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§ 1. Introduction. Notations

In our paper [1] using a special set-theoretical construction assuming
the generalized continuum hypothesis (G.CUH, in what follows) we proved
that the topological product of &, discrete topological spaces of power i,
is not b-compact for every & < w. Since then several related or equivalent
problems were independently discussed in the literature. General results
of A. Tarsgr, P. Hanr and H. J. Kigspeg made it possible to prove that
(assuming G.C.H.) n similar result holds for a very extensive class of cardi-
nals &, (see e.g. [2], [3], [4]). J. MyYcTELSKT proved without assuming G.C.H.
that the result holds for every 8, less than the first weakly inaccessible car-
dinal = 8.

Un the other hand in [1] we stated several problems depending on a
parpmeter #, of the type that a positive answer for them would imply the

corresponding incompactness result, but the general method for obtaining
f[.-'llE incompadctness results does not work for them. One of them is the fol-
owinge:

Does there exist graph & of &, vertices such that & has chromatic num-
her = &, but all subgrﬂ_phs &’ of g epanned by less than §, verticea have
chromatic nomber < #,?

Asg far as we know, the general methods mentioned above do not help to
solve this problem, and all nontrivial instanees of the problem are unsolved
for: #. = ;.

In this paper (using G.C.H.) we are going to give a partial solution of this
problem for &, < #,. In fact we prove a more general theorem (see Theorem
2) which gives information on the problem involved without using G.C H.

We obtain our result by using & rather special partition theorem. This will
be proved in § 2. In § 3 we prove the main result already mentioned and we
are gpoing to define universal graphs &w, e, which for every regular ¥,
have the property that they contain all ;}rapha fgof w, vertices such that
every subgraph &' of & E-‘pammd by less than g, vertices had chromatic
number at most %, We will discuss some apecin.l properties of these
graphs as well, In § 4 we deal with some partition problems related to
the one eonzidered in § 2,

In what follows we are going to use the notations introduced in our paper
[6]. These are mostly the usual notations of get-theory, We mention that
ordinals arve defined so that each ordinal £ is the set of all smaller ordinals.
The eardinal g is identified with e
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§ 2. A special partiion problem

Dermyrrion 2.1, Let y be a cardinal > 2, and let k be an integer. A se-
quence S = ¢h, Hey, £ < v of type y of uniform set-systems =¥ with
#(Hg) = k15 said to ben L-partition of type y of the set A4 i

H k= He.

Let & be a graph and let = bLe an ordering of the set g. We say that
a path Sz, ..., %) € € is an inereasing path of length i (with respect to
ordering <) if @,-< ... < x;. We are poing to generalize the econcept
of an incressing path for more general set-systems,

Durmrrion 2.2, Let ¥ — <k, H be a uniform set-system, with » () =#,
| << k< m. Let < be an orderine of the set & A subsystem .5 C #°
is said to he an increasing path of length 4 (i > 1) if %% = {p, P} and the
following eonditions hold

B =y vnas Tii—ats - e .
e
P={{rpapi, oo impppeabya

Dermsrriox 2.8, To have a brief notation we write @ — [i]¥ to denote
that the following statement is true.

Let i be a set and < an ordering of it, type 4 ( < ) =8, Let further
H', £ <<y be a k-partition of type y of . Then there exists a & <y and
an increasing path 5 of léngth ¢ such that 5% C 2. As usual @ + [i]}
tenotes the negation of the statement,

Darmvirioy 2.4. Let » be an infinite cardinal, We put
eXp, (¥} =7, 6XpPi4, {y) = 250U
We need the following

Lumman 1, (A, Tansgr) Lat 9 be an infinite cardingl, | A = v Then there
exists @ set A& C F|A] such that | A| =2 and B EC for an arbitrary
pair B = Ot

Using this we prove

Lemya 2. Let v = o, L <k < w. Then there exists a function f(£, . . ., Ex_y)
of k variables defined for &, < expy_,(y), § < & — L with @(f) < y satisfying
the eondition

({7 ) [ P

Efbyy  Jor i<k,

whenever

LA uniform get-systern J consists of sets 4 for whiah [ 4] = #(H),

*Thi= chonges slightly the definition given in 2, 13 [6 | whers in the special case £ =2
such & path wag said of lengih i4-1.

*See [7].




ON THROMATIO NUMBER OF INFINITE GRAPHE a5

Proor. For k = 1 the theorem is trivial, Let & = 2. Lot & be a system
of subsets of p satiefying Lemma 1, and let g £ ®0%.# be a one-to-one
mapping of exp,(y) onto <A

For an arbitrary pair &, & < expy(y) put (&, &) = min (g(&,)\ g (&))-
[ satisfies the requirement sinee if &, £, 5 =t & = exp,(¥) then

HEs, El]"i‘ﬂ'fsﬂ and f{E, &) Ep(Ey) *.

Let now & = 2 and assume that Lemma 2 is true for 1 << &' << F,
Then there exist functions g, A satisfving the following conditions:

(1) gl&y &) 18 defined for £, & < expy_ (y).
Rlg) € expy_qly) and for &, 2 &, & = & << expi_y(y) we have

g(Ew &) F=9(61. &)

(2) Flwps - - oy My—z) 18 defined for oy < expr_,ly), ¢ < & — 1,
) =y and for o = e f < & — 1, 9 < expi—qy) we have

Blng s -2y Mia) =R, oo )
We define a funetion f{£,, ..., &-,) for & < expi_y(y), i <& by the

stipulation
FiEa o v Grma) = BlglEor &) -+ o 9(8ica Eiey))-

Then by (1) and (2) f is defined whenever § <2 exp,_,(y) for i < & and
R{fiS y. Assume now that &, ... & i3 a sequence of & -+ 1-ordinals less
than expy_,(y) such that & = &, for € <~ & Then by (1) w = g(&n & y)
i = kis'a sequence of b ordinale less than exp; _.(y) such that # = 5, , for
e e I

Hence by (2) we have

f':'fur oy ) = h{"i'u- S -"’i‘ﬂ:—-zj 3&}1(’?1- wea "".‘w-—t]' =5 ﬁﬂr 1
We prove
TaEoREM 1. Lel > w0,k > 1,1 = 2. Then @ — [i % holds iff 0] = expy_, ().

Proor. Assume || >expy_,(»). Then by Theorem 39 of [13] we know, that

lt tvpr- A<} =0, henoe || > exp;_,(y) then for an arbitrary k- partxtmn
e & < yof type y of k there exists a § < y and asubset A" C &, |h'] J= o

sm,h that S5[h'] € ¥ hence by Definition 2.8. we have & — [i}t

Agsame @] = ﬁxp;, 7). It is sufficient to prove @ 4 [2]%.

Let typ <) =06 and let g € E‘x‘pk_l{'] } be a one-to-one mapping of A
onto expy.(y). Let th a function satisfying the requirements of Lemma 2.

WF define a k-partition S¥%, £ <y of type » of & as follows. Let x¢

e ¥ PR T - Ry

<z, for Fk—1.
Put rc H iff fgin,), ... .¢le)) =£.

§ Note thal oase & = 2 of Lenmma 2 and Lemma 1 ave in fact cquivaleni.
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It follows from Lemma 2 and Definition 2.2. that 2%, containg no inereas-
ing path of length 2. '

In § 4 we will give an independent proof of case & = 2 of the positive part
of Theorem 1. There we will also disouss the case of finite s, (2ee Theorem 5
and Problem 8).

§ 3. Prool of the main result

TurorEM 2. Let v =, 1< k< w. There exists n graph 4 = (9,6
satisfying the following conditions (), (b), (¢}

(8) =«(éd) = |g|=exp_,(y)*

(b) Chr{gl) >y

(¢) for every g" S g |g"|<exp_i(¥)
Chr(& (g7) < y-

Proow. Put expy_(p»)T =, g =[]
Let X, ¥ be two elements of % [z] = g.

X=4{&}icn Y= {’?r}tﬂk- <& <& N <t =%

for ¢ <=k — 1.

Put {X. ¥}letd iff §,, =9, for i <& —1.

Then & satisfies the requirements of the theorem.

Put g* = [7] for T < z. Then g" Sg. Let g, £ <y beasequence oftype y
of subscts of ¢° such that ¢* = *U gg- Then the statement that &ige) con-

=

taing no edge is equivalent to the B}t&temunt- that the set-system (=, g;» con-
tains no increasing path of length 2. Henee by Theorem 1 L‘-hr[’G{g’]] =y
holds iff ¥ < «. Considering that = being regular g* © g, |g'| = expy_,(7)
implies that ¢' C g for some v <« and taking into account that
g* =g, this implies that condition (b)) and (¢} both hold. (a) is frue sinee
ilx]| = =

Note that the graph defined in the proof of Theorem 2 was already used
by the authors for other purposes, see e.g. [8] Theorems 6 and 7.

Cororrany 1. Assume G.C.H. Then for every £ and for every 1 << k << @
there exists a graph ¢ with (&) = @g;, and of chromatic number @,
all whose subgraphs spanned by a set of vertices of powerat most e, ., have
chromatic number < w;.

Assume z({) = o, and Chr(glg')) = o for every g' T g, |g'| < o,.
Then we obviously have Chr{éj) = w. Hence the simplest unsolved problem
we have here is

ProeLEM 1. Assume G.C.H. Does there exist a graph ¢ with 2(6i)= o, 4,
such that Chr(gl(g’)) < o for each ¢’ C g, |g'| < w, but Chr{d) > !

REMaARK. In view of the results formulated in [8] and the above remark
one may conjecture that there is a positive answer for Problem 1 if we re-

— — -
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place w4, by a regular &, and assume G.C.H. and x€C, [w,, z) € C; where
'y, € are the classes of cardinals defined in [2]. Or it is quite conceivable
that one can prove with a refinement of the method of [6] and without
assuming G.C. H. that the same result holds for every regular x less than the
first weakly inaccessible cardinal = o, but we did not suceced in proving
flh&ﬂ-l‘:r

There is a problem of another type which remains open.

Propnem 2. Assume G.C.H. Does there exist a graph & with «{él) =
Chr (€) = o, such that for every ¢’ Ty, |¢'| < @, we have

Che({d(g")) < w?

This should be compared with Theorem 1.1.3 and Problem 11.4. of [8].

Note that Corollary 1 gives us a graph with «{g) = ,, Chr{g) = o,
satisfying the last condition. It is possible that the answer for Problem 2
is positive even if we replace e, by a regular z, and we assume that « is not
too large.

On p. 88 we prove an implication relevant to Problem 2,

For every infinite cardinal « and for every y we define a graph £, , as
fullows,

DErmrrion 3.1. Pub Pay = "V

Let f== ke,
Put {f, h} € = G, iff there is a £ = =« such that
L) H(2) = R(L) for every £, E< L <a.

'{-:Iu:.ﬂr' = <g:.-r-1 Ggly:} ¥
For every {f, kh} € G, put £, (f, k) for the least £ satisfying (1).

Dermsirrox 3.2, The graph & is said to have property Pz, y) if each sub-
graph of & spanned by a set of vertices of power less than = has chromatic
number at most ¥,

We prove

Tuzoresm 3. (A): Assume & > w. Then &, ., has property Plef(z), ).
(B): dssume olid)—= & and & has property ﬁ{m, ¥hop = 2. Then there is o
&' = g, such that ¢f awd €' are isomorphie, -

Proor or parr (A). Let ¢' < g,., l¢'| < of(a).
Put 4 = {&<x:E=E (f, &) for some f, A €g', {f, A} € 6G,,}. Then
(4| = ef(z) hence there is a £, < & such that & < &, for every £ £ 4. Put
ge={fcg ks = n i forn < 3. Then G W<V is a partition of type ¥
of g'. Assume f, h € g, for some 5 << 3. Then f(£,) = &(£,) = u henece {f, 4}

¢ G, ., by the definition of 4. It follows that Chr (&, ,(¢')) < », hence &, ,
possesses property Ple, y).

Proor or PART (B). Assume that & sutisfies the conditions of part (B}
of our theorem and y = w. We may assume g = «. By the assumption that
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¢ has property Plx, ), for each & <<« we have Chr(€l{£)) < 3. Let g,
0 <<y<<y be a disjoint partition of type y of &such that the graphs €(g,,)
£ <t o, 0 < 5 <y have no edges. For every { < « let f; be the element of
Zony = " defined by the following stipulation.

0 if £=1¢
(1) h{E.‘J=[ Sl .

n if L<& and (Eg,,.

It is obvious that {; = £, < o implies f, = [..

Assume now that {£,, Ej € G then [, € g¢,,. &3 € gey, implies 0y = 5,
for & > max{(y, {;), hence {fi, 7 } G, by [1). g‘ut. ar = (g’ G,
where ¢’ = {f¢: L <wa), O =4{{fe fo}: {Cn L} €GY Then G'c g,
and €' is isomorphie to @. In cages 2 <y < @ a slight modification of this
proof gives the result. We omit the details.

By @ theorem of P. Ernfs and N. (. pe Brumx [10] each graph &
puossessing property Pz, y) for some finite y, has chromatic number at most
v, As a corollury of part A of Theorem 3 we have

Cororrary 2, Chr (€, ) = y for every finite p and for every w.

Theorem 3 shows that the determination of Chr (g, ) would be decigive
to answer the problem formulated in the introduction. Considering that
each graph has property P{y™, y} for every y, the relevant cases are those
where o = y*. As u corollary of Theorema 2 and 3 we have Chr {‘ﬁw“mr; )
= ey provided G.C.H. holds. The simplest unsolved problem is

ProsrEM 3. Assume G.CH. Is Chr (g0} = ;! Or =, or = wyl
The following problem seems to be strongly related to Problem 8.

ProprEsM 4. Assume (.C.H. Does there exist a subset o C "o, satis-
fying the following conditions || = myand for every pair = g € -# there
is a Ef, g) < m, such that f{f) = g(l) for every £ < { < @,

Problem 4 ig well known and the answer to it is affirmative provided the
same is true for the special ease § = 1 of the general Kureea problem, i.e.
if there exista a family (F, [F| = @iy, (F S Flo, ) such that for every
0 <t (7o = {Fne:F e F} has cardinal at most ay.

{(The special case { = 0 is usually known as KuvrerA's problem).

It has been proved recently that a positive answer to these problems is
ongistent with the usual axiom systems of set theory. We cannot give
the exact reference.

We will putline the proof of the following

TaroreM 4. Assume GO, and assume that there exists a set € sutisfying
the conditions of Problem 4. Then Chr (g, ) = o,

Proor, We prove that &, , contains a subgraph ' homomaorphic to
the graph @ = (g, &) defined by the stipulations g = 5 [w,], if » =
o E1ds = {mu mb &< & and ny <7y, & m <@, then (& yie
o iff & =1,

& is the graph constructed for the proof of Theorem 2 in case £ = 2.
& = g, ¥ = wy. By Theorem 2 we have Chr(é) = w,.
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Let o be a set satisfying the conditions of Problem 4.

Let ¢ be one-to-one mapping of w, onto ¥ By case p =w, £ =2 of
Theorem 1 there exists a funetion f{y, #,;) defined for 5, u; < w, with
By = w such that

(1} fem) =1 me) for my=F My 551

We define a function g on g as follows, Let {5, £} & < & < o, be an
arbitrary elament of g = 5,[a,].
Let w({&,, £&}) = v be the element of “o defined by the stipulation

PO = HpalD), pell)) for § <w,.

Ve and g, are elements of &, henece g (L), we,(0) are ordinals = o,
for r_ << 0y, "E?hus Pl =< for{ = myandy € o = Ju, 00 Lt nOW

{{Eﬂr'fl}i {51-52“ <& <&

be an edge of €. Put p({F, &)} = yo ({5 &}) =y, By the definition of
v there i3 an ordinal £, < @, such that g (L) = ‘p;l:k,] and well) = @g,ll)
for Ly-< <=y Hence i}y (1) wppll) =2 gl Tor Dy =20 == a,

It follows that if {x, y } is an edge of & then {y(x), ply) }is an edge of & .

Henee if ¢’ is the subgraph of Uy spammed by y(g) then Chr(g)<
Chr fﬁ'} It results that Chri{d,, ) = o,

It is obvious that using the general form of Koreea's problem a more
general result can be formulated. Since we do not know if the assumption
of a positive solution of Kurpra's problem is really neeessary we did not
bother to formulate the general statement.

We mention that it would be more natural to use the special cose £ =
of KurErA's problem (instead of the case & = 1) for the proof of Theorem
4 hut we did not succeed in doing this,

& 4. Results anil problems related to the special partition problem of § 2.

Dermrrion 4.1, The ordered pair 6% = {g,G*> 18 said to be a divected
graph if (/% is & subset of ¢ X g not containing pairs of the form Qz' . g%
15 a directed graph, we denote by & the corresponding graph {g, €77 where
= {{x y}:for which Jxy) € G or (yad € G"}. We assume that the
reader is familiar with the concept of directed path.

We put Chr({&*) = Chr{g).

Note that if £ isa graph and < isan ordering of g, we can associate to
it & directed graph ¢i* by the stipulation {xy> € G*iff {x, ¥} ¢ Fandz < w.
We need the following

LEmMa 3, Let &% = (b, H) be a set-system where H consists of sets of
at least two elements. Let 2¥7, & << « be a sequence of sub-set systems of
S forming an “edge-partition’ nfﬁf“' ey =hforé<<wand H = |J H,.

Assume further that Chr (S¥) < e, for E < . Then L

Chr(Z) .':;'-eﬂ te.




a0 P. ERTHIS mad A, HAJNAL

Lemma 3 is well known and it is an obvious corollary of the definition.
We omit the proof.
We will use

Lumya 4, (Theorem of Garrat [11]) Let &* be a divected graph, & an in
teger = 1. If ¢7* does not contain a directed path of length & then Chr (£*)
< k.

We prove

TuroreyM 5. Let 6% be a directed graph, v a cardinal > 1 (finite or infinite).
Let © be an infeger. Assume Chr{@®*) > & and let Y= (g, GE), E<y
he an edge-partition. of &%, 1.6

G* = U G}

£y

Then at least one of the graphs % containe a directed path of length 1.
If v is infinite then one of the graphs g% contains a directed path of
Length 1 for every i << .

Proor. There is a directed praph &% with chromatic number = €, {(or
with chromatiec number = 2" if ¥ > w). For if ot then by Lemma 3

Chr{@*) <" or Chr{@g*) < I 29 =27,
foyp

respectively. Hence by Lemma 4 this % containg a directed path of length
i or g directed path of length i for every i < o, respectively.

Fasy examples show (see e.g. the graph defined in [13] that it is no longer
true even for y = o that one of the graphs £ contains an infinite directed
path. Tt iz also easy to see (e.g. by induction on y) that for finite ¢ the num-
ber ¥ ia best possible. We omit the easy proof.

It is obvious by the remark made after the Definition 4.1. that Theorem
5 is u generalization of ease & = 2 of Theorem 1, sinee the chromatic number
of a complete graph is equal to its cardinality. Thus in this case the proof of
Theorem 5 gives a simple proof of the positive part of Theorem 1 not refer-
ring to the involved argument of [12]. A corresponding generalization of
Theorem § for uniform set-systems of »(H) = 8 is no longer true. We will
rive a very strong counterexample in our Theorem 7.

First we prove a theorem which will serve as o lemma in the proof of
Thearem 7.

TreoREM 6. Assume GO H. Let o = o be regular and let & = g, G be a
graph with o 6l) = at satisfying the following condilion.

(1) For every A, B g |A| ==, |Bl=a* there cxist ac A, he B
such that {a, &} € 6.

Assume further that t is an integer and A, i <t and B are subsetz of g
such that [A;] =« for i <t and |B| =«

Then there exist subsets A} C A, fori <t and B' = B such that |A}| =«
for i <<t and | B'| = x satisfying the following condition.,
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(2) For every a ¢ rU A the et
<t

lbe B {a, b} $ G}
hira eardinal less than =5,
One can prove Theorem 6 with a ramification argument {requently applied
in [8]. However, here we need a very simple and special form of it and it
geems to be worth to give it in details.

Proor. We may assume that the 4; are disjoint,

Let f; €*%24; be a one-to-one mapping of @ xx onto A, for ¢ < £

Pat {filf, Nlnece = Ay for + <t §<a Then |A;gl =a for & <a.

Put € p = ?ﬁ € B: there is an 5 < « for which {f(& 5)b} € G}. By (1)
we have
(3) |B—Cg < a* for every & < a and i < ¢ otherwise

‘Id*:: & B—C\ ¢ do not satisfy (1).

t

G = ﬂ ﬂ C,_t
Eow det
By (3) we have
(4) |C|=at
We may assume that for every £ <z and for every i <t {O}F}, - is
n disjoint partition of ' (], ; such that
(%) (6.} B} €Q  for every BECH 5 <a.

Henee

= N nuoek.

f<m |t gam

Applying the distributive law we obtain

L] 0= 1 D' .
oé %a
where
ﬂ'T ﬁ ﬂ ﬂ:’f‘-ﬂ'
) =5 1=t
Put briefly
Dy= 11N C:"{;i.!}
- It
for every

chU ixkey, Diy) =i ¢,
(1) Put Oy = {x€C: there is a quEEU taig zeD,, |D;| <at}.

Congidering that by G.C.H. and x being regular, ]IU”"‘u| <z we have
<
|G| <=.
It follows from (4) that there is an element x of C—(),.

* This should bo compared with the results and bilems stnted for polarized par-
titions in [8] especinlly with Theorem 43 and ﬁnhml;l 12, Ne a2
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Then by (6) and (7} x € D, forsome ¢ €*2aand | Dy | =«* forevery { < a.
It results that there exists a one-to-one sequence {b )rea satisfying

(8) b €D, for {<a.

Put B" = {b;}.., and 4} = {f‘[E. (i, }} £ < a}). Then |B'| = & since
he is one-to- Unfuﬁ | =& for i < f since f; is one-to-one. Let a € 4] for
sOme ¢ -c:: t then @ = f;[.,' i, E]) for some & = = Assume § > & Then by
(8) e henee by (6) b, € Cyf

’hriluwﬂ From (5) that then {r:s f;;_} £ (7. Thus (2} iz fulfilled and the then-
rem ig proved. :

Remark. It is easy to see from the proof that Theorem 6 remains true if #
is replaced by any cardinal 3 < &, but we do not need this in this paper.

DerrstTIoN 4.2, Let g be an ordered set, and let < be an ordering of .
In what follows if we write some X £ F[g] mithe form {2, ..o B2,
we always assume x, < ... <@, We will say that X, ¥ ¢ .9?,[;;] are
in stmilar position if « ¢ XY implies o =2, a =y, for some § <

1t was shown by E. MiLxer (personal communieation) that for every
% = w there exists a uniform set-system 2% = (h, H) with =(lf) = 4,

2(#)=a* such that ¥ does not contain an increasing path of length 2.
and every &' < A, |k'| = a* contains a triplet of H. As a corollary of this
last statement we have Chr (&) = ot,

Using his idea we prove Theorem 7.

Turorem 7. dssume G.C.H. Let b < wand x > o, » reg;mﬁur.

There exists o uniform sel-system % = {xt, H) with =(H) = k with the
natural ordering <= of the ordinaly < ot satisfying the follmeing conditions
L., 2, 3.

1. For each h' Cat, |h'| =xtthereisan X ¢ H, X={&,, ..., §—}such
that & € k' for i < k. As a corollary of this

chrl:r:??’! =-1|:-:i¥d_:| =gt

2, If X,Y € H have at least two elements in common then they are in the same
position.

3. If X _Z{Ew Lo h ¥ ={gp - ampi b e X =¥ ond Ep-y = My
thew X (Y Y =81}

Proor. By the assumption that G.C.H. holds, #[z*] has cardinal =*.
.Put: -.';"':[-I*L] = S.

(1) Let - € =*S be a one-to-one mapping of &+ onto the set 8.

Put

(2) B = {108, C Eand [ < E}for & < o*.Then |8 < cford <a”

(8) For every &< a¥ let {A{},_. be & sequence of type o containing all
the elements of the set S,

FkE - ) 1
(4] Letfe [gJ be a one-to-one mapping of the set #[k] onto the inte:

ger (2] We briefly write f(i, j) = f({i, 7}) for i <j < k. As a corollary ol
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Theorem 17/A of [8] there exists a disjoint partition F[xt]= Uk r
of type lil of the set -9-ﬂac+] satisfying the following condition. 1<(%)

() If B, 0 Cet, |B = |C] =« then for every [ <= ; there exiai

£y & < at such that &, € B, & € C and {&, &} el

First we define a uniform set system " = <x¥, H'> with =(H') =k
by the following stipulation.

(6) Let X = {&,,.. ., & _} € HA[e* ] Then Xe H'iff forevery ¢ <= < &
& £} €4y, where { = [, j).

Now we are going to define the uniform set-system =¥ = (a*, H) with

i (H) = & by the following stipulations.

(7) Let £ < x* be fixed. We will define the set H; of those elements X =
= {Eo v Bof oE H for 'which &, = &

We defineg H; ns a sequence {X ), <vg of elements of SJe*], where
XoH={tF, ..., 601}y and ¢ <

RVE tleilue the sequence by transfinite mdu-:-imn on 5" as follows.

Assume 5’ < o a.m.l X:. is defined for every ' < g'.

[f there exists an y -f;: % == = such that there iz an X € F[at], X =

= {&4. .+, £4—} satisfying the conditions

[ T }C AL X Xi. = {E} for g’ < g', X €5 then
let n b the least nrrlmul of this kind and ]ttX‘ be & &-tuple SELI:IBFHIHL_ (8]
with this 1.

If no such » exists we put 5’ — ¢ and X} will not be detined.

We put He = {X}scqp and H = U+H£, A =t

21

We will prove that S~ satfisties the requirements of our theorem. It is
obvious that =(5#") = «*. By the definition of & given i (7) and (8) ¥
ohviously satisfies requirement 3. of the theorem, We will now show that
even S gatisfies the second requirement.

(0) Assume X =X, € H and |X [ X,|>2 Leta,b a<:bbetwo elements
of Xo N Xy B X,—=80 008y = {8, gl thenig = £ =
= &, b= &, = §, for some §, < jy iy < j;. We_have to prove i, =i,
Jo =1

In fret by (5) there is exactly one { < ‘k] auch that {s, b} £, By defini-

tion {b] we have f(i,, j.) = fii;. 7)) = L f being one-to-one, by (4), we have
g =4y Jo =

(.ﬂnmdﬁrmé? that &% < . (9) implies that Condition 2 of our theorem
is fulfilled.

We briefly write 4 < Bior 4, B<atifE<npforeveey F€ A,y B
Now we prove

(10) Let A C a*, [4] = «* and let { be an integer 1 < ¢ =~ & — 1. There
exigtsots A, ¢ << ftsuchthat 4, c 4,4, = ... <4, |d]l=afor ¢ <
which satisty the condition:

(11) For ench § < j <t and for every @ € d; the set {h: b €4, and
{f:ﬂ,, b} E I-FUJ}} hil.l"‘ ﬂu.rdina.l < 0,
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We prove (10) by induction on f. For £ = 1 the statement is trivial, As-

sume ¢ == 1, and let the set 4, . . ., 4{_, satisfy the requirements of (10) for
t—1. |JE‘-1.'- Bbﬂnaetfl, s =< B, |Bl=at*, B C A, Let = (g, @ where
g=Agl) ... 4i_.l) Band {a, b}n{f}lﬁ'ﬂ. €d,be Band{a b} ¢ Iy, g

Applymg Theorem 6 for £, A} and B, we obtain sets 4, A} fori < t—1
andaset B B.Put B'= 4, ,. A,,-a- < ¢ ohviously sat.lsf]; the require-
ments, Now we prove that 5% satisfies the first requirement of the theorem,

Let 4 Sat, |A| =t

Let A, i < & — 1 be sets satisfying (10) with ¢ =k — 1. Let £ € 4 and
put

{lﬂ} BEI.E == {12 £ -f'l[; {'E, E} e Ifﬁ.k—l] for i<k — 1}

Let A' = {£ € 4 : |Byy = a for every i << & — 1}.
We prove

(13) | 4’| = a*,

If [4'] < =* then there is a &, < a* such that for every §, < &< a*,
§ £ A there is an i(&) < k& — 1 for which |Bj; ;| < 2. Hence there is an

P L A" =gtandand < & — 1such t!u.t |Bigl < = forevery £ed”
Using .C.H. and that = iz regular then there mua.t a Bc A, and an
At g, |4 = such that B — B, forevery £ £ A’ But then by

(12) the sets 4; — B and A" do not satisty (5) for Ir with § = fli.k —1).
Henee (13) is true.

Lt now D — _t %Jflf Then |I = a, henge D _L:f for some < gt

=

where «# ia the well ordering given in (1), hence il 4, _, = {&} then by (2)
and (3) D = /J., for some n < =

By (13) there is an A,_, < {§}, £ € A' (hence & € A). But briefly B,
BiEﬁ}l‘i'ﬂ.k 1TJIEH|H,.—GC Brr-_ ‘;Ifﬂr%{:L—!

Pirst we prove that there is a sequence Z, = {{§, ..., (i 1 g of type 2
of elements of ¥’ such that £§_, = £ for every g < =, ﬁ € Bifori <k — 1
and the sequence Z, = {{§, ..., £f_.} iz disjointed.

We define Z] by induetion on p. Assume that Z) & defined for every
g' < pforsome ¢ < = Put 0;, = B, — U Zy.Then |€, | = efori < k—1.

g
We define Zi = {21}, by induction on t as follows. Assume (% is defined
for every j < i for some i < k — 2, Then considering that |C;,| == it
follows from (10) and (11) that there is a 1§ € €}, such that {7, {9} € I;,;,,,;.
for every j << i. Thus {£$} is defined fori < & — L. Put Z; = {£b ... C%

Considering (12) it follows from the construction that z € .:?f"‘* fm' oy e:;v.r
o< o

Now we prove that there is an %’ < 5 such that Xj = {§7, ..., & ,}
wnd Ef € A: for i <k — 1.

If this is not true for nny -rr;.l ' << ¢ then there i i 8 g < such that Z is
dlﬂ]ou‘lt from each X3- for ' = o hence p» =mn'" is the minimal urdmn.l
== n' satisfying (8) hence the statement ig true by definition (7).

Considering that £ € 4 & € B, € A fori < & — 1it followa that X;' e H,
X;-© A hence ¥ satisfies the first requirement of our theorem as well.
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Eesmarks. 1. Both Theorem 6 and Theorem 7 remain true for singular =
as well. In case of Theorem 6 the proof can be carried out by improving the
given proof using the idea of the proof of Theorem 38 of [8]. In ease of Theo-
rem 7 the regularity of & was used only in reference to Theorem 6 and in
the proof of (13), where in case of singular =, Theorem 34 of [8] can be
apphied. Several problems arise if we replace 2% with a limit number. We
omit the discussion of them.

2. Both proofs make use of G.C.H. heavily. This seems to be natural in
case of Theorem 6. On the other hand, one can hope that it can be avoided
in the proof of Theorem 7, at least in some special cases,

This problem remains open even for &« = o,

3. Theorem 7 is hest possible of its kind as is shown by the following asser-
tiona.

4.1. Let & = (b H> be a uniform set system with =(H) =& > 2 and
let < be an ordering of 4. Assume that for X = {z,, ..., 5.3}, ¥ = {u,,

vor Yo—i) € H xp = w) for gome fixed 4 = § << k. Then Chr (=#) = 2. As
a corollary of this if [X [ Y| > 1, X, ¥ € H implies that X and ¥ are in
the same position then Chr(=F) < 2.

Proor. Put iy = {a c h:a = %, for any X € H}
hy= {@ € kg x for any X € H}.

Then & = bk, and Hik), Hik;) are empty.

4.2 Let a%"’ = <, H ) be o uniform set-system with - (H) = 3. If there -.ll'l*
0o X =5 oo Fbth ¥ =10 lli—q ] EH with oy = 3 for ¢ =T & —
then Chr (¥ <C w. 4.2, is a corollary of Theorem 12.1 of [6].

Theorem T shows that if # is a uniform set system with =(H)= 3 with a
miven ordering < of A, the fact that ¥ does not contain an inereasing path
of length 2 does not give a bound for the chromatic number of #°. However,
this fact can be proved without using G.CH. That is why we state sep-
arately the following

Tanorus 8. (Mioxes). For every o = o there exists a wniform set-zysle m
K = dat, H) of x(H) = 3 with the natwral ordeving of the ordinals < x*
sueh that

1. ¥ does not conttin an increasing path of length 2

2, EBeery A C o', 4| =2 conduins an element of H as o subset,

We enly outline the rroor. As a eorollary of Theorem 7 of [8] we have
gt = (o, &) i, there is a graph @ = {xt, @) satistving the conditions

(B dear, |4 —uc* then £(A4) is not complete

(2) if A Cat, |A| =a* then €(4) has an edge.

We define the set system as follows. Let X — {Eu- £, £.3 be an arbitrary
element of Fzt] X € H iff {&, &} e@, {£, & &6, # obvicusly
satisfies requirement 1. Let A C a', |4] = a*. Then there are a &, € 4,
A' € A, |4 = such that {&, &} < @ for every £ ¢ A’ for if not then
(2) 18 obviously false.

We may assume {£,} << A", On the other hand by (1) there are §, < &,
such that &, £, € A%, {& &} ¢ &. Hence 2 is fulfilled as well,
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Note that interesting new phenomena arise if we investigate the possible
generalizations of Theorems 7 and 8 for & > 3, in case we replace the cardi-
nal &% by a limit cardinal #. Both theorems are false if f¢ 0, ie. if § —
(. §)* holds,

Theorem 8 remains true for every § € £, ie. if § 4 (f#, #)* holds. We do
not know if the same is true for Theorem 7 for strongly maccessible s,
even if we only require eonditions 1 and 2.

Assuming G.C.H. we can discusa the case of other @’s where of(8) is not
inaccessible using the methods of [8]. We preserve the details for a later
publication.

Another problem arises in connection with the negative part of Theorem 1.
One could hope that if % is a set ordered by a relation =<, 3 == w and
| = expy. g () then there exists a b-partition H., & = v of type » of k such
that the set systems & ¢ not only do not contain inereasing paths of length
2, but satisfy some stronger restrictions as those imposed on 2% in Theorem
7. For k=2 conditions 2, 3 are net really stronger. It is obvious that for >3
the 2#, 's cannot satisfy condition 3 of Theorem 7 even if |4 = y*. Hence
the real problem is if there is a sequence satisfyving condition 2 of Theorem 7.
This remains unsolved even in the blowing simplest case,

ProBrEM 5. Let & = =, with the natural ordering of ordinals, expy(w) < «
< expyler), Does there exist n 3-partition <7, & < @ of type @ of 4 such
that for every f <o X, Y e, | XN Y| = 2 imply that X and ¥ are in the
mame position ?

Ruxmarg, It is easy to see that if & — exp,(w) then suel 3-partition really
exists, sines by Theorem 1 there exigte o 2-partition &, n << o of « such that
{1, does not contain an inereasing path of length 2. But then S ., sy,
ny My Wy < o defined by the stipulation X = {&, &, &} € Hynany 1
&1 &1} € Onyy {& &} € Gy and {§; &) € G, satisfies the requirement.

We mention some other special problems which arose in connection with
Theorems 6, 7, 8, We only formulate the simplest unsolved forms of them,

Similarly,as in the proof of Theorem 8 it is easy to see that the following
ugsertion is true,

4.3. Let &,,4,, €, be a disjoint 2-partition of @, satisfying the require-
ment;

(x) Whenever 4, B S w,, |4| = |B| = @, then for every ¢ <= 3 there is
a & nt € G such that £ ¢ 4,y £ B,

Then there is an X € Flw,] such that
ST NG == 0 for every ¢ < 3.

On the other hand,using the ideas of the proofs of Theorems 6 and 7 one
van easily see that the following assertion is true,

1.4. Let ¢l,. ¢, &, be a disjoint 2-partition of w, satisfying the condition

() Whenever 4, BC ay |4| =, |B| =@;; then for ¢ < 3 there are
£e A,y e Besuch that {& n}e Gy

Then for every A ¢ #B13 there is an X € H[w,] X = {&,, &, &} such
that {&, &} = Ga(i,yp for every 1 < j < 3. We cannot solve the following
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Proprem 6. (A) Is 4.4 true under the weaker condition (z) of 4.3 instead
of () of 4.47

{B) Are 4.3 or 4.4 true under the wealeer condition

(1) For every 4 € oy, |4| = 0, &,(A) has edgeaford =), 1, 2.

Note that we cannot prove the existence of a partition satisfying (=), (8)
or (3} without using the continuum hypothesis, See the remark made after
the proof of Theorem 9 in [9].

We mention a problem of different type. Theorem 7 implies (using G.C.H.)
that there is a uniform set-system - — <, H> with »(H) =23 such that

(1) Chr (H) = w, e
(2) A" Cw |A=n <o for some b’ then |H{A') < = + a{#n).

ProernEM 7. Does the above statement remain troe ander the gtronger

1
condition [H{A"Y < o(n®) or even en® where ¢ < — 1
4

Note that there is o uniform set-system =% = {w H 3 with 2{H) = 8 such
that Chr{s#) =@ and satislying the condition &' C w, |§'| = a 1mplies
that |H{k')| < n. f(n} where f(n) is a function tending to infinity as slowly

a& we please:

Finally we mention a problem of finite type connected to Theorem 2.
By Ramsiy’s theorem we know that for every g, £, I there is a least integer
m = m(i, ¢, &) such that for every m' > m and for every &-partition %" .
E < tof type t of m' there is a £ < ¢ such that &, contains an increasing
path ef length 4. Theorem & implies m(i, ¢, 2) =,

PropnEM 8. mii, £, k) = ! for & > 3.

REFERENCES

[1] Erpds, P, and Haswar, A.: On a property of families of sets, dete Math, Acad.
Med, Hungar, 12 (1861) 837 —1238.

[2] Kimsren, H, J. and Tamsgr, A From Accessible to inaccessible vardinals,
Fuongd, Math, 53 (1964) 225307,

[3] Harwar, A.: Un the topological product of diserete spaces, Noliees Amer,
Muth. See. 11 {1964) 578,

[4] Murovra 8.: We cannot give the exact reference,

[6] Myommr=mt, J.: e-incompastness of N7, Bull, Aeqd. Polon, Sed. Sedve. Sei. Math,
Astronom. Phys. 12 (1964) 437 —438,

[6] Erpfs, P. and Harxan, A On chromatic number of graphs and set-systema,
Acte Math, dvad, Sei, Hungay. 17 {1966) 61—89.

[71 Tamsrr, A SBur les elasses d'epsembles closes par rapport & certeines opérations
élimentaires, Fund. Math, 16 (1030) 181 —304.

[#] Exnds, P., Haswan, A. and Rade, B.: Partition relations for eardinals, Adeta
Math. Avad, Sei, Hurgor, 16 (1965) 93— 196,

[ 4] Em{ﬁ?ﬁ?.llgfﬁ%Lj A.: Bome remarks on set theory IX, Méckigun Math, J. 11

; i) — L&
[10] pe Bruow, N, (. and Ernds, P.: A eolour problem for infinite graphs sand a

prablem in the theory of relations, Daday, Math, 13 (1851) 371 —373.

7 Graph



98 P, HRODE unil & HAFNAL

[11] Garrar, T.: On direeped paths and eivenits (This book) 115117,

{12] Erpds, P. und Rapo, R.: A partition celeulus in set theory, Ball, deerl Meath.
Spe. 02 (1960) 427489,

[13] Ernds, P. and Harsar, A.: On the décomposition of graphs, deta Math. Avad.
Hed, Hungow. (1o appear.)




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

