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Let a, <a, < . . . be a sequence of integers, to be denoted by A, satisfying

1
lim sup-

1
x-rcc logx c

-=cc>o.
tZi-=X ai

A sequence satisfying (1) is said to have positive upper logarithmic density.
Davenport and Erdiis [2]  proved that every sequence satisfying (1) contains an infinite
division chain, in other words an infinite subsequence ai,, j = 1, 2, . .., satisfying
aijlaijcl, P. Erdiis, A. SgrkGzi  and E. Szemerkdi  [3]  proved that if (1) is satisfied
then there are infinitely many distinct quadruplets of distinct integers ai, aj,  a,, a,
satisfying

(Ui, Uj) = a,, [Ui, Uj] = a,.

In fact this is deduced in [3]  from a weaker hypothesis than (1). In [3]  we used an
ingenious combinatorial theorem of Kleitman [4].  By the same method as used
in [3]  we could obtain the following result: For every k there is an q such that if the
sequence A satisfies for infinitely many x

c
1

i7i-c.x
ai  ’ (log Icog  x)”

then there is a k-tuple a;,, . . . . a+ of which no air divides any other, such that all
the integers

(ai,l, ai,>, [air,, ai,J 1 G r1 <  p2  G k

are in A.
This result suggests the following conjecture (which in fact was stated in 131).

If A is a sequence satisfying (1) then there exists an infinite subsequence ai,EA, of
which no a,, divides any other, such that all the integers

(aiJ,9  aij2) and  [aijl,  aij2],  1 Gjl <h
occur in A.

In this note we prove this conjecture and in fact we prove considerably more,
In fact we establish the following result, which seems to be definitive:

THEOREM 1. Let A satisfy (1). Then there is an in$nite  subsequence ai,E A,
1 <j  < co such that both the greatest common dicisor  and the least common multiple
of any set of ai>‘s  is in A and the least common multiples of any two distinct sets of ai,‘s
are distinct.

Received 2 October, 1967.

[J. LONDON MATH. Sot., 43 (1968),  71-781



72 P. H&S,  A. ShKiiZI AND E. SZEMERh

Theorem 1 implies that no two atj’s  can divide each other.
aij2  = [aij2, a,,,]  which is impossible.

For if CZ&Z~,~,  then

Our proof of Theorem 1 will not use the results of Kleitman [4].
Theorem 1 will follow fairly easily from the following:

THEOREM 2, Letp(q)  denote the least prime factor of q. Let A satisfy (1). T h e n
there are integers a,EA,  a,E A, aulav  and a sequence q1 < q2  < . . . of positive upper
logarithmic density satisfying

ph.) > a,, a,,q,EA, a,q,EA,  r = I,% . . . . (2)

The proof of Theorem 2 will be our main difficulty. Assuming that Theorem 2
has already been proved we deduce Theorem 1 as follows. (The proof may seem
complicated because of the many indices but is really almost obvious.)

Put a, = ai,,  in other words a, is the first term of our sequence a,,, j = 1, 2, , , . .
It will be convenient to put q,  = a,(‘), r = 1, 2, . and to denote the sequence
a,“),  r = 1, 2, .,.  by A,. A, has positive upper logarithmic density. By our con-
struction and (2) we evidently have

(ai,9 a,aJ’))=a,EA, [ai,,  a,a,c’)]=a,a,c’)=ai,a,(‘)EA, r= 1, 2, . . . . (3)

All further members of the sequence ai,,  j > 2 will be selected from the integers
a,a,C’),  r = 1, 2, . . , .

We now apply Theorem 2 to A,. Thus there are integers a,(‘)E A,, a,(‘)EA1,
au(l)la,(l)  and a sequence ql(Q  < q2@)  .  . of positive upper logarithmic density
satisfying

p(q,‘l)) > a”(‘) 3 a,(‘)q,C’)E  A,, a,,(l)qJ1)E  Al, r = 1, 2, . . . . (4)
Put

ai,  = a,a,c’) (&,“9  z a, > a,)

and q,(l)  = a,(‘),  r = 1, 2, . . , The sequence of a>‘) is denoted by A,. A, has posi-
tive upper logarithmic density. All further members of the sequence a,,,  j > 3 will
be selected from the integers a,a,,(1)a,(2),  r = 1, 2, . . . , It is easy to see that all four
integers

are in A.
a, a,(‘),  a, a,(‘),  a, a,(l),  a, a,C’)

Our construction can clearly be carried on indefinitely and we obtain an infinite
set of sequences of positive upper logarithmic density: Aj,  j = 0, 1, .,  . (A, = A).
The elements of Aj  are a,“3,  r = 1, 2, ‘..  . Further we have for every j two integers
in Aj,  au(‘),  a,“)  satisfying

a,(j)la  (J)” 2 a,“)arci+i)EA. 3’ a>) a,‘j  f l) E Aj, p(a,”  ’ ‘1)  > aJJ). (5)

Put j - l

aij+  1 = ,co aU(S)aiJ) (a:‘) = a,).

By our construction it is easy to see that all the 2j+’  products

(6)

fIa p),
s=o  s

As = u or 1, = v (7)
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are in A for every j. Also, for I>  j, aj, will be selected from the integers
j - l

n aU’“‘ur (“ , r = 1, 2, I..  .
s=o

Finally it easily follows from (5),  (6) and (7) that

(aijl,  *“3 ‘a,,)  =s$o  a,“kA

where, in IT’,  0 < s < j,,  s # j,,  1 < t < 1.
From (5) we have

p(a,‘“))  > a @-  ‘)” 1 p(a,‘“))  > oo(s-  ‘I.

Thus the expressions (7) are distinct for distinct sequences j, < . . . < j,. Hence the
proof of Theorem 1 is complete.

Thus we only have to prove Theorem 2. First we have to introduce some nota-
tions. Denote by A(ai,  X,  y) the set of integers q < y/a,  p(q) > x for which a,qE A.
A set A’ c A is said to have property P(x, y, E)  if for every aiE A’, ui < x we have

c
qeAai,x,  y)

$ > .slogy/logx. (9)

LEMMA 1. Let A satisfy (1). Then there are arbitrarily large ralues  of x and  an
infinite sequence y1  c y2 < . . . (depending on x> such that

7 1->&logx, (10)
--/(Vj,A)  Ui

bvhere  in CCY,,X)  the summation is extended oz’er  the ui having property P X, yI,  1oo(. .“),

go is not best possible, but any positive number depending only on 01  would

serve our purpose equally well.

The proof of Lemma 1 is the most difficult step of our proof. Put E = go and

assume that our lemma is false. Then to every x there is anf(x)  so that for every

Y >f (4

7 1
-<&Eogx (ui  < x and ai satisfies P(x, y, a)). (11)

-(y,x) Lli

From (1) and (11) it easily follows that there is an infinite sequence x1 < x2 < . . .
satisfying

and

c
1- > (tr--E)  1ogXj w
ui

RiCXj

7
1- < E 10gSj (13)

--.((Xr,  Xj)  Ui

for every r > j.
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To prove (12) and (13) it suffices to observe that by (1) there are arbitrarily large
values of x satisfying (12),  and (13) follows from (11) if we choose X~+~  >f(xi>.

Now we show that (12) and (13) lead to a contradiction, and this will complete
the proof of Lemma 1.

Let 1 = [4a-‘I+2  and let x1 c .,. < X,  satisfy (12) and (13),  where we further
assume that x1 is sufficiently large and xr+ 1 is a sufficiently large number satisfying

x,,, >max(f(x,),e”r),  2<r<l-1. (14)

Denote by a,(‘),  i = 1, 2, . . . the aE  A not exceeding x1 and by a,(r),  2 < r < 1, the
integers a~ A in (x,-  r,xJ which cannot be written in the form

aiq,  ai<Xj,  p(q)>Xj,  l<j<r-1.

To complete the proof of Lemma 1 we first need two further Lemmas.

LEMMA 2. The integers

4%  p(4)  > x,, 1 < r G 2
are all distinct.

Assume

a,‘:l)q,  = a!r2)h  p(4d  > xrly A421  > x,,,rz r-2  > rl.

From p(q2) > xp2 > xr, > ai:l) we have (qz,  al;‘)) = 1)  thus by (15) qzlql  or

(15)

( ,q1a/,1  _ = &2)
q2

‘2 ’

which contradicts the definition of the apI’s. Hence (15) leads to a contradiction,
which proves Lemma 2.

LEMMA 3. Let 1 < r < 1. T h e n

1c- > Tlogx,.
a?) 2

We evidently have

where in c(j)  a, runs through the a’s not exceeding x, of the form

Now we estimate
a, = aiq, ai < Xj, p(q) > Xj.

c

6) 1
-.

1 al

Put

(16)

(17)

where in &(JJ  the summation is extended over the a, of the form (17) where ai has
property P(xj, x,,  E)  and in CJJ’ aj does not have property P(Xj,  x,,  8). Clearly
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where in

c
1

-3
4

P(4)  > xj3 4 < xrlai*

7 5

4

(19) becomes obvious if we observe that we replaced the integers a,qEA  by all
the integers aiq (p(q) > xj, q < x,/u~)  .

By the sieve of Eratosthenes we easily obtain from (14) and a classical result of
Mertens

From (19), (20) and (11) we obtain

c

(i) 1
-

1 a1
<  2 E  log Xj.

Note that (11) can be applied here because x, > Xj+  r >f(x,).

(21)

Now we estimate
W 1

> - , We evidently have
L--i2  a1

cc;+  = C’$L$, (22)

where in
c

’ 1
-a, a, runs through the ai < xj which do not have property P(Xjt  x,, E)

I

and in
c

1
-i

q satisfies

P(4)  > xj, P < f 5 lZiqE  A.
t

Since ai does not have property P(Xj, x,,  E)  we have by (23) and (9)

c
1 & logx,
-<-.

1OgXj

Further clearly
rt-&<;

3; 1

T
< 2 1OgXj.

L t=i

Thus from (22),  (24) and (25)
W 1

IL.2
- < 28 logx,.

2 a1
(lg), (21) and (26) imply

4j)  1

..2
- < 4 E  log x;.

1 at

Thus finally, from (16),  (27) and (14) we obtain for sufficiently large

l.=[4~-~]+2, E=&

T 1

sic”
> (X--E)  log&-loglogx,-4relogx,  > 4 logx,,

(24)

(251

(26)

(27)

which completes the proof of Lemma 3.
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Now we are in a position to complete the proof of Lemma 1. Let y be large
compared to x, and consider the integers < y of the form

a,“)q, i= 1, 2, . . . . 1 < r < 1, p(q)  > x,. (28)

By Lemma 2 these integers are all distinct. It is easy to see that by Lemma 3 this
leads to a contradiction.

We obtain as in (21) by the sieve of Eratosthenes (noting that p(q)  > x,, q < 1ai

for sufficiently large y)

From (29) and L.emma  3 we have

lc-ay)q
> +- logy.

i, 4

Thus finally from (30) and Lemma 2

i;;&-& >al~loiw
I=1 r=l i,q

which is false for 2 = [4a-‘]+2. Thus the proof of Lemma 1 is completed.
Now we can prove Theorem 2. Let x; y1 < y2 < . . . be the numbers whose

existence is guaranteed by Lemma 1. By Lemma 1 we can assume that x is sufficiently
large. In other words (10) holds. Since there are infinitely many y’s and only a
finite number of subsets of the a, 4 X,  there is an infinite subsequence of the y’s which

we will again denote by y1 <: , . . for which the set P x y. -
(’ vG)

is independent of i.

Denote this set of a’s by a, < ‘.. < a, < s. By (IO)  we have

(31)

A well-known theorem of Behrend [l] states that if b,  < . . . < h,,  < x is a sequence
of integers no one of which divides any other then

id  1-7 Cl  logx
zi < (log log@’ (32)

where c1  (and later c,,  . ..) is an absolute constant. Thus from (31) and (32) we
obtain by a simple argument that. there is a subsequence a,, < . . . c ai, of a, < . . . < a,

satisfying ailjo;,  ~ ,,  1 ,<  j < t- 1 and

(33)

To see this it suffices  to consider a maximal subsequence a,(l)  < az(‘) < . . . 01”
a, < . . . < a,  where no aj is a proper divisor of any a/l). Then omit a,(l), i = 1, 2, . . .
and repeat the same procedure, thus we obtain ai(  i = 1, 2, , . , . Continuing we
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obtain the sequences a?‘,  i = 1,2,  . . . where a:) J’ CZ$~)  but each C$)  is a multiple of at
least one aJj-  ‘1. (31) and (32) imply that j takes on at least

values, hence our assertion immediately follows.
By our construction there clearly corresponds to each yS, s = 1, 2, . . . and a,,  a

set Q, j) of integers q?,  r = 1, 2, . . . satisfying

4r  < $9 P(4r)  > 4 aijqrEA, 2
1 a2  logy
- >- s -*i

rlr E OGJ) 4r 100 logx (34)

The last inequality of (34) follows from (9).
Put now L = [400a-‘1.  For sufficiently large x we have t > L by (33). We

evidently have

(35)

where in c(jl,jz)  the summation is extended over the qr  E&S,  j,) n 13(s, j,). As in
(21) we have

c
_ < 2 bv.31

4XYs
(i log- (34)

mF=x

From (35) and (36) and the last inequality of (34) we have

From (37) there clearly are two values 1 < j, <: j, G  L for which(jd)  1c 1 mJ5-,-- 01 4hvs4r L logx( > ’ 20 log’( )
2

(37)

(38)

The values of j, and j, which satisfy (38) depend on S, but since there are infintely
many choices of s there are two values 1 < j, < j, f L which satisfy (38) for infinitely
many values of s. In other words if 0(j) denotes the union of the sequences i9(s,  j)

then by (38) the sequence e(j,)  n e(j,)  has positive upper logarithmic density

(-“)‘/lOPX).
(
in

fact it is greater than 2. Denote now by q1 -c q2 < . . . the sequence

wl)ne(j2). B Y  (34)

ai,,c7,‘E4 aij2q,EA,

which completes the proof of Theorem 2; and hence Theorem 1 is also proved.
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