ON THE SOLVABILITY OF CERTAIN EQUATIONS IN
SEQUENCES OF POSITIVE UPPER LOGARITHMIC
DENSITY

Dedicated to Professor L. J. Mordell on his 80th birthday
P. ERDOS| A. SARKOZI anp E. SZEMEREDI
Let a,<a,<... be a squence of integers, to be denoted by A, stisfying

I|m sup~0—gx1 Zﬂ——ao-{} (N
A sequence satisfying (1) is said to have positive upper logarithmic density.
Davenport and Erddsd [2] proved that every sequence satlsfymg (1) contans an infinite
division chain, in other words an infinite subsequence «;, j = 1, 2, . .., satisfying
a;la;,, .| P. Erdds] A. Sarkézi and E. Szemerédi [3] proved that if (l) is satisfied
then there are infinitely many distinct quadruplets of distinct integers a4 a;, a,, a,
satisfying
(ad a)=a, [a)a]=a,.
In fact this is deduced in [3] from a weaker hypothesis than (1). 1n[3] we used an
ingenious combinatoria theorem of Kleitman [4]. By the same method as used
in [3] we could obtain the following result: For every kl there is an n such that if the
squence A sdtisfies for infinitdy many X

l x|
Eliﬂ ” {log Tog X

then there is a k-tupld &, . . . . a;4 of which no g, divides any other, such that all
the integers
(@.da.), [ada] 1<r<ry<H
ae in A.
This result suggests the following conjecture (which in fact was stated in [3])]
If A is a sequence satisfying (1) then there exists an infinite subsequence a;,e 4] of
which no a,, divides any other, such that al the integers

(ﬂ'i_rla aih) and [a;,, aih:” L <j| <jd
occur in A
In this note we prove this conjecture and in fact we prove considerably more,
In fact we edablish the following result, which seems to be definitive

THeorem 1. Let A satisfy (1). Then there is an infinitd subsequence a; g A,
1 <j < oo such that both the greatest common divisorl and the least common multiple
of any set of @; ’s| is i A and the least conmon multiples of any two distinct sets of a; s
are distinct.
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Theorem 1 implies that no two a; 'y can divide each other.  For if a;, |a;, { then
a;, =[a;, | a;, | which is impossble

Our proof of Theorem 1 will not use the results of Kleitman [4].

Theorem 1 will follow farly easly from the following:

Theorem 2| Let p(g)| denote the least prime factor of g. Let A satisfy (1). Then
there are integers a,e 4] a,€ A, g,|a] and a sequence g < ¢4 <. .. Of positive upper
logarithmic  density  satisfying

p(g)>a, aq.€A4] aqedlr=12 ... (2)

The proof of Theorem 2 will be our man difficulty. Assuming that Theorem 2
has already been proved we deduce Theorem 1 as follows. (The proof may seem
complicated because of the many indices but is redly dmog obvious)

Put a, = a;, in other words a, is the first term of our sequencea,,, j=1, 2, ,, ..
It will be convenient to put ¢, = 4] n = 1, 2, . and to denote the sequence
a® r=1,2 ..by A. A, has postive upper logarithmic density. By our con-
druction and (2) we evidently have

@, a,a)=aed]| [a,]a,aM=a,a"=q,aVedr=12.... &)

All further members of the sequence «;, j > 2 will be selected from the integers
a,aVn=12..,.

We now apply Theorem 2 to A,. Thus there are integers a,e A,, a,eA,,
a,Ma," and a sequence ¢,"] < ¢,} . . of positive upper logarithmic density
satisfying

r@™ >aM aMgVd A, ag0d4,, r=12,.... (4)
Put
ai'g = auap(q (p(ar”)j > aj > H"]
and ¢"M=a%,n=1,2,.., Thesequence of g¥isdenoted by A, A, has posi-
tive upper logarithmic density.  All further members of the sequence g;, j > 3 will
be sdected from the integers a,a, e, n=1,2 ..., Itiseasy to seethat all four
integers
a, aMa, a®la, aM)a, a
arein A.

Our construction can clearly be carried on indefinitely and we obtain an infinite
set of sequences of positive upper logarithmic density: 4] j=0, 1, ... (A, = A),
The elements of 4; are a¥, n=1, 2 ... Further we have for every j two integers
in 4;a,9] a9 satisfying
auullalufﬂj au(j) aru ¥ l}e A_,rjq av(j1 ar(j] i € AJJ p(ar(}l H ]]j > ai-‘U)l (S]
Put i .
a,, = a9 (@ =a). (6)

By our construction it is easy to see that al the 2/* Y products

gfiggj M=wuor i=v )
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ae in A for every . Also, for I >, a;) will be selected from the integers
JU:], 00a] r=12 ...
Finally it easily follows from (5)] (6) and (7) that

J1
(arh: ai_,]] =SI=-_I{:} au(S)GAl

and 1 )
[ai'Jl’ T a‘.n] = ,l-_-Il a, Ve O, (8)

where, inTT'|0< a9l sA 4 1€1€ L.
From (5 we have

p@®) > af™ b, pla) > af1"
Thus the expressions (7) are ditinct for distinct sequences j; < . . . < ji.  Hence the
proof of Theorem 1 is complete
Thus we only have to prove Theorem 2. First we have to introduce some nota-
tions. Denote by A(a,]x, y) the set of integers q < y/a;| p(q) > x for which a;qg A.
A st A’ g A issaid to have property P(x] y, &) if for every a;,g A’, aj< x we have

1
z] —{ > glogy/log x| ©)
qeAlag,x, ) q
LEMMA 1 Let A satisfy (1). Then there are arbitrarily large values of x andl an
infinite sequence y, < ¥4 < ... (depending on X) such that
2
o
el 10
Z(U“\_) 5 >3 Oologx (10)

2
where in 3, ., the summation is extended over the a; having property F{x, Yo i%f}) {

2
"l%ﬁ is not best possible, but any positive number depending only on & would
srve our purpose equdly wel.

2

The proof of Lemma 1 is the most difficult step of our proof. Put & = TCL and

assume that our lemma is fdse Then to every x thereis an f(x) so that for every

> /1)
l . .
Zb‘xla—ﬂ-éalogx (a) < X and g satisfies P(x] y, £)). (1)

From (1) and (12) it easly follows that there is an infinite sequence xj < x, < . . .
satisfying

!
o > (x—e) log x| (12)

i
u,f..\'_r

and 1
— <& logx{ (13

iy, x5} @Y

for every n > j.
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To prove (12) and (13) it suffices to observe that by (1) there are ahitrarily large
vaues of x satisfying (12)] and (13) follows from (11) if we choose x;,y > f(x)).

Now we show that (12) and (13) lead to a contradiction, and this will complete
the proof of Lemma L

Let 1= [427']+2 and let xy < ... < x; satisfy (12) and (13)] where we further
assume that x, is sufficiently large and x, 54 is asufficiently large number satisfying

Xess >max (f(x,), €7)| 2<r<i-1] (14)

Denote by a",i=1,2,... the ag A not exceeding x, and by ¢?)2 <r< 1, the
integers ag A in(x, ] ;,x,) which cannot be written in the form

a;q) a;<x; plg>x) 1<j<r-1.
To complete the proof of Lemma 1 we firsd need two further Lemmas.
LEMMA 2. The integers

aq] pg) > x, 1<r<l
are all distinct.

Assume
alVg| = i q,] p(a) > x,4 p(gz) > X, 4> 1y (15)
From p(g,) > x,J> x,|> a7V we have (g,, av) = 1] thus by (15) g,|q, Or

ar‘{1|’-{fl = a2,
e
which contradicts the definition of the ¢/”s] Hence (15) leads to a contradiction,
which proves Lemma 2
Lemva 3. Let 1< r g 1. Then

i o
Za—;"" > ?Iogx,l
i |

We evidetly have
r—1

S 3h- S E-SSUL

ay<xr @;<Xp-y i

where in X9 a, runs through the &s not exceeding x4 of the form

a, =a;q) a; < xy p(a) > x 17
Now we estimate W1

o
<1 1 <D 1
Z Zl a 2 4 F 0%
where in ¥ ¢} the summation is extended over the a, of the form (17) where g has
property P(x;] x,J £) and in 3, a; does not have property P(x;) x,,¢)| Clealy

2 T @

Put
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wherein

1
2]? p(g) > x4 <xa,
q

(19) becomes obvious if we observe that we replaced the integers a;qe A by al
the integers a;q o) > X;q < X,/a;) .
By the sieve of Eratosthenes we easily obtain from (14) and a classical result of

Mertens N
< 1 2logx,
2 (”"’“))ﬂj("?)%T‘“’"iong . 20)
From (19), (20) and (11) we obtan
E‘”L< 2¢ log x| @1y

Note that (11) can be applied here because x; 3 x;., = f(x)).

Now we estimate S‘U]L , We evidently have
)

S U-5Ast

where in Elalg a, runs through the a3 < xj which do not have property P(x;| x,¢)

andin ZJ—; g stisfies

X.|
Sx, p<—, aqgA 23
P@IAx, PR, aigs (23)
Since a; does not have property P(x;] x,4 &) we have by (23) and (9)
s 4
log x{

—h < 2 logx,] (25)

i)
E" 1 <2 logx, (26)
3 ﬂ‘d

(18), (21) and (26) imply

{

(1
EJ EH- < 4 logx, (27)
]

Thus finally, from (16), (27) and (14) we obtain for sufficiently large

X :[2
</, = - 2 P i
X (r I, I=[42"171+2] & : )

1 o
Gl [ - dr > x
2 G > (2—¢) logx,—log log x,—4re log x| 7{ log x,)

which completes the proof of Lemma 3.
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Now we are in a position to complete the proof of Lemma 1l Let y be large
compared to xj and consider the integers < y of the form

a, i912.... 1€r<gl, p(g)>x, (28)

By Lemma 2 these integers are al distinct. It is easy to see tha by Lemma 3 this
leads to a contradiction.

We obtain asin (21) by the sieve of Eratosthenes (noting that p(g) > x,/g < —'%,1
for sufficiently large y) r

| _ 1 / 1 L 1 log.y
Zm}—(f“}'o(l})‘a‘[}'}p@r{l—-— 4( —_——_ (2[))

t  2aflogx
q r<(yfa,rh) b EXr

From (29) and Lemma 3 we have

< | u
; rke -~ logy] (30)
g

Thus findly from (30) and Lemma 2

A1 _ < I
Z—I—;Z Zﬁ > Huxlogy,
=1 r=1 i.4
which isfalse for 1 = [4«a~1]42. Thus the proof of Lemma 1 is completed.

Now we can prove Theorem 2. LetX; yy< y; <. .. bethe numbers whose
exisence is guaranteed by Lemma 1. By Lemma 1 we can assume that x is sufficiently
large. In other words (10) holds.  Since there are infinitely many y's and only a
finite number of subsets of the gy < xy there is an infinite subsequence of the y's which

we will again denote by <, . . for which thesetf( ,‘ 2 ] is independent of ]

' 100
Denote this set of a'dby ay<...<aj<x; By (10) we have

Z — > log X, (31)
i=1
A wel-known theorem of Behrend [1] States that if ] <. .. < b] € X iS a sequence
of integers no one of which divides any other then

¢y logx
§?] (fog Tog )"} .

where ¢, (and later ¢,, . ..) is an absolute constant. ~ Thus from (31) and (32) we
obtain by a simple argument that. there is a subsequence g; <...<a;, of ay<...<qy
stisfying a; la;, , ,1 <jgt-4 1lad

2

100¢,

To see this it suffices to consider a maximal subsequence a,!] < a,] <. . . ofl
aj<...<a)whereno g; is aproper divisor of any ¢/ Thenomit ¢{M]i=1]2, ...
and repeat the same procedure, thus we obtain¢»,1=1, 2,,.,.  Continuing we

t> (log log x)*. (33)
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obtain the sequences ¢ 1= 1,2, . . . Where a/f 4 a{¥} but each ¢,(} isamultiple of at
least one ¢ (31) and (32) imply that j takes on at least

o? cilogx -1 o? ;
100 logs ( (log log x)*) "~ 100¢, (log log x)

vaues, hence our assetion immediady follows.
By our construction there clearly correspondsto each y,,s=1,2,...and g a
set 0(s, j) of integers g,, n = 1, 2, . . . satisfying

. 1 o logy,
g < ;H () > x| a;,q,€4] z L e O 34)

ar € 0(s, J) r

The lagt inequdity of (34) follows from (9).

Put now L = [400a~2]| For sufficiently large x we have i > L by (33). We
evidently have

L

2 B gsias 3 30 ®

i=1 qrebls, j) r a<ys 1< <j2<L

where in 9+72 the summation is extended over the ¢, €0(s)j,) ri 8(s) j;)| Asin

(21) we have
| 21 2logyy
rE (34
42114 q logx 'I
Pa)> ¥

From (35) and (36) and the last inequality of (34) we have

5, Z(J;.Jz)l llzgg,;_ (37)

15“-\:}24[.

From (37) there clearly are two vdues 1 € j; < j, < L for which
Juid 1 1 logy] o \4logy
2.( a>(L1 Iogx>(‘2{“} logx (38)
2

The velues of j, and j, which satify (38) depend on s, but since there are infintely
many choices of g there are two vaues 1 € j; < jj < LI which satify (38) for infinitely
many vaues of s In other wordsif O(j) denotes the union of the sequences d(s, j)

then by (38) the sequence 8(j,) ni 0(},) has positive upper logarithmic density

fact it is greater than(zo) / iogx)
0 NG B v (34)

Denote now by ¢ < ¢4 <. .. the sequence

alj QPEAJ a112QPEA’|

which completes the proof of Theorem 2; and hence Theorem 1 is adso proved.
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