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ON SOME PROBLEMS OF A STATISTICAL
GROUP-THEORY. 11

By

P. ERDOS and P. TURAN (Budapest), members of the Academy

1. In the first paper of this series’ we showed that for almost all elements P
of the symmetric group S, of n letters (i.e. apart from at most o(n!) P’s) the order
O(P) of P satisfies the inequality

| 3
(1.1) ilogO(P) J} log?n| = w(m)log?n

if only w(n)—-== with . Hence log O(P) is for almost all P’s much less than its maxi-
mum, which is as LaNDAU ? proved, ~ Jnlogn. Though several questions in the
first paper were left to later papers of this series and we intend indeed to return to
them in paper 111, in this paper we launch another trend which seems to us equally
interesting in itself and perhaps even more inherent to the algebraic aspects. This
refers to the arithmetical structure of the order O(P). We assert the following
theorems.?

THEOREM 1. {f w(n)—== with n arbitrarily slowly then for almost all P’s the
order O(P) is divisible by all prime-powers not exceeding *

(1.2) 4 der log# {] , 3 logsn  w(n) }

logon | " 7 logsn logyn

As an immediate corollary of this theorem we remark that “almost no™ P’s
have a square-free order Q(P) and for arbitrarily large integer b the order O(P)
is for almost all P’s divisible by b.

How far is this Theorem I best-possible? We shall prove that replacing in (1. 2)
A, ] by [ + o) ] then only o(n!) P’s have this property. However
0g, # log, n :

we shall state this in a slightly stronger form as

the term [—

\ Zeitschr, fiir Wahrscheinlichkeitstheorie wnd verw. Gebiete, 4 (1965), pp. 175—186.

2 Handbuch der Lehre von der Verteilung der Primzahlen, 1909, Bd. 1. p. 222,

* The starting point of these investigations was the question of A. Scumnzer, whether or not
for almost all P's O(P) is even.

4 Throughout this paper log.n means v-times iterated logarithms.
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152 P, ERDOS AND P, TURAN

Tueorem 11 If @(n) — = arbitrarily slowly with n then for almost all P’s the
order O(P) is not divisible by some prime not exceeding

(1.3)

aer logn | logsn  w(n)
x g o 3
log,n log,n  log,n
For the sake of orientation we remark that for primes =¢log s much more
is true. We formulate the
Turorem 111, If' is fixed positive number and pg is any prime of form (2 4 o(1))log n
we have for the number b(n) of P’s with the property O(P) being not divisible by pq
the relation

1

(1.4) lim h(f} =g
n-res 1l

holds.

In particular if w(n) <= arbitrarily slowly with n and p,=e(n) log n, then for
almost all P’s O(P) is not divisible by pg.

2. What are the corresponding theorems for ““large”™ prime-factors of O(P)?
As to this we assert the

THEOREM 1V. If &(n) is positive and tends with 1[n to zero arbitrarily slowly,
then for almost all P's O(P) is not divisible by any prime
(2 l) — He—c{ﬂjfl.og_r:_ .

Again we shall prove that this theorem is essentially best possible by showing
that replacing in (2. 1) &(n) by 1/e(n) the situation completely changes. We assert
this fact as

THEOREM V. If w(n) tends to infinity with n whatever slowly then for almost all
P’s O(P) has a prime-factor
(2 2) - ne—w(n)]"ﬂi?_s_i;

From theorems IV and V one has the following somewhat surprising

COROLLARY. If e)(n) tends to = with n arbitrarily slowly then for almost all P's
Vlugn

1
the maximal prime-factor of O(P) is between ne=o®Vozn and pe ™

Further we proved that for an arbitrarily small ¢ =0 for almost all P’s the number
of prime-factors of O(P) (counting with or without multiplicity) is between
(1 +¢)logn-log, n. Since the proof does not differ essentially from that of Theorem
II, we shall not go into details.

As one can easily see from our subsequent proofs we laid no particular stress
to squeeze out sharpest possible laws. E.g. our proof for Theorem V would result
also that for almost all P’s O(P) has not only one but several prime-factors satisfying
(2.2). We could show that the number of P’s whose group-order O(P) is divisible
by all prime-powers not exceeding

logn [ logyn ¢

2 - ~ (¢ real)
log,n | log,n log,n
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. 11 153

divided by n! has a distribution function f(c) and the same holds for the number
of P’s whose order is not divisible by any prime greater than

e —¢“Viogn (¢ real).

Our theorems refer to the group §,
group A, of n letters too.

We call the attention also to Theorem VI in 8.

As the first of us remarked that by the same method as used in the proof of
Theorem I, combined with the sharpened form of the prime number theorem for
arithmetical progressions he can prove the following theorem. Let w(#n) — o= arbitrarily
slowly then for almost all integers m=n the Euler-function ¢(m) is divisible by all
primes not exceeding

; obviously the same holds for the alternating

na

log,n ) logyn w{n‘)_]
log,n logsn logyn

and @(m) has (1-+e(1)) 4 (log log n)* prime factors.

3. Next we turn to the proof of our theorems. We represent P uniquely as union
of disjoint cycles; let P consist of m, cycles of length #n,, m, cycles of length n,, ...
so that

(3. 1) Ny =Ny =..=<H, k=k(P)
3.2) n=mn, + myns+ ...+ oyn,.

The number of those P’s with presciibed &k, m,’s and n,’s is, as remarked by
Cauchy?®

n!
mymy! o w o e

(3.3)

It is well-known that
(3. 4) O(P)=[n,,ny, ..., m).

Let p* be an arbitrary prime-power =n and f(n, p*) be the number of P’s such
that O(P) is not divisible by p*. Then Theorem I will be any easy consequence of the

LemMmA L. For f(n, p*) we have the nice exact formula

S

n! P
For the prool we remark first that the left-side of (3. 5) is owing to (3. 3) nothing
else than the coefficient of z" in

; 1 & 1 ()
1 {”"n‘x- Ty [T] +}

® See e. g. J. RiorpaNs book An introduction to combinatorial analysis, New York, 1958.
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154 P. ERD(S AND P. TURAN

where the prime means that the product is to be extended to all v's divisible by the

(o — 1)th power of p at most. But this can be written for |z[ =1 as

1 1

}_(]—z"’")!’ l4z422 4 ...*zf”—’ .
a 1-z (1—2

]Z exp— = exp{é ZTI— 2

p*-1

=(l4z4+22423+ ... +2°-)(1—2F") 7P =

1 1 1 '
- e =2 _F_:_-_v*—l oy el W f mp*
aveserern e 3 (- L) 1) (1) - (-7

which proves the lemma at once.
For later use we remark that if p, ¢ are different primes and g(n, p, g) is the
number of P’s such that O(P) is divisible neither by p nor by ¢ then the same reasoning

gives that - g(n, p, ) equals the coeflicient of z" in the MacLaurin series of
n!

i L

(3.6) (=2 0= 60

(1—2)(1—zr9)ra.

, 1 . :
4. For the proof of Theorem I we estimate - f(n, p*) from above using Lemma I.
n!

This gives for p*=n

f(np)«exp“ > l}

NE '
n. - _[%] i)
4.1
log [ " ] log o
ST M i PR, | B i
= exp = = 3exp 7 |

Hence the number of P’s whose order is not divisible by a prime-power p* not ex-
ceeding 4 (in (1.2)) we get the upper bound °

n A
log ? Iog n] logn
dci E &
3 exp |— = ex { f { == ]d-"-
;,12' p P t p;4 P log x X
Since
logn 1 el
~ log,n P4 log,n A w(n) :
log,n ' 2log,n

S ¢y, €2, ... denote positive numerical constants,
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ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY. I 155

we have
A

{4.2) S = czf lolgx exp {— lof”}dx.
2

] : :
The integral over [2, i;g n_] is evidently

2

logn |
%3 = Slog,n logn  login”

For the remaining integral S” we get substituting

'\'— ~ |OgL
T logon—y
3 logan— fealn)
St ; e’ dy _ 1 -
o | Jog(logan—y)|(, v ) (logan)®
v log, n log,n
Ilogan—Loin)
—03_ Yoy = pop—tewln)
<(Iog2n)3 edy = cye 0

if #— ==, which together with (4. 3) and (4. 2) proves the theorem.
The proof of Theorem III follows also easily from Lemma I. This gives namely

Lo oy L Y B B~ PN ) |
’I"!j(”:pn)_,g‘.:__']{_;;_][l "P::J exp! P(’.i‘.:Z[_:;]"'O[Pﬁ]}

logn
=41 1 S
(I+o( })exp[ ’ ]

which already proves Theorem I11. 7
5. For the proof of Theorem II we shall need as to the coefficient of =" in (3. 6) the

Lemma 11, If

3

- = logn
=0 | logdn =p — g =
(5.1) og*tn=p=¢g=10 g

and n is sufficiently large then

1 1
—r&pg)=n v 7 {1+ 0(log 2n)}.

" The ordo-sign refers throughout this paper to n— =,
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156 P. ERDOS AND P, TURAN

If p and g were fixed and # — o=, the relation

(Y e

: y = < p!—’ q‘!‘ nor 8 r
coeffsz"inG, ,(z) ~ ————

e

would follow from known result of Darboux;® but here p and ¢ vary with n as re-
stricted by (5. 1). A sketch of ihe rather technical proof we shall postpone to an
Appendix. A more direct (real-variable or algebraic) approach to the determination
of this coelficient would be desirable. ?

6. The proof of Theorem II (and also Theorem V) will be based on an idea
which was introduced into arithmetics in 1934 by one of us;'? this is on the way
to become a part of the folklore in this subject. Let (with B in (1. 3))

1 logn
2 log,n

(6.1) =pr<pr=..<p =B

be all primes in this interval; if # is sufficiently large, we have

1 logn logn
: —_— =l=3—-—.
10 (log,n)? (log,n)?

We introduce the function A(P) of P as the number of the p;’s from (6. 1) which do
not divide O(P). For this i#(P) we shall prove two simple lemmata.

(6.2)

1
Lemma Il Putting S, = ol ZI}[P) we have

chXPi

v=1

]+OU)

For the proof we remark first that with notation of Lemma I we have

(6.3) Z}(n Py

‘ v=1

Applying Lemma | this gives
i 1 l
= ' ]—— —_—
Py

% (5, Darpoux, Memoire sur I'approximation des fonctions de trés grands nombres etc., Journ.
de math. pures et appl., Ser. TIL. Tome IV (1878).

% The same holds for the functions (1 —z)"%1 —z"9){1 —zP)" %1 —z%)"" which — and their
obvious generalization — reminds one to the cyclotomic polynomials.

10 P, TURAN, On a theorem of Hardy and Ramanujan, Journ, London Math. Soc., 9 (4) (1934),
pp. 274276 and Uber einige Verallgemeinerungen eines Satzes von Hardy und Ramanujan, ibid.,
11 (1936), pp. 125—133. See also the beautiful booklet of M. Kac, Statistical independence in
probability, analysis and number theory, Carus Math. Monographs, No. 12.
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Using (6. 1) (and (1. 3)) the product is

exp {——lo —+0[ : ]} = exp {- 51 +0[l°gﬂf]} =
P TP Py IR 3 Py
{1 £ [(1og2n) ]} 55 {_Iog n}
logn Py

and thus, using (6. 2)
as stated.
Further we need the

l
Lemma 1V. Putting S,= 3 hP)* we have

oSl ol ) ol

For the proof we write (p,’s in (6. 1))

S==3( 30 F 1.

nl Fopom T puow

]+ o(l).

The contribution of the pairs with g =v is obviously S, ; hence

i 1
6.4 S, =8+2 2 [ 2 1]=Sl+2 2 —8@p.p)
1=p=v=l nIp,‘?UU’; 1=p<v=lt
pef QP

with the notation of (3. 6). Using the remark (3. 6) and Lemma Il we get

sl 3 ol
1= uw:\’! Pl(}ﬂﬁ'

Using also Lemma 11T we get

o(l) logn))?
o(l £ Thaud
Zexp[ P ]+ (“[ Ilogrr][zexp[ Py ]]

7. Lemma HI and 1V give quickly the proof of Theorem II. We form the ex-
pression

1 2
(7.1) zH J: Z[h(P)—Z p[_l"f.”]].

n=1 I

as stated.

Lemma III and 1V give at once

1 : logn = log n
. Z=0|-—=|| 5 L | TS i 5
00 2oy | Fee (o oo Se 5}
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158 P. ERD(S AND P. TURAN

Let U be the set of P’s with
h(P)=0

and |U/[ their number; (7. 1) and (7. 2) give a fortiori

] _ S logn logn
(7.3) = - 0(1) {Hogn [NPZSCXP[ ]] [Z’cxp[ Ui ]] }

If we succeed in proving

with n we are ready. But

logan logzn

V= Z’F ex [—
‘ logn 143 _qu}j’] = ooln logn p

which is analogously as in 4,
I logan+ fain)
Cy o] e¥ dy . .
(log,n)? I y )2 i log (log,n—y)
3 logzn—dmin) log)_ ] |0g2 n

3 logsn+ Fawln)
.

s e’ dy— =
(log,n)?
3logyn—teln)

indeed.

8. The proof of Theorem 1V, once having Lemma I is again easy. This gives
namely if f(n, p) stands for the number of those P’s, whose order O(P) is divisible
by p the exact formula
f(n, p) L I ! I, n I

-=1—]1- l——1... |1— = (I, - —— log — otk
i 1 5 ZpJ I [n] 1 —exp plogp+0 -
. —|\P
) p
e, if p=Y¥n say,
log =
f(n, ; P 1
8.1) fop) . i [—]
n! P p

Hence for the proof of our Theorem 1V we have only to show that

1 " |
i {—log——l—O[_]}»O.
ncxpf -—a{n}ﬁ:\{gu} =Ep=n p p P
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For the second sum this is well-known; for the first it follows easily since it cannot
exceed

o)V Togn > 2

nexp{ —Efrl}l.-'fingn )= p=n

which tends to 0 indeed.

9. The proof of Theorem V will be easy after having the Theorem VI, which
is of independent interest. This is the following.

THEOREM VI. Let
(9.1) l=a,=a,<...<a,=n

be a sequence of integers. Then the number of P's having no cycles with the length
a, or a, ...or a,, cannot exceed the quantity

5
Hence if > a; ! tends with n to =, then almost all P’s have at least one cycle

v=1
the length of which is among the numbers in (9. 1).
The proof of Theorem VI will be based again on the dispersion-idea. Let L(P)
be the number of the a,’s from (9. 1) with the property that £ has a cycle with length
a,. Then we assert the

LemMa V. Denoting the expression

1
5 Z L(P)

by H, we have
H, = sl
v=14

S 1,
9-2) Hi s 2 ;.2;']
v=1 i

where the summation within the bracket refers to all P’s containing a cycle with
the length a, (v fixed). But what is the value of this sum? The elements of this cycle

. n . . .
can be selected in [{ ] ways; after selection each can be written down on «,! ways.
.

Since a cyclic permutation gives the same cycle, our selection gives rise to

7, 1 n!
al—=—_
v
a, a, a,(n—a,)!
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160 P. ERD{OS AND P, TURAN

different cycles of length a,. Each can be completed to a P by permuting the remaining
(1 —a,) elements. Hence the value of the inner bracket is for fixed v 1/a,, which
proves the lemma.

We need further the

LemMmA VI. Denoting the expression

1
2
n! ‘PZ' L(P)
by H, we have

For the proof we start from the fact that

au+ae=n

where the > is to be extended to all P’s having two cycles with the length @, and a,
respectively. What is the value of the inner sum in (9. 3)? The cycle of length a, can

be filled as before in

ways; the cycle of length a, afterwards in

n!
a,(n—a,)!
(n—a,)!
a,(n—a,—a,)!

ways. Each can be completed toa Pin (n—-a —a,)! ways. Hence the value of the
expression in the bracket in (9. 3) is 1/a,a, Hence

s ] s 1132
C H, = _+2 - Ll ST
0.4 2= 32 3 ot
v=1 ‘ l=p=<v=s .“ ‘ p=1""¥ V=
. G+ ae=n
indeed.
In order to prove Theorem V we consider the expression

o | 1)
(9.5) z,‘”” Z [L(P)—;a—] '

From Lemma V and VI we get

(9.6) i Feoe

v=1 @y

Denoting by U, the set of P’s with L(P)=0 and by |U,| the number of P’s in U,

(9.5) and (9.06) give
Wil _ [ s L]_'
n! [‘=2: a,

i.e. Theorem VI is proved already.
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10. In order to deduce Theorem V from Theorem VI we define the s as all
multiples of all primes in the interval

(10.1) I nexp(—w@Ylogn) =p=n

which do not exceed n. The sum of their reciprocals is
(10.2) Z Z 2’ —1 og — +0(1)Z : 510gp+0(n
ot

The remaining sum is

s ZI log _n

f 1=t 1 P P

where [, stands for the interval
. i w(n)
nexp {—-w(n}}logn’ =p =nexp s Viogn
hence this sum is
~ w Z_ w(n) @-E’-@- : 1 . 3{_::)'_'
el P 3 Vlogn 6

Hence with exception of at most

_% .

om? "

P’s the other ones are such that O(P) is divisible by a prime p in /. Q.e.d.

Appendix

We sketch the proof of Lemma II. We have for n = 10 obviously

I
M a8 pa) =3 o L [Gu@zds,

(D]

where D, means the following path of integration. We cut off the plane along the
segment
2xniv
z=re M , r=1

then D, comes from infinity along the ray

11 Acta Matbematica Academiae Scientiarum Hungaricae 18, 1967



162 P. ERDOS AND P, TURAN

2miv
encircles the point z=¢ P in negative sense with a “small” circle and then goes
to infinity along the ray
2nv

arcz = ——+0.
rq
The contribution of the “small™ circles goes obviously to 0 and hence

rg-1

l
) gn.p,q) = Z L,

where

(3) [, = lim

f,—n+0

_2ami Gy [f expi [%ﬂ]] ~ [r expi [i—:;l—s]]
{ . f " dr

patl

We consider first the /s with

=v=pg—1I.
We have (roughly)
10pg 10pg
|G pe(2)| = R
(rr— 1) (r—1)me
and hence
= 1
q—1 . e B H— L
"5 < iowq)sz. = m(pq)zj; -1y dr
vl P (p—1)pe 5
on putting r = l_l—_r' Using the well-known formula
1
Fa+DHIr{p+1)
4 l—tfdt = — "~ —1, —1
4 L'fr_“( 0 dt T+ f+2) B=-1
we get for n=n,
1
pr=1 F[n P‘i"_] 1
- 2 — 3y e
2 L] < 20(pg) —p o Fs = (pa)’n
and hence
1
(5] g(”)p!(?) -Hl - (pq)3npq

As to I, putting

and

bematice Acadenrice Scientiarum Hungoricae 18, 1967



ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY, 11 163

we get

oo

I = sin a'r_)u B _‘gl(r}dr N
0 = T rni—l(_,,_l}.i'

The contribution of r=1+100 :Oi-ﬂ-- is O(n=%% quite roughly; replacing on the

remaining interval g(r) by

-

1
p'q

(pg) ™

gives an error of O(n~!log? n). Completing again the integration range to (I, =)
we get

1 1 oo
o e
) I, = sinmi pfq {1+0(n"log?n)} ___l_ff_": . +0(m3°).
T 1 rtli(r—1)
(pq) pa i

Substituting again r by % and applying (4) we get for the main term in (6)

1 1
= T prqe ,Siﬂifbf(l—/l)l‘(n-;-z)_
{1+ 0(n="log*n)} o ;.q_ T e
= 2 11
= (1 + 0@ log2m) 270 Tnid) o {l+0(n~110gzn)}%.

% r')rmn+1)

(pq) (pg)™
EE
nr 4 m

'F(_.i}_"_
But in our case
1 1 1
ppqﬂ' ”P;J_ . ) s
T 1+ O(log=*n)
(pq)f’q

the proof of Lemma II is complete.

(Received 15 Junuary 1966)
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