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Let
A — {ar1< a'2< a'a...}

be a sequence of positive integers. We arrange all numbers of the form
la;— a;| (i # j) into a sequence

D(Ad) ={d, < d,<d;< ...}.
A subsequence
B={b<b,<by<...}

of A will be called avoidable if one can drop some terms in A so that
1° for the resulting sequence A’ no term of B is contained in D(A’) and
2° the set A’ is infinite. We ask about general conditions, sufficient or
necessary for B to be avoidable. By “general” we mean conditions that
do not depend on special choice of A or B. They should be expressed in
terms of rarity of B in D(A4). This approach is by no means frustrated
by the example 4 = N ={1,2,3,...} and B=1{1,3,5,...}, thus B
being avoidable by removing all even (or all odd) numbers from A. The
most natural assumption that B is of density 0 in D(A) actually turns
out to play an essential rdle, in view of the following

TuworEM 1. For every A and every & >0 there is a sequence B of
density < e in D(A) which is nol avoidable.

Proof. Let & be a real number such that {d,&} is equidistributed
mod 1 and that a;& +# ;& mod 1 for 7 # j. B may consist of all d,'s
for which ||d,é| < /2, |a|l denoting the distance of a to the nearest
integer. Then B has the density ¢ in D(A4). To see that B is not avoidable
assume the contrary and let A’ = {a; < a,< ...} be the (infinite) se-
(quence which remains after removing suitable terms from A. Obviously,
the set {a; &} has a limit point mod 1. Hence there are pairs (ai, a}),
i #j, such that [(a;—a;) & < /2 (mod 1), and so |a;—aj| is a b,, this
being a contradiction.
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A kind of a converse is given by

THEOREM 2. If A has positive lower density in N and B has lower
density in N equal zero, then B is avoidable.

Proof. If B were not avoidable, there would exist a finite segment
@y, ..., @ of A such that for n > 1 we had a,—a;eB for some ¢ =1,...,1.
(The existence of such a “saturated” segment is not sufficient for B to
be not avoidable as is shown by the example 4 = {1,2,4,6,...} and
B={1,3,5,...}, where B is clearly avoidable and the segment {1}
is saturated). Thus 4 would be contained, up to finitely many terms,
in the union of finitely many translations of a set of lower density 0 and
8o would itself have lower density 0 contrary to the assumption.

The condition that 4 should have positive lower density is essential,
in view of the following

TurorEM 3. There ewisls a sequence A and a sequence B = D(A)
which has density 0 in D(A) bul is not avoidable.

We proceed to the construction by putting

4= [kis k“i‘k]s
k=1

where [, n] denotes the set of integers m,m-+1,...,n. We have ob-
viously D(A) = N. Now let
B=|J[k—i—i, F—i*1k].
i<k

One eagily sees that B has density zero in N. However, B is not
avoidable, because in every infinite subsequence A’ of A there must
be an a e[k}, k{+k] and an epe[ky, k3+k;], where k, #k,. Then
|ay— a,.| e B.

A sufficient condition for avoidability is given by

THEOREM 4. If D(B) = {¢,, ¢a, ...} has the property that the sequences
CF = {epd-dg} ~ {do} are of lower density 0 in D(A) for every s, then B is
avoidable.

Proof. If a,,..., a; is a segment of 4 such as in the proof of Theo-
rem 2, then we have @, = a; +¥b; (v =1,2) for n, and », sufficiently
large, for some ¢, = 1, ..., [ and some j,. Hence |a, — a,,| = |(a;,— a,)+
+ (b;,—b;,)| is of the form ¢,4-ds, where s takes values from a finite
set only. As @y — @ | is some d,, we see that D(A) is composed, up
to a finite number of terms, of finitely many C:’s, which contradicts
the assumption of the Theorem.

Note that a sequence B satisfying this assumption has lower density
zero in D(A), since B\ (b,) is contained in {e,+b;} ~ {d,}, the sequence
by—b,, by—0b,,... being a part of D(B).
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Remark. If B has positive upper (lower) density in D(4), then
this is not affected by adjoining the number 0 to 4 and thus making 4
to a subsequence of D(A*) (4* = 4 o (0)). In fact, it is easy to prove
that those a,’s which do not appear in D(A) constitute a subsequence
of upper density = } in D(A¥).

We are not able to decide whether B is avoidable if b = d,,, with
Npoy— Ay —> oo (P 594) (). This condition obviously implies that B has
density 0 in D(A), hence Theorem 2 shows its sufficiency if 4 has po-
gitive lower density in N. Without additional assumptions we do not
even know whether n;.,/n; — oo implies avoidability, we can but prcve
the following

THEOREM 5. If the set N D(A) is finite, limf(n) = co and

(*) Mgy > it f(ng) (. Jog g )

(e.g. if my =Ky s >2), then the sequence B = {d, } is avoidable.

Proof. We may suppose D(4) = N and thus d, = n. If ra<u,
for some integer x and r, then, in view of (*), the number of n;’s in the
interval (n;, n;--a) is

22
*(eiagare)

when #—+oo. By the same argument, the same estimate iz valid for
the number of ;s in (rz, (r+1)a).

Therefore, there are not more numbers n, — n; with rz < w; < (r 1)z
and #; < ny < -+ than o(zfrloga). Using (%) once more we see that

( @ 1
0 —_
loga r

re®

is an upper estimate of the number of all differences n;—n; not exceed-
ing 2. Hence, there are only o(x) such differences and the density of
D(B) in D(A) turns ont to be zero, the assumption of Theorem 4 being
thus fulfilled.

(*) Added in proof. This problem has been recently solved in the affirmative
by D. Rotenberg (to appear in Colloquinm Mathematicum.)
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