hence (4. 4) follows.

Lemma 11. We have
6
(4. 8) Z(y, K) = ?r(K)y—l—O(d(K)y”z).

Proof. Summing in (4. 5) for 1 =r <<= we deduce

@4.9) Z0,K)= > A(v)Z[%,l].

ri#g
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Hence by (3. 9) we have

6 1 1
Z(y, K) = 23 7(K)y+0 [y 2 ;]+0[y”’- 2> —]
| vedx veax Yo

By Lemma 9 we deduce (4. 8).

Lemma 12. Let z}*=z,=z}'*, L=0(z{'*). Then we have

(4. 10) Z(zy ¥z, L)—Z(zy, L) = }% T(L)zy+ O(d(L)(z}/* 4 24/)).

Proof. Using the identity (4. 9) we have

A g—Ei‘-Z(Z] +ZZ9L)"Z(2[’ L) = Z }'(L) {Z[ZI—:)_ZZ ’ 1]_2[%’ 1]}

v=z1+z2

Hence by (3. 10) we obtain

A :%I(L)z?_-l-()[zz > %}—I-O(zi"“ v )+

p=zz vEBL
vE#L
+0(z, 2 v-t)+0( 2 1)
vEAL za<=p=<zi1+zI2

vE By

For the last sum we have

X =220 D o~ d(D)zi
n<v<it+n reERAL
vEdRL
Using Lemma 9 for the other remainder terms we have (4. 10).

5. For a general integer S let

(-1 Ts(Y,, Y, + 1) = 2 dy(Sn).

Yy<=r=V;+¥2
Every integer r can be represented in the form
(5.2 r=R{R0, R €Bs,(R0,8) =1, ReA |u(o)=1

and this representation is unique,
Let L=R,R, and D, be the set of those r in (5. 2) for which L=R,R,. Let

(5. 3) d(SL)=1=201,, with I, oddand d(l,)=I,,

and let

3 1,7(SR,)
(5. 4) A(S) = RZR R
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Lemma 13. Let Y{?=Y,=Y}/3 S= Yl Then
6
(5.5) Ts(Y,, Y, +Y;) = g A(S)Y; loglog¥, + O(Y2 (log, Y,)”zS‘).

Proof. Using the notations in (5. 3) we have for an » in (5. 2)

(5. 6) dy(Sr) = (w(@)+ B+ 1), = a(r)ly +(B+1— (D)),

Hence

(5.7) Ts(Yy,Y,+Y,) = Y‘ﬂglmw(r)zﬁ mﬂ” 1(3+1-m(£))12 = I+ 5,
Furthermore

(5.8) Z, =log, Y, hm%'i Y212+0( lmzy-” 2|a)(r)—log2Y b)) =

= log, Y1 I3+ O(Z,).
By the Ca‘nchy inequality we have
(5. 9) 2‘4 = { (w(”_logz YI)Z}JQ{ Z‘ 13 }1 [2 e Zl;z zuz

1<r§Y1+ 2 Yi=r=Y:4Y;
By Lemma 4
(5.10) Is <Y, log, Y.

Using (5. 3) we obtain (d(m)<m?)
13 = O((SLY) (B+1—-w(L)l, = O((SLY).

Consequently,
¢.11) L, =0(82), X;=0(52Z,,
where
(5.12) D = LE
Yy<r=Y,4Y;
We have
(5.13) .= 2 LE4+ Y7 2 1= X+ Y72,
Yi=r=pL=Y4Y: Yi<r=pL=Y+Y2
L=Y> L=Y:
Furthermore
(5.14) T, 2 (RiR)y '= Yo { Z Ry~ i}{ 2 R‘{‘}:s:
RyR2=Y2 RicBg Ra2eX

-
<Y, [] 1‘__5] = d(8)Y, < Y,8%
pls
Now we estimate the sum Z,.
Let u? and v? denote the greatest square divisors of the numbers R, and R,.
Since R,¢%s, so u?*=R,/S=R, Y{%°'=R,¥2%® holds. Furthermore, since
all prime factors of R, occur with an exponent greater than 1, we have R, =v2/
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and //v, i.e.v = R}/3. Hence the inrZ, have the formr =n?m, where n=R,RL3Y; %03 =
=(R,R,)"* Y5 %= Y3, Thus

Zy = 2 L.
HE) énzméo‘r; +¥2

Applying Lemma 5 we obtain .
(5.15) Sy YA 4 YT a Y34,
Combining this with (5. 14) we deduce
(5.16) Ts(Yy, Y+ Y,) =log, Y- 23+ 0(Y,(log, Y,)V?S5%).
Now we estimate the sum X;. We have by (5. 15)
6.17) zZ; = Y.gr§.+r1[2+o(yf Y|<r§2¥'¢—:—¥2]) =2, +0FiZ,) = I, +0(138).
L=Y; L>Y,

Furthermore by (5. 2)

(5.18) S th{ [ 1 tYs SL] [YI,SL]}Z

L=Y>

Z =211+ 24z
L=t L>r20m
For X,, we have

G.19 Zp<=Y, 2> ‘{£<<Yz 2 LB {FRIMWY =2 Ryt

Lz=Y,001 L=Y,%01 R R Y,0,005

_;_Yz{ Z Rl-l-i-r.}{z R2-1+s} = Yzl-0,0DOI_
R2

Ry=>Y,0,005

For X, we use Lemma 12 and deduce

6 1,7(LS) i d(Ll,
(5.20) I, = ?YZB%M*L +olyrre > £

L=Y,%:01 L

+0[Y”2 b d(L)Iz]_. GZYZA(SHO[”Z ’ZT(LS)]+0(Y§“)

L=tgor L12 =¥y

Further, by elementary calculation,

(5.21) > 1 T(LS) *(5) ¥¢ Z (L) <« Y 0,001

L=Fto1 2 L == (YO 01)1;‘4 L34

Combining our inequalities (5. 17)—(5. 21), (5. 5) follows and hence the lemma
is proved.
Putting S'=1 in Lemma 13 we obtain by a simple calculation

D, (x) = 3 d,(n) = cxlog, x+ O(xVlog, x).

n=Ex
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6. The proof of the theorem

First we prove that

f
6.1) I, ¥ ¥ r o «x

K=>x32?

Kex

Indeed by (2. 3), (2. 4) we have
dyn)y=dy(n) = (2 +1+w(m)k,, a<log K.

Let 2, = X,+%;, with o(m)=10x, in X, and w(m)=>10x, in X;. So by
Lemma 8 we have
bae 5 CEAERG
Kmy3 K
Kex
Furthermore, using that e(m)<x,, we have
2

1/2
Toed 2 k2<{xl{2k§}”2 2 1}”2<:<xx1{2%} xil=ux,

w(n)=10x2 n=x w(n]i 10xz
by Lemma & and Lemma 2.
Suppose now that K=x3. Let
(6.2)46.3) = 3 % XM= 3 %
o | r=2x:
PEEIZ
(6. 4) = 3 3.
-il;x;-z:r<2x2
We prove that
6.5) IO = 3 EO = o),
and that
(6. 6) I = 3 5 = o).

Since K=x3 we have w(K)<x; and so in the sums X% w(n)<3x,. Furthermore
we have dy(n) = G(e)d*(n). So by the Holder inequality

< I dm<{ Z 1IN Zdm) <x x5 -0 «x,
n=x 3
0’(")5% x2 s e

if ¢ is small enough (see (3. 2)). The proof of (6. 6) is very similar.

1n A
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Finally we prove that

6.7 pAC ] > 20 = c(1+o0(1)-xx,.

K=x33

Since Dy(x) = 204+ 34 3V 5 | the theorem will immediately follow.
By (2. 10) we have

(6.8) IO = D dyky(x HM))Z[ K, r] = FUilop ys),

5 -=r<2x

where in I |r—x,|=g(x)Vx, and in P r—x,|=g(x))x, holds. Here g(x)
is a sequence which tends to infinity with 2 monotonically and for which the
Lemma 10 holds.

Let A=[x}3], 4, = x, —g(xX)V'x,, B, = x, +g(x)Vx, and split the interval
into consecutive subintervals with lengths 4. Let

s
G, =[A+(— 1A, Ay+jAl, j=1,2,-+,T; T= [2g(21.\_2_]+]_
Thus we have by (4.4) that
T
(6.9) IW = S ELdLoEihm),
f=1

where

TGN = D dy(ky (a1 —I—r))Z[ , K, r]

l't_ ¥

By Lemma 10 we have

t{K) x X
K o gx{KrEchdz(kZ(xHH))a[ ]

Taking into account that a,(x/K) = (I +o(1))a(x) for K=x%, rcl(x, 2g(x)) and
that a, (x)/a,(x) = 1+o(l) for |ry —ry| =4, ry, ry€I(x, 2g(x)) we have

T = —(1T o(1)

T =

_6E T(K) x Tk JAAG=DAFa+1, 4, +;A+ac+1)— Zar(x}

reGy

(1 40(1))

Observing that the conditions of Lemma 13 are satisfied, we deduce

ID = [%6_2] (1+0(1)) r(K)A(k )—v4 Tt (.l)-l-O[T(K) ke X xliz 2a (x)]

X1 reG; r€C;

Hence by (6. 9) using (3. 4) we have

(K)

(6. 10) I =(1 +o(l))[ ] —— Alk;)xx4+0 [xx4f2 Tgf) k‘]
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Now we consider the sum X&', From (3. 1) we easily deduce

% X oty '  ox
Z[Tr’ E "] SO =Dl Ky )

for r<2x, and K <x3. Hence we have

6. 11) z}})«Kx { J dyka@+1+r)a()+
xl ?E!‘.ﬁ_ﬂx
g Z; dy(ky (a+141))a, ().

Let 2, and X5 denote the first and the second sum in the right hand side of (6. 11).
Taking into account that ,(x) is monotonically increasing in X, and decreasing
in X5 in r, we have

=
2= Z Au—j4(X) ) Z dz(kz(x+ 1 +r))
=0 Ax—jAd=r=A.+(j+1)4

Iy = gy 54 %) = dy(ky(x+1+7)).

Jj=1 Bt (j—1)A=r=B+jA

2]

Sy < {x, A(k) + O(x}2k5)} A ZJ B 5,

and similarly

L Bl

Hence by Lemma 13 we have

Since
2l
4 2 o) = 2 a(x) = o(x)),
Jj=0 r=Ax+A
we have
(6.12) Za = o(x ) {xyAths) + x}2442).

Using similar arguments we can deduce for X the same inequality.
Hence by (6. 11) and (6. 10)

P =o)L ie. IO =(1+o))ZE.

Summing over K we have

2 £
IO = (1 +0{]))[E-62--] oy 2 15?A(k2)+0[_;;\-;:’2't2’ 1(*’?"2_]_

=x32 =xz3

Observing that the sums are convergent we deduce (6. 7).
This completes the proof of our theorem.

1=



324 P. Erdos—I. Katai: On the sum Zd,(n)

References

[1] R. BeLLMaN and H. N. SHaPir0, On a problem in additive number theory, 4nn. of Math., 49
(1948), 333—340. :

[2] I. KATAL On the sum X dd(f(n)), Acta Sci. Math., 29 (1968), 199—205.

[3] I. KATAL On the iteration of the divisor function, Publ. Math. Debrecen (in print).

[4] G. H. Harpy and S. RamMaNUIAN, The normal number of prime factors of a number n, Quart.
J. Pure and Appl. Math., 48 (1920), 76—92.

[5] P. TurAx, Uber einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, J. Lonrdon
Math. Sec., 11 (1936), 125—133.

[6] H. E. RicHerT, On the difference between consecutive square free numbers, J. London Math.
Soc., 29 (1954), 16—20.

[7] P. ERDGs, On the integers having & prime factors, Aan, of Math., 49 (1948), 53—66.

{ Received July 16, 1968)




