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On the divisibility properties of sequences of integers (II)
by

P. Brpos, A, Sirkozt and B. Szeyveredr (Budapest)

Let a, < ... be a sequence of integers, we will denote it by 4. Pnt
A(x) = M1 and denote
ﬂ!i{_.ﬂ
flo) = 1.

oy
i
- ".fr!

In [1] we proved that if A4 has positive upper logarithmic density
then for infinitely many « (logpe denotes the k-fold iterated logarithm,
expz =€)

f(r) = wexp(e, (logy)'*log,x)
but there exists a sequence A4 of positive density for which for every @«

fla) < wexp ey (logar) P logyr).

Throughout this paper ¢, ¢, ... will denote positive constants, not
necessarily the same at each occurrence. lim inf [A (#)/z] will be called
=00

the lower density of the sequence -1, 4 will denote numbers which can
be chosen arbitrarily small not necessarily the same at each oceurrence,
'\, ... numbers which can be chosen arbitrarily large.
A natural question now  was: What assmmptions about L will
insure that
fl)

(1) lim *— = —=oo

f=tta @
should hold?

It is easy to see that (1) does not have to hold if we assame that the
logarithmie density of A is positive. Tt was stated in [1] that if .4 has
positive density then (1) holds. 1t will turn out that the speed with which
flx)e tends to infinity depends in a cnrious way on the density of onr
sequence ol In fact we shall prove the following

Tiwores 1. Let & be any integer and V/(E+1) <« = 1k Then there
is a ey = o (a) so that if the sequence A las lower densilyy athen for all suffi-
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ciently large @
(2) flr) = rexp (e, (log, IJ'}lf",lng;l. ; l!] ;

I't ix rather surprising that this weird Theorem is nearly best possible.
Treones 20 Let 1/(k--1) < a << 1/k. Then there is a sequence of
density o and a constant ¢, = e,(a) satisfying
(3) lim iuff[.r}_(.rox.p(rz{ln;z,.. @) P logy. }]
¢y = cyla) tends to O if a —1)/(k4+1) and I is greater than 1.
Let finally a = 1/k and ¢(x) any function tending to infinity as slowly
as ave please. Then there exists a sequence of density 1[k for which

(3') lim inff(u {rt*\p(q{ Y(loge, x) ' log, :.-;-r” 1—o.

Denote by L(a) the upper limit of the values of ¢, for which (2)
holds. Clearly for every ¢, = L(a) (3) holds. Tt would be of interest to
determine L(a) explicitly and to decide whether (2) or (3) holds for
¢, = L{a). Tt seems possible that L(a) tends to infinity as « tends to 1/k.
We already know hnm Theorem 2 that L(a) tends to 0 if « tends
to 1/(k-+1) and %k = 1. We can only prove that L(«) tends to infinity
if w—1.

O2(n) will denote the number of prime factors of » multiple factors
counted multiply and £;(») will denote the number of prime factors not
exceeding [ (multiple factors counted multiply). To prove Theorem 1
we need some lemmas,

LEnMA 1. To every o = O there is a €', = C(n) so that for every 1 —
the wumber of integers n <@ for which

Qy(n)—log,l| < C,(log,1)'*
is less than .
Lemma 1 can be proved easily by the method of Turan [5]. In fact

it is easy to see that as [ oo (£2;(n)—log,l)/(log,1)'* approaches the
ussian distribution (see [2]).

LevMa 2. Let 1 < C(logloge)'™. Then we have uniformly in x

3 = (L+0(1))(logx)'I!.

(-1

The proot of Lemma 2 is easy by complete induction with respect
to 1 [4]
Using Lemmas 1 and 2 we now prove the crucial and difficult
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LEMMA 3. Let d < 1, 0 << d be arbitrary wwmbers, n'* < m < n < r
depend on a parawmeter » and satisfy

i n\" ”
(1) = OO, (h};-_‘,‘- ) - )

N T "

Let further m <= by << ... < by = n be an wrbitrary sequenee B of in-
tegers for which for every  there is a €, = 1[y so that for every €', m <1 << n
(B(ty = N 1,0, depends only on )

hJ =1

{:l;] H(f} T ((I—?‘r]f.
Dewote by g () the wumber of O's dividing u. Then there is an o = (0, d)
so that the wwmber of integers n << w < v for awhich

H H
(6) g(u) = L,x];(f-'-’(]ug__, ) _) log, - _)

(s e

is greater than (d—2o)r. Further for every fixed d, as dtendsto d, o0 = (0, d)
can he made as large as we please. In other words for every € there is
w0y = 0 (', ) so that for every o, << 0 << d (6) holds with o = (.

To prove Lemma 3 denote by by ,...,b: the b’s satisfying

_ . 0ol n\'"?
{‘_} '(")Jr'ﬁt(b::}_l{’g‘.’_ < (,I l“g'l_ N
' " L
By Lemma 1 and (5) we have
(8) B*(t) = (d—2u)t

for every Cym <t << .
Let now p = y(d,d) be a number which will be determined later.
Put

- 12
() = |y(lug;r2 ”-) ]
B "

and consider the integers of the form bj¢, ¢ = 1,..., v, where ¢ runs
through all the integers satisfying

_ r r
10 0 =k, — el L
(10) (@) ' " 1 Oy

Denote by ¢*(#) the number of solutions of bj ¢ = u where ¢ satis-
fies (10). Clearly

(11) g(u) = g* (u),

so that to prove our lemma it will suffice to show that g* () satisfies (6)
for at least (d—d)r integers n << u < r.
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T o . * .
Now we estimate from below 3 g"(u), or in other words we
T

estimate from below the number of integers of the form hfq where ¢
satisfies (10). Let ¢ be a fixed integer satisfying (10). By (8) and (10)
we have since rfn — oo

(12) B*(i) B (3’-) = (@d—2n) - — "= (@—3p)-.
q g ¢ g

From (12) we evidently have (in E' g satisfies (10))

(13) Z’ 4 (3) = l (B"‘ (’) -—H*(-fi—)) > (d—:sa;)-;-_/\j 1

e 1 : 1

Now by Lemma 2 we have from (4) by a simple computation

v 1 —~ 1 1 ro\F 3
(14) \ — = =_ ¥ > (1— a;}(lngi- — [k —2log :
i q q 1 T (Oym !

Ha=k = "

< o n

"

k
52 (1—‘.3.!})(!0@_'2— ) k!,
| i
From (13) and (14) we finally obtain

&
i

15 N o) > rd(1—5 0g, k.

(15) 2, g (u) - { H;} log, : ,f

e r
Now we estimate max ¢* () from above, in other words we esti-

(R P

mate from above the number of solutions of

(16) big =
i e . ; T ;
where u satisties (10). Clearly (16) has at most i solutions where

T = 0, .(n) and k& iz defined by (9). Further by (16)

y 12
: . . " i !
-f-—}nl-mf”) = ...?“_,-,,,{b*}—: !-}n;'m((” = ‘FVI]U:{-{;J_’ _I"{rl(h’g: r) = L
‘

or by a simple computation using (9)

17 ¢ (j L ity Y
; g (u) < < <1+ Ry '
4 : :’.-) ! ( 0 ) !
. log,
v !
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Write
(1%) 2 g =Y g+ Y gt

where in __SI the summation is extended over the n < w < r satisfying

;I.

'
(149) g () < r;{i(ltlgg—L) J!l=1U

h
and in Y the opposite inequality holds. Clearly Ely*(u) = rl’. Thus
fronm (15) and (18)

% 'JI.
—y "

(20) \ g () = dr(1 - (iq)(h:g._, ) [k,

—2 M

From (17) and (20) we obtain that the number of summands in
N g7 (u) is greater than

A

\ i 1i2
('] T v — (.lugj 1 |

(213 dr(1—Ga) |1 — V.

fence finally from (21), (1%) and (11) there arve at least 17 = V(yp)
integers < o << satistying

(22 glu)y =17,
Now since y is at our disposal we can immediately obtain from (22)
the statements of Lemmma 3. 1f y = o (d, 9) is small enough then clearly

Vo r(d—o) (if o = y(d, o) is sufficiently small) and by a simple com-
putation for a suitable o = w(y)

' T "
[" = cexplm (I“L’Ja - ) logy —-
it

"

(the factor 4 of {7 causes no trouble since 5 = 5 (0, d) is fixed and u/n
tends to infinity). Thus (6) holds for (d— d)r integers, as stated.
On the other hand for an arbitravily large o there is a 3 = y(m)

F
w2 i
U7 = explm (lnrr ) log
= 52 53
o i

aid for this value of 3 a simple computation gives (¢ = &(y))

so that

V = et = (d— &),

if & = d—e Thus the second statement of Lemma 3 is also proved.
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[nstead of assuming (1) we could prove our lemma by assuming
rin = M(d,d) and n/m > M{(0,d)yexp(r/n)'® but our computations
would be more complicated and Lemma 3 suffices for our purpose in
its present form.

Perhaps a more interesting question is to what extent can the condi-
tion (Ing :::) = r[n be relaxed. It seems to us that the best possible con-
dition for the truth of our lemma is that »#/m and r/n tend to infinity so
that for every fixed & eventually n/m = (r/n)" but we have not worked
out the details of the proof.

Now we are ready to prove Theorem 1. Assnme first 1/(k-+1) < a < 1/L.
We shall prove that (2) holds for a suitable ¢, = ¢, () and all sufficiently
large w. Put o < [a—1/(k+1)]/3 and let ¢, = ¢,(5) be a snitable constant.

Put

1/2 €

EE T S = - P =1,...,k—1,
B =8 exp (e; (log; ) log; o)’ Firme :

o
P =

2 == Ppyy = .
logy. x

Now we define inductively the sequences A;, 4 = 1....,k+1 (the
sequences A, depend on ¢ but sinee there is no danger of misunderstanding
we do not indicate the dependence on x). A, is the sequence of a’s belong-
ing to the interval (xg, ), in other words: teA, if and only if v, = 1 = =,
and fe.l, Assume that for ¢ < j << k-1 the sequence A; bas already been
defined. The A; is defined as follows: A; — Ao AP where 1A} if
and only it »; | <1< @ and ted, teA if and only if w; | <1 <
and ¢ has at least

(24) exp (2¢, (log;x) log;  x) = T;

divisors amongst the 4; . Now we prove

LuvnvA 4. Every integer 1e AP, 2 < j < k-1, has at least T; divisors
amongst the a’s (de. amongst the members of the sequence A).

The lemma is obvious for j — 2 and follows by a simple induction
argument for j > 2. Assume that it holds for j—1 and we will prove it
for j. Let teAY). By (24) ¢ has at least 7; divisors amongst 4; | — A, ©
w A . Assume that ¢ has D divisors in AV, these divisors are a’s in
(w; gyay y). I D = 1T; our lemma is proved. If D < 1 our ¢ is divisible
by at least one #'eA®, which by our induction assumption is divisible
by at least T | =1, a’s, hence Lemma 1 is proved.

Now we show that (2) holds for sufficiently small ¢, = ¢, (a, ) if
¥ = wy(ey). Assume first that for some 2 = j < k-+1 (|S| denotes the
number ol elements of the set N)

_— 1 £102)) —
(.30) |Al[,] ™ {i.]| = I .



Divisibility of sequences of integers (I1) i

(25) immediately implies (2). To see this observe that by A < 4
(20) implies

26) 4 ~ AP = x5,
(26), (24) and Lemma 1 clearly implies for j < i
flr) = T4 ~ AP =y exp(2e,(log;x) *log; )
— wexp(e(log;z)Plog; &) = wexp(e(logg ,x)*log, )

which proves (2) for j — k. For j = k-+1 (25) implies (2) by a simple
computation which we leave to the reader.

Ilenceforth we can thus assume that for every 2 - j =~k 1 and
all safficiently large »
(27) AP ~ AP < w4

We shall show that (27) leads to a contradiction, and this will complete
the proof of (2).
From (27) we deduce that for every 1 <7 j < k-1 and every y =0

(28) wp_ilogr. v <<z <y,

(29) A;(2) > zj(a—3n)

it ¢, = (y) is sufficiently small and @ = 2 (e;) is sufficiently large.

We prove (29) by induction with respect to j. First of all we remark
that (23) implies 2 loge @ <oy, (29) clearly holds for j = 1 since A
has lower density «. Assume that (29) holds for j—1, we will prove it
for j. We apply Lemuna 3 with m = u; ,loge je,n =0 ,r =2, B = 4; |.
From (23) we deduce by a simple caleulation that (4) is satisfied. By
a further simple computation we obtain from (23) that for sufficiently
large

. "
(30) log,—- > llog;x.
9

Now we can use (6) of Lemma 3. By our induction hypothesis (29)
holds for j—1 hence (5) holds with d = (j—1)(a— 3%) hence if we put
o =y we have by Lemma 3 if ¢ = ¢(y) is sufficiently small (use (6)
and (21))

(31)  AP2) = 2(j—1)e—3(—1)p—u) = 2((j—1D)a—(3j—2)9).
Ifurther since the lower density of 4 is «
(32) ANz) = 2(a+0(1)) = 2(a—y).
From (31), (32) and (27) we finally obtain for sufficiently large »
Ay (2) = AV + AP (2)— AP ~ AP > 2j(a—3y)

which completes the proof of (29).
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Now we show that (29) leads to a confradiction and this will complete
the proof of (2). Apply (289) with j — k-1, 2 = & = »;.,. We then obtain
from o << (a—1/(k4-1))/3, @ = Az (@) = (K1) (a—3y) > & an evident
contradiction. Thus (2) is proved.

It follows immediately from Lemma 35 that to every € there is an &
so that if .1 has density = 1-—¢ then

F(0) = wexp(C (logyr) Hlogy ).

We leave the simple proof to the reader. Thus as stated in the introduce-
tion, L(a) — oo as a — 1. Unfortunately we were unable to prove that
Li{a) o as a = 1/k if £ =1 (from below).

Now we prove Theorem 2. Assume 1/(k 1) <= a << 1/, b = 2. First
of all we show that there exists a sequence of density « for which (3)
holds for a suitable ¢, = e,(a). We will not give all the details but leave
some of the simple arguments to the reader.

Let o = y(a) be sufficiently small and let

(33) ¥,  i=1,2,..57i=1,2,..., k1,

be fi—1 disjoint sequences of primes so that for every j = 1,2, ..., k—1
the density of integers divisible by at least one of the p¥), ¢ = 1,2, ...
and none of the pi¥,d = 1,2, ... s <j is a

It i easy to see that such a sequence of primes exists. It suffices
to have for j =1,2,...,k—1

| Il L\ 1fa—j
(31) I’ f m)f o S
I Py 1/e—j+1

A simple argument then shows that any set of F—1 disjoint sequences
of primes satistying (341) also satisfies (33).

Now we are ready to construct our sequence 4 of density a satisfying
(3). Let @, — 10 and logpr, — x, ;. Assume that our sequence .1 has
been defined ap to x,. ;, we extend it up to &, as follows:

Let j =1,2,..., k—1. Put
@,

(35) ')‘1,."] =" -,'g‘g_” -

]Uﬂ';;!',

Let now a1 <1« ) ted if and only if pt for some ¢ but
pi At for every s < j and every i. This defines the sequence .4 up to
apflogg i, Clearly by (33) for every & < wflog, i, A(2) = (a-0(1))2
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Now we have to define the sequence A in (w,/log, ., 2.). Denote
v B the sequence of the integers in (o./logy 2, o) which are not di-
visible by any of the pi), i —1,2,...;1 < j < k—1. Clearly by (34) for
every xflog, . < T <o,

: 1 )
(56) B(z) = (1 —l—n(l))u = —!..'—'1) -
o
Determine now ¢ from the equation
1 & 1 1
(37) e ‘ e :(—--;’;-;-1) :
V2 4 o

Let now x,/logy. o, < t << w,. ted if and only if te B and (I = log;. )
{39") !»—),‘[!}_-}(]gﬁ'_l.l-ilp; <0 (’(]“g"ﬂi 1:}",)]"'2

I'rom (36), (37), (38) we easily obfain by the well known theorem
of Erdos and Kae [2], that for every z < @, (7)) = ar+o0(2). Thus the
indnetive definition of our sequence A is completed and our sequence A
clearly has density .

Now we show

(39) f(ry) < mpexp(es(logy,2,) " logy 4 x,).

Observe that if r{,,'av,ul_. ., then either a,, <" or for some

0<j<k—1, 2/ < a, <a, <2 or finally #* 9 < a, < a, < a,. Thus
- =y ! ! e A
‘- - - e Y | \
(10) fay = Y1 DI VT
(L gy o0y gy {tl

; i i i " i " = i

where in N oa, <ol =2, , in ¥l M <a, <a, <o for some
. . rer I i ke
J=1, 00 k=1 and in 3 af" 0 < 4, <6

< .. We evidently have

- 3 y
(11) 2, 1<z ) 1/t < 2alogoy | < 22,logy . @,
1y, 1@y tzay_q

Further (in MY ol Y < a, < a, < al)

) x, :
(42) L N 1< 2,
T 085 Ty i< Iog,.' 1y
Thus
(43) _V: 1 < 2ka,.
n‘f”'.r{x

Now we estimate M. Let zflog; o, < ¢, < x,. Then by (38)

Q) < log @+ ¢(logp,,0,)'"
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Tut

logy. &+ e(logrp, &) 2 =Ty, 2elogy a0, = T,.
Clearly for tixed «,. the number of #’s for which a,|a,, x./log, o, < a, < »,
is at most
AP -
= ( § ) < pexpley(logy.a,) logy 1)

(41) b

for a sunitable ¢, = e¢y(¢) = ey(a) (¢ by (37) is determined by «). Thus
from (1)

= S Ay i
(15) \ 1 < B PXP[_"'z(]‘]{-‘;J.'—;-L'f’a')l"}ll’g.&' cap)
e
T i

(10), (11), (13) and (45) clearly imply (39) and thus (3) is proved.

By the same method we can prove that (37) holds, to see this it suffices
to let in (38) ¢ tend to infinity sufficiently slowly depending on g(r).
We leave the details fo the reader.

To complete the proof of Theorem 2 we now bave to show that if
k=1 and « tends to 1/(k41) from above ¢, = ¢,(a) tends to 0. We will
only ountline the proof and leave some of the details to the reader.

More precisely we shall prove the following result: Let I = 1. To
every e there is a o so that for every 1/(k+1) < a < 1/(k-+ 1)~ 5 there
is a4 sequence oL of density o for which (3) holds with a ¢, = ¢ (a) < &

To prove this statement we define our sequence A in the interval
(rp s flog, ) just as previously, Thus the whole proof proceeds as
previously until (36). Determine now » from the equation

b —1
(46) - _.l_..- ' ey = (1- —?.'——l) :
Vorx _« f
Clearly as a tends to 1/(k-+1), 4 will tend to 0 from above.
Let now o flog, o, <t < e flograe,.. ted if and only if feB and
(I = logy_,»,)
(47) Qy(t) > logy . 2, — 1 (108, 2,) .

Let finally o /logpe, <<t < ».. Then ted if and only if fe/li and

(48) Q) < logpa,+ (loggr,)'*
From (16), (47) and (48) it follows by the thecrem of Erdos and
Kac [2] that A has density « (we use [ e Ryl = [ e ™ dr).
o~ - 4

Ax in the previous proof we easily obtain for onr sequence A (see
(40), (41). (42) and (43))

(49) flr) < Y1 O(xlogy @)

{t”_Hf.
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where in

B i S

.
Wy and
log;. ., log;..r,

————— < My < .
log.r,
Put
i 1/2 ' 5 RS TE N L
logk .yt + n(loge @) = T4, 2y(loge.,a)* = Ts.

We have as in (1) and (45)

v

?‘2 i’
- ik . W -'II' £ 1]
(H0) Z 1 < Z ( -r'l) < m,vxp(q (logp,i2.) Plogy s,
|ty i—=0 =

if 5 = 9(e) is sufficiently small. (49) and (50) clearly implies that (3)
holds with a ¢, << ¢ as stated. Thus the proof of Theorem 2 is complete.

Unfortunately we were unable to complete the proof in the case
k=1 (i.e. if a—1/2 from above) and in fact are uncertain if the vesult
continues to hold in this case.

For each # denote by I(x) the smallest integer & for which 1 < logpr
< e. It seems to us that by the methods of this paper we can obtain the
following results: Let a;, <~ a, < ... be a sequence of integers satisfyving
for a certain ¢ > 0 and all sufficiently large «

lx)"

Then f(x)/z — oco. On the other hand there exists a sequence a, < ...
satisfying for all large

A (i“) = {1 &)

and nevertheless liminf f(x)/z = 0.

We have not in fact worked out the proof of these theorems and
we can not be absolutely sure that they are correct.

The following result can be proved by the methods bf [1]. Let ¢ be
a sufficiently large constant and assume that the sequence A satisfies

: (li)gl{}g.rr)'f'2 — 1
limsup ——— Z Lo
Fe=r0 1 0gm a;

e
r’ii -

Then limsup f(x)/z = oo. Perhaps the following result holds: Assume
=00

that

. loglogx)'* 1
(51) litsup (Qoglog®)™ §v 1. = 0.
@ log.e 1

i
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Then limsupf(r)/r = oo, We proved that (51) implies that a;la; has
infinitely many solutions [3].
Put F(r) = N1 where the dash indicates that the summation

ity
[ Bt

is extended over those a;la; for which all prime factors of «;/a; are greater
than the greatest prime factor of «;. It is easy to see that there is a sequence
of positive density for which limint F(x)fr = 0 but for every such
=g
sequence
limsup F () /x(logloga)'* = 0.

=0
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